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Statin treatment reduces cardiovascular risk. However, individuals with well-controlled
low-density lipoprotein (LDL) levels may remain at increased risk owing to persistent
high triglycerides and low high-density lipoprotein cholesterol. Because resveratrol
promotes glucose metabolism and mitigates cardiovascular disorders, we explored its
mechanism of protective action on high-fat-induced endothelial dysfunction. Human
umbilical venous endothelial cells were treated with oxidized LDL (ox-LDL) in vitro.
Endothelial function, cell survival, proliferation, migration, and oxidative stress were
analyzed through western blots, quantitative polymerase chain reaction, ELISA, and
immunofluorescence. ox-LDL induced endothelial cell apoptosis, proliferation arrest,
and mobilization inhibition, all of which resveratrol reduced. ox-LDL suppressed the
activities of mitochondrial respiration complex I and III and reduced levels of intracellular
antioxidative enzymes, resulting in reactive oxygen species overproduction and
mitochondrial dysfunction. Resveratrol treatment upregulated Bnip3-related mitophagy
and prevented ox-LDL-mediated mitochondrial respiration complexes inactivation,
sustaining mitochondrial membrane potential and favoring endothelial cell survival.
We found that resveratrol enhanced Bnip3 transcription through hypoxia-inducible
factor 1 (HIF1) and 5′ AMP-activated protein kinase (AMPK). Inhibition of AMPK and
HIF1 abolished resveratrol-mediated protection of mitochondrial redox balance and
endothelial viability. Together, these data demