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The matricellular protein SPON2 plays diverse roles in the development of cardiovascular
diseases. SPON2 is expressed in endothelial cells, but its transcription regulation in the
context of atherogenesis remains incompletely appreciated. Here we report that SPON2
expression was up-regulated by pro-atherogenic stimuli (oxLDL and TNF-α) in vascular
endothelia cells. In addition, endothelial SPON2 was elevated in Apoe−/− mice fed on a
Western diet compared to the control mice. Induction of SPON2 in endothelial cells by
pro-atherogenic stimuli was mediated by BRG1, a chromatin remodeling protein, both
in vitro and in vivo. Further analysis revealed that BRG1 interacted with the sequence-
specific transcription factor Egr-1 to activate SPON2 transcription. BRG1 contributed
to SPON2 trans-activation by modulating chromatin structure surrounding the SPON2
promoter. Functionally, activation of SPON2 transcription by the Egr-1/BRG1 complex
provided chemoattractive cues for macrophage trafficking. SPON2 depletion abrogated
the ability of BRG1 or Egr-1 to stimulate endothelial derived chemoattractive cue
for macrophage migration. On the contrary, recombinant SPON2 rescued endothelial
chemo-attractability in the absence of BRG1 or Egr-1. In conclusion, our data have
identified a novel transcriptional cascade in endothelial cells that may potentially promote
macrophage recruitment and vascular inflammation leading to atherogenesis.

Keywords: transcriptional regulation, epigenetics, endothelial cells, macrophage, atherosclerosis

INTRODUCTION

Atherosclerosis is a major form of coronary heart disease (CHD). Rupture of atherosclerotic
plaques represents a major cause for acute myocardial infarction and sudden cardiac death
(Schwartz et al., 2009; Hamesch et al., 2015; Fan et al., 2020). A host of risk factors,
including smoking, obesity, and dyslipidemia, can contribute to atherogenesis (Feng et al., 2011;
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Miura et al., 2012). It is generally believed that atherosclerosis
is a prototypical human pathology of chronic inflammation
(Hansson and Libby, 2006). Accumulation of pro-inflammatory
cells and mediators within the plaque collectively destabilizes
the fibrous cap and renders the plaque prone to rupture. This
notion, long since authenticated in model animals, has recently
received evidentiary support from a large clinical trial involving
over 10,000 enrolled patients: an antibody (Canakinumab)
targeting the pro-inflammatory cytokine interleukin 1 beta (IL-
1β) significantly lowered the rate of re-occurring cardiovascular
events (Ridker et al., 2017).

During atherogenesis, pro-inflammatory immune cells gain
access to the vasculature via a series of tightly regulated processes.
The vascular cells produce and emit chemoattractive cues that
stimulate the homing/trafficking of immune cells (Liu et al.,
2012). For instance, it has been demonstrated that arterial colony
stimulating factor (CSF) plays a key role promoting monocyte
migration during atherogenesis (Shaposhnik et al., 2010). Smooth
muscle cells can produce chemokine (C-X3-C motif) ligand 1
(CX3CL1) and C-C motif chemokine 22 (CCL22), in response
to atherogenic lipids, to promote macrophage trafficking (Barlic
et al., 2007; Kimura et al., 2018).Once the immune cells are
recruited to the vessel wall, rolling on and adhesion to the
endothelial layer are mediated by a group of adhesion proteins,
including intercellular adhesion molecules (ICAMs), vascular cell
adhesion molecules (VCAMs), and selectins, which can be up-
regulated by pro-atherogenic stimuli on the surface of activated
endothelial cells (He, 2010). In accordance, there is evidence that
blockade of chemokine signaling or leukocyte-endothelial cell
interaction can lead to attenuation of immune infiltrates in the
plaque and atherosclerosis overall in animal models.

Spondin 2 (SPON2, also known as Mindin) is a member of the
Mindin-F-Spondin family of matricellular proteins functioning
as pattern recognition receptors to regulate immunity; SPON2
itself contains a C-terminal thrombospondin type 1 repeat (TSR)
that mediates its binding to LPS to initiate the TLR signaling
critical to innate immunity (Li et al., 2009). SPON2 is expressed
in a variety of cell types and can participate in cell adhesion,
migration, and differentiation (Feinstein et al., 1999; Zhu et al.,
2015; Schmid et al., 2016; Zhang et al., 2018d). Of note, SPON2
expression is up-regulated in the arteries in Apoe−/− mice
fed with a Western diet to induce atherosclerosis compared
to the control mice although the underlying mechanism
remains unclear (Zhang et al., 2018a). BRG1, encoded by
SMARCA4, is a component of the mammalian chromatin
remodeling complex. BRG1 is involved in the pathogenesis
of human diseases by regulating cell-type and context-specific
transcriptional events (Xu and Fang, 2012; Chang and Han,
2016; Wu et al., 2017). Previously we have demonstrated
that BRG1 activates the transcription of a slew of adhesion
proteins in endothelial cells in response to pro-inflammatory
stimuli (Fang et al., 2013). Congruently, endothelial-specific
BRG1 deletion attenuates atherosclerosis in Apoe−/− mice with
decreased adhesion of immune cells to the vessel wall. Here
we report that SPON2 expression can be up-regulated by
pro-atherogenic stimuli in endothelial cells both in vitro and
in vivo in a BRG1-dependent manner. BRG1 cooperates with

Egr-1 to activate SPON2 transcription, which in turn promotes
macrophage migration.

MATERIALS AND METHODS

Animals
All the animal experiments were reviewed and approved by
the intramural Ethics Committee on Humane Treatment of
Experimental Animals. Endothelial-specific deletion of BRG1
was achieved by crossing the Smarca4f/f strain (Li et al., 2018a,b)
with the Cdh5-Cre strain (Li et al., 2018e) and the Apoe−/−

strain. The breedings were conducted by Nanjing Biomedical
Research Institute of Nanjing University. Atherosclerosis was
induced by feeding with a Western diet (D12109, Research
Diets) for 12 weeks.

Cell Culture, Transient Transfection, and
Reporter Assay
Immortalized human umbilical vein endothelial cells (EAhy926,
ATCC) were maintained in DMEM supplemented with 10% FBS.
Primary human aortic endothelial cells (HAECs, Lonza) were
maintained in EGM-2 media with supplements supplied by the
vendor; experiments were performed in primary cells between
3rd and 6th passages (Li et al., 2018d; Zhang et al., 2018b).
Primary murine peritoneal macrophages were isolated and
cultured in DMEM supplemented with 10% FBS as previously
described (Liu et al., 2018). Primary murine bone marrow
derived macrophages (BMDM) were isolated and differentiated
as previously described (Yu et al., 2014). Myc-tagged BRG1,
FLAG-tagged EGR-1, and human SPON2 promoter-luciferase
constructs have been described previously (Liao et al., 2010;
Yu et al., 2017; Wang et al., 2018; Zhang et al., 2018c). Small
interfering RNAs were purchased from Dharmacon. Transient
transfection was performed with Lipofectamine 2000. Cells were
harvested 48 h after transfection and reporter activity was
measured using a luciferase reporter assay system (Promega) as
previously described (Li et al., 2018c).

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit (Qiagen)
as previously described (Yang et al., 2019a,b; Zhang et al., 2019).
Reverse transcriptase reactions were performed as previously
described using a SuperScript First-strand Synthesis System
(Invitrogen) (Zeng et al., 2018). Real-time qPCR reactions
were performed in triplicate wells on an ABI STEPONEPlus
(Life Tech). The relative quantification for a given gene was
normalized by the Gapdh mRNA values. All experiments were
repeated three times in triplicate wells.

Protein Extraction, Immunoprecipitation,
and Western Blotting
Whole cell lysates were obtained by re-suspending cell pellets
in RIPA buffer with freshly added protease inhibitor tablet
(Roche). Immunoprecipitation was performed essentially as
previously described (Yang et al., 2018; Shao et al., 2019;
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Weng et al., 2019). Briefly, anti-Brg1 (Santa Cruz, sc-17796),
anti-Egr-1 (Abcam, ab55160), or pre-immune IgGs (P.I.I.) were
added to and incubated with cell lysates overnight before being
absorbed by Protein A/G-plus Agarose beads (Santa Cruz).
Precipitated immune complex was released by boiling with
1X SDS electrophoresis sample buffer. Western analyses were
performed with anti-β-actin (Sigma, A2228), anti-Brg1 (Santa
Cruz, sc-17796), anti-Egr-1 (Abcam, ab55160), or anti-SPON2
(Proteintech, 20513-1).

Macrophage Migration Assay
Macrophage migration was measured using the Boyden chamber
inserts (5 µm, Corning) as previously described (Jia et al., 2005).
Briefly, primary peritoneal macrophages or BMDMs were added
to the upper chamber along with specified conditioned media or
recombinant Mindin (20 ng/ml, R&D) whereas complete DMEM
media were added to the lower chamber. The number of migrated
macrophages in the lower chamber was counted in five randomly
chosen fields using an inverted microscope. All experiments were
performed in triplicates and repeated three times.

Chromatin Immunoprecipitation (ChIP)
ChIP assays were performed essentially as described before (Fan
et al., 2019; Kong et al., 2019a,b; Li et al., 2019a,b,c,d,e; Liu L.
et al., 2019; Lu et al., 2019; Shao et al., 2019; Weng et al., 2019;
Yang et al., 2019a,b; Zhao et al., 2019; Dong et al., 2020; Fan
et al., 2020; Lv et al., 2020; Mao et al., 2020a,b) with the following
antibodies: anti-Brg1 (Santa Cruz, sc-17796), anti-histone H3
(Millipore, 06-755), anti-acetyl histone H3 (Millipore, 06-599),
anti-trimethyl H3K4 (Millipore, 07-473), anti-dimethyl H3K9
(Millipore, 07-441), anti-Egr-1 (Thermo Fisher, MA5-15009), or
IgG.All experiments were repeated three times in triplicate wells.

Statistical Analysis
One-way ANOVA with post hoc Scheff’e analyses were performed
by SPSS software (IBM SPSS v18.0, Chicago, IL, United States).
P-values less than 0.05 were considered statistically significant.

RESULTS

Up-Regulation of SPON2 Expression in
Endothelial Cells by Pro-atherogenic
Stimuli
We first examined whether SPON2 expression in vascular
endothelial cells could be influenced by pro-atherogenic stimuli.
To this end, immortalized human endothelial cells (EAhy926)
and primary human aortic endothelial cells (HAECs) were treated
with oxLDL, a well-documented risk factor for atherosclerosis
(Toshima et al., 2000). SPON2 mRNA (Figure 1A) and protein
(Figure 1B) levels were up-regulated by oxLDL treatment in both
types of cells. Next, the cells were treated with TNF-α, another
known risk marker for atherosclerosis (McKellar et al., 2009).
Similar to oxLDL treatment, TNF-α treatment also stimulated
the expression of SPON2 in endothelial cells at both mRNA
(Figure 1C) and protein (Figure 1D) levels. We then examined

the expression of SPON2 in arteries during atherogenesis in
mice. Apoe−/− mice were fed a Western diet for 12 weeks to
induce atherosclerosis; significant atherosclerotic lesions were
detected in these mice compared to those mice fed a control
diet (Supplementary Figure S1). As shown in Figures 1E,F,
SPON2 expression was significantly higher in the arteries of
the atherosclerotic mice than the control mice. More important,
endothelial SPON2 expression was up-regulated in the arteries
of the atherosclerotic mice compared to the control mice as
assessed by immunofluorescence staining of SPON2+CD31+
cells (Figure 1G).

BRG1 Regulates SPON2 Expression in
Endothelial Cells
We have previously shown that endothelial-specific depletion
of BRG1 attenuates atherogenesis in mice (Fang et al., 2013).
When endothelial conditional BRG1 knockout mice (Smarca4f/f;
Cdh5-Cre) were crossed with the Apoe−/− mice and placed
on a Western diet, development of atherosclerotic lesions
was significantly attenuated compared to the control mice
(Supplementary Figure S2). Coincidently, quantitative
PCR (Figure 2A), Western blotting (Figure 2B), and
immunofluorescence staining of SPON2+CD31+ cells
(Figure 2C) all showed that BRG1 deficiency in endothelial
cells resulted in a decrease in SPON2 expression.

We were prompted to investigated the possibility BRG1 may
be essential for the regulation of SPON2 expression in response
to pro-atherogenic stimuli. Over-expression of wild type (WT)
BRG1, but not enzyme deficient (ED) BRG1, enhanced the
induction of SPON2 expression in endothelial cells by oxLDL
treatment (Figures 3A,B). In addition, BRG1 over-expression
further augmented SPON2 induction by TNF-α (Figures 3C,D).
On the contrary, BRG1 knockdown by two separate pairs of
siRNAs (Supplementary Figure S3 for knockdown efficiencies)
ameliorated the induction of SPON2 expression in endothelial
cells by either oxLDL treatment (Figures 3E,F) or TNF-α
treatment (Figures 3G,H). Of note, SPON2 depletion did not
influence the expression levels of adhesion molecules ICAM-1
and VCAM-1, two documented BRG1 targets, in endothelial cells
treated with either oxLDL (Supplementary Figure S4A) or TNF-
α (Supplementary Figure S4B). Consistently, occupancies of
BRG1 on the ICAM-1 promoter and the VCAM-1 promoter were
not altered by SPON2 knockdown (Supplementary Figure S4C),
suggesting that the relationship between BRG1 and SPON2 is not
reciprocal but rather unidirectional.

BRG1 Regulates Macrophage Trafficking
Through SPON2
SPON2 has a role in macrophage trafficking, a key process in
atherogenesis. We decided to investigate the functional relevance
of BRG1-mediated induction of SPON2 expression in endothelial
cells. BRG1 was over-expressed in endothelial cells followed
by treatment with oxLDL. Conditioned medium (CM) was
collected and used as a chemoattractant to induce macrophage
migration. As shown in Figure 4A, CM collected from oxLDL-
treated endothelial cells exhibited stronger chemoattractive
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FIGURE 1 | Up-regulation of SPON2 expression in endothelial cells by pro-atherogenic stimuli. (A,B) EAhy926 cells and HAECs were treated with or without oxLDL
(50 µg/ml) and harvested at indicated time points. SPON2 expression was measured by qPCR and Western. (C,D) EAhy926 cells and HAECs were treated with or
without TNF-α (10 ng/ml) and harvested at indicated time points. SPON2 expression was measured by qPCR and Western. (E–G) Apoe-/- mice were fed with a
high-fat diet (HFD) or a control diet (chow) for 12 weeks. SPON2 expression in the arteries was measured by qPCR, Western, and immunofluorescence staining.
*p < 0.05.

potency, which was further enhanced by BRG1 over-expression;
SPON2 knockdown severely compromised the chemoattractive
capability of the conditioned media. Likewise, TNF-α treatment
stimulated the emission of a chemoattractive signal from the
endothelial cells, which was further enhanced by BRG1 over-
expression but blunted by SPON2 depletion (Figure 4B).
On the other hand, BRG1 silencing blocked the production
and release of a chemoattractive cue from oxLDL-treated
endothelial cells, which could be rescued by the addition

of recombinant SPON2 in the CM (Figure 4C). Finally,
SPON2 supplementation recovered the deficiency in macrophage
chemotaxis following BRG1 knockdown (Figure 4D). We also
profiled the expression of several other chemokines. Treatment
with either oxLDL (Supplementary Figure S5A) or TNF-
α (Supplementary Figure S5B) markedly up-regulated the
expression of CCL2/MCP-1, CCL3, and CCL5, which was
further augmented by BRG1 over-expression. SPON2 depletion,
however, did not appreciably impact the expression of these
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FIGURE 2 | BRG1 regulates SPON2 expression in mice. (A–C) Smarca4f/f-Apoe-/- mice and Smarca4f/f-Cdh5-Cre-Apoe-/- mice were fed with an HFD for
12 weeks. SPON2 expression in the arteries was measured by qPCR, Western, and immunofluorescence staining. *p < 0.05.

chemokines. These data collectively suggest that BRG1 activates
the production of SPON2 in endothelial cells in response to
pro-atherogenic stimuli to promote macrophage chemotaxis.

BRG1 Directly Regulates SPON2
Transcription in Endothelial Cells
To examine whether activation of SPON2 expression by BRG1
occurred at the transcriptional level, human SPON2 promoter-
luciferase constructs of different lengths were transfected
into endothelial cells with or without BRG1. As shown in
Figure 5A, over-expression of BRG1 activated the three longer
SPON2 constructs but not the shortest SPON2 construct,
from which a binding site for Egr-1 was missing, suggesting
that Erg-1 might recruit BRG1 to the SPON2 promoter to
regulate transcription. This Egr-1 motif was conserved in the
human SPON2 promoter and the mouse SPON2 promoter
(Supplementary Figure S6). Indeed, mutation this Egr-1 site
within the SPON2 promoter completely abrogated activation
by BRG1 over-expression (Figure 5B). Next, ChIP assays were
performed to evaluate the binding of Egr-1 and BRG1 on the

SPON2 promoter. When the endothelial cells were exposed to
oxLDL, both Egr-1 and BRG1 were recruited to the SPON2
promoter, but not the GAPDH promoter at 24 and 48 h; depletion
of Egr-1 suppressed the binding of both Egr-1 and BRG1 to the
SPON2 promoter (Figure 5C). Co-immunoprecipitation assay
confirmed that Egr-1 and BRG1 interacted with each other in
endothelial cells (Figure 5D). More important, oxLDL treatment
promoted the assembly of an Egr-1-BRG1 complex on the SPON2
promoter (Figure 5E).

Egr-1 Mediates SPON2 Transcription to
Regulate Macrophage Trafficking
Next, we investigated the role of Egr-1 in SPON2 trans-
activation in endothelial cells. When Egr-1 was depleted with
siRNAs, oxLDL-induced expression of SPON2 was significantly
dampened (Figures 6A,B). As a functional readout, macrophage
trafficking was evaluated using conditioned media collected
from these cells as chemoattractive cues. Egr-1 knockdown
suppressed macrophage migration induced by oxLDL and the
addition of recombinant SPON2 restored macrophage migration
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FIGURE 3 | BRG1 regulates SPON2 expression in cultured endothelial cells. (A,B) EAhy926 cells were transfected with wild type (WT) or enzyme deficient (ED)
BRG1 followed by treatment with oxLDL (50 µg/ml) for 24 h. SPON2 expression was measured by qPCR and Western. (C,D) EAhy926 cells were transfected with
wild type (WT) or enzyme deficient (ED) BRG1 followed by treatment with TNF-α (10 ng/ml) for 24 h. SPON2 expression was measured by qPCR and Western. (E,F)
EAhy926 cells or HAECs were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed by treatment with oxLDL (50 µg/ml) for 24 h. SPON2
expression was measured by qPCR and Western. (G,H) EAhy926 cells or HAECs were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed
by treatment with TNF-α (10 ng/ml) for 24 h. SPON2 expression was measured by qPCR and Western. *p < 0.05.

(Figure 6C). Similarly, Egr-1 silencing blocked SPON2 induction
by TNF-α treatment in endothelial cells (Figures 6D,E). Egr-
1 deficiency in endothelial cells also blocked the migration of
macrophages in response to the conditioned media, which could
be mitigated by recombinant SPON2 (Figure 6F).

BRG1 Contributes to SPON2
Transcription by Modulating Chromatin
Structure
We finally examined the epigenetic mechanism by which BRG1
contributes to SPON2 trans-activation. Eviction of histones
from the gene promoters driven by BRG1-mediated remodeling
activity is considered a major mechanism for transcriptional
activation (Jones et al., 2003; Hargreaves and Crabtree, 2011).

ChIP assay showed that in response to oxLDL treatment, there
were fewer histones wrapped around the SPON2 promoter,
indicative of histone eviction and thus chromatin loosening;
BRG1 depletion, however, normalized the association of histones
with the SPON2 promoter (Figure 7A). In addition, BRG1 is
known to interact with various histone modifying enzymes to
influence gene expression (Tian et al., 2013; Weng et al., 2015;
Xu et al., 2015; Zhang et al., 2018b,c, 2019; Li et al., 2019e). It was
observed that histone markers associated with active chromatin,
including acetyl H3 (Figure 7B), acetyl H4 (Figure 7C), and
trimethylated H3K4 (Figure 7D), were all up-regulated on
the SPON2 promoter by oxLDL treatment. BRG1 knockdown
significantly attenuated the accumulation of these active histone
markers. On the contrary, oxLDL treatment resulted in a
decrease in dimethyl H3K9, a histone marker typically found
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FIGURE 4 | BRG1 regulates macrophage trafficking through SPON2. (A) EAhy926 cells were transfected with BRG1 and/or siRNA targeting SPON2 followed by
treatment with oxLDL (50 µg/ml) for 24 h. Macrophage migration assay was performed and quantified as described in Section “Materials and Methods.”
(B) EAhy926 cells were transfected with BRG1 and/or siRNA targeting SPON2 followed by treatment with TNF-α (10 ng/ml) for 24 h. Macrophage migration assay
was performed and quantified as described in Methods. (C) EAhy926 cells were transfected with siRNA targeting BRG1 in the presence or absence of followed by
treatment with oxLDL (50 µg/ml) for 24 h. Recombinant SPON2 was added to the supernatant. Macrophage migration assay was performed and quantified as
described in Section “Materials and Methods.” (D) EAhy926 cells were transfected with siRNA targeting BRG1 in the presence or absence of followed by treatment
with TNF-α (10 ng/ml) for 24 h. Recombinant SPON2 was added to the supernatant. Macrophage migration assay was performed and quantified as described in
Section “Materials and Methods.” *p < 0.05.

associated with repressed chromatin, on the SPON2 promoter,
a trend which was reversed by BRG1 knockdown (Figure 7E).
Similar observations with regard to characteristic changes of
histone modifications on the SPON2 promoter were made in
TNF-α treated endothelial cells (Figures 7F–J). Collectively,
these data support a role for BRG1 in modulating chromatin
structure to activate SPON2 transcription in response to pro-
atherogenic stimuli.

DISCUSSION

Epigenetic regulation of gene expression is increasingly
being recognized as a key process in the pathogenesis of
atherosclerosis (Khyzha et al., 2017; Xu et al., 2018; Elia and
Condorelli, 2019; Rizzacasa et al., 2019). Long considered
a human pathology of chronic inflammation, atherogenesis
is defined and programmed by the interplay between the
vasculature and various immune cells. For instance, depletion of

circulating macrophages by several different strategies attenuates
atherosclerosis in experimental animals highlighting the critical
role this population of immune cells play in atherogenesis (Ozaki
et al., 2002; Sun et al., 2010; Bharath et al., 2015; Liu M. et al.,
2019). Here we provide evidence to show that BRG1, a chromatin
remodeling protein, activates transcription of Spondin 2
(SPON2) in vascular endothelial cells, which functions as a
chemoattractant to promote macrophage migration (Figure 7K).
There are several points worth stressing regarding this finding.
First, our data echo previous reports that implicate BRG1 as
an important regulator of atherogenesis. It has been shown
previously that BRG1 interacts with NF-κB to activate the
transcription of adhesion molecules and promote leukocyte
adhesion to the vascular endothelium (Fang et al., 2013). Yuan
et al. (2014) have reported that BRG1 over-expression activates
the expression of pro-inflammatory mediators MMP2/MMP9
in vascular smooth muscle cells (VSMCs), induces apoptosis
of VSMCs, and pivots VSMCs from a contractile phenotype
to a synthetic phenotype, all of which contribute to plaque

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 August 2020 | Volume 8 | Article 794

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00794 February 8, 2021 Time: 10:51 # 8

Li et al. BRG1 Regulates Endothelial-Derived SPON2

FIGURE 5 | Continued
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FIGURE 5 | BRG1 directly regulates SPON2 transcription in endothelial cells. (A) SPON2 promoter-luciferase constructs of various lengths were transfected into
EAh926 cells with or without BRG1 followed by treatment with oxLDL (50 µg/ml) for 24 h. Luciferase activities were normalized by both protein concentration and
GFP fluorescence. (B) Wild type or mutant SPON2 promoter-luciferase construct was transfected into EAhy926 cells with or without BRG1 followed by treatment
with oxLDL (50 µg/ml) for 24 h. Luciferase activities were normalized by both protein concentration and GFP fluorescence. (C) EAhy926 cells were transfected with
siRNA targeting Egr-1 or SCR followed by treatment with oxLDL (50 µg/ml) for 24 h.ChIP assays were performed with indicated antibodies. Inset, knockdown
efficiency of Egr-1 was examined by Western. (D) EAhy926 cells were treated with oxLDL (50 µg/ml) for 24 h. Nuclear proteins were extracted and
immunoprecipitated with indicated antibodies. (E) EAhy926 cells were treated with or without oxLDL (50 µg/ml) for 24 h. Re-ChIP assays were performed with
indicated antibodies. Data represent averages of three independent experiments and error bars represent SEM. *p < 0.05.

destabilization. In addition, a series of reports demonstrating
that BRG1 regulates the identities of immune cells including
macrophages (Ramirez-Carrozzi et al., 2006), B lymphocytes
(Bossen et al., 2015), and T lymphocytes (Wurster and Pazin,
2008; De et al., 2011) suggesting that BRG1 may potentially
influence the inflammatory makeup of the atherosclerotic
plaque. Since small-molecule BRG1 inhibitors are already
available (Wu et al., 2016), these results point to the possibility of
exploiting these chemicals as an interventional approach against
atherosclerosis. Second, we show here that trans-activation
of SPON2 by BRG1 is accompanied by dynamic alterations
of histone modifications on the SPON2 promoter. Consistent
with our finding, a recent study has found that increased
histone acetylation and H3K4 methylation and decreased H3K9
methylation are associated with severity of atherosclerosis in
humans (Greissel et al., 2016). Whether the specific modifying
enzymes are essential for SPON2 induction by pro-atherogenic
stimuli to promote macrophage migration remains to be
determined. We have previously demonstrated that the H3K9
di-demethylase KDM3A is a binding partner for BRG1 in
endothelial cells (Zhang et al., 2018b). It has recently been shown
that KDM3A promotes phenotypic modulation of VSMCs in
diabetic rats (Chen et al., 2017), which is consistent with a
potentially pro-atherogenic role for KDM3A. Third, the finding
that endothelial-derived, BRG1-dependent SPON2 may dictate
macrophage trafficking during atherogenesis is in line with an
emerging role for BRG1 as a key transcriptional regulator of
angiocrine signals. BRG1-mediated production and release of
diffusive factors from vascular endothelial cells, including NO
(Fish et al., 2010), endothelin (Weng et al., 2015), ROS (Li et al.,
2018e), and CSF1 (Zhang et al., 2018b), can contribute to the
pathogenesis of pulmonary hypertension, pathological cardiac
hypertrophy, cardiac ischemia-reperfusion injury, and aortic
aneurysm. This line of investigation would benefit from the
profiling of BRG1-depedent endothelial secretome so that a more
comprehensive role can be assigned to BRG1.

Our data support Egr-1 as the sequence-specific transcription
factor responsible for recruiting BRG1 to the SPON2 promoter.
A sea of evidence points to a pro-atherogenic role for Egr-1. It
has been noted that Egr-1 deficiency, either global (Harja et al.,
2004) or restricted to myeloid cells (Albrecht et al., 2010), protects
the mice from atherosclerosis. Amelioration of atherosclerosis by
Egr-1 deletion in mice is accompanied by a concomitant decrease
in vascular inflammation, which could be attributed to down-
regulation of such Egr-1 target genes as ICAM-1, VCAM-1, and
IL-1β although no evidence is available to directly implicate Egr-
1 in promoting macrophage homing to the plaque. A large body
of evidence illustrates Egr-1 as a key regulator of endothelial

dysfunction in the context of atherogenesis. For instance, Egr-
1 can be activated by fluid shear stress (Khachigian et al., 1997;
Schwachtgen et al., 1998) and oxidized phospholipids (Bochkov
et al., 2002), two classic risk factors for atherosclerosis, in
endothelial cells; activated Egr-1, in turn, functions to up-regulate
the expression of pro-atherogenic genes (e.g., tissue factor).
Further studies are warranted to determine whether endothelial
cell conditional deletion of Egr-1 would be sufficient to retard
macrophage infiltration and delay atherogenesis in mice.

Notably, SPON2 knockdown in endothelial cells did not
alter the expression of adhesion molecules, suggesting that
SPON2 may not regulate macrophage migration through
mediating its interaction with endothelial cells (Supplementary
Figure S4). Mounting evidence indicates that SPON2 may
function as a ligand for cell-surface pattern recognition
receptors to promote trafficking of immune cells. For instance,
Jia et al. (2005) have reported that SPON2 stimulates the
recruitment of macrophages and neutrophils to inflammatory
foci by simultaneously binding to a group of integrin proteins.
More recently, Liu Y. S. et al. (2019) and Zhang et al.
(2018d) have independently reported that SPON2 can bind to
integrin Mac-1 and integrin α4/β5, respectively, to promote
innate immune response. Whether a similar mechanism
accounts for SPON2-mediated macrophage migration in the
context of atherosclerosis remains to be determined. Our
data also demonstrate that SPON2 depletion did not alter
the expression of several well-documented chemokines in
endothelial cells (Supplementary Figure S5), arguing that
SPON2 itself may be the predominant endothelial-derived
and Egr-1/BRG1-stimulated chemoattractive cue to promote
macrophage migration. Model animals harboring endothelial-
specific SPON2 deletion should be exploited in future studies to
verify whether SPON2 is indeed indispensable for macrophage
recruitment to the atherosclerotic lesions in vivo.

Systemic (germline) SPON2 deletion in mice is associated
with attenuation of atherosclerotic development, which
is presumably due to impediment in foam cell formation
(Zhang et al., 2018a). SPON2 expression is clearly detectable
in endothelial cells but a functional role for SPON2 in
this compartment remains elusive (Dreger et al., 2012;
Pinto et al., 2018). Our data suggest that endothelial-
derived SPON2 may play an important role in recruiting
macrophages in vitro. Although the validity of this conclusion
awaits further authentication in animal models, this newly
identified role for SPON2 certainly renews the argument that
SPON2 neutralization by targeting Egr-1/BRG1 may be a
reasonable approach when devising interventional strategies
against atherosclerosis.
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FIGURE 6 | Egr-1 mediates SPON2 transcription to regulate macrophage trafficking. (A–C) EAhy926 cells were transfected with siRNA targeting Egr-1 or scrambled
siRNA (SCR) followed by treatment with oxLDL (50 µg/ml) for 24 h. SPON2 expression was measured by qPCR and Western. Recombinant SPON2 was added to
the supernatant. Macrophage migration assay was performed and quantified as described in Section “Materials and Methods.” (D–F) EAhy926 cells were
transfected with siRNA targeting Egr-1 or scrambled siRNA (SCR) followed by treatment with TNF-α (10 ng/ml) for 24 h. SPON2 expression was measured by qPCR
and Western. Recombinant SPON2 was added to the supernatant. Macrophage migration assay was performed and quantified as described in Section “Materials
and Methods.” *p < 0.05.
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FIGURE 7 | BRG1 contributes to SPON2 transcription by modulating chromatin structure. (A–E) EAhy926 cells were transfected with siRNA targeting BRG1 or
scrambled siRNA (SCR) followed by treatment with oxLDL (50 µg/ml) for 24 h. ChIP assays were performed with anti-histone H3 (A), anti-acetyl H3 (B), anti-acetyl
H4 (C), anti-trimethyl H3K4 (D), and anti-dimethyl H3K9 (E). (F–J) EAhy926 cells were transfected with siRNA targeting BRG1 or scrambled siRNA (SCR) followed
by treatment with TNF-α (10 ng/ml) for 24 h. ChIP assays were performed with anti-histone H3 (F), anti-acetyl H3 (G), anti-acetyl H4 (H), anti-trimethyl H3K4 (I), and
anti-dimethyl H3K9 (J). (K) A schematic model. *p < 0.05.
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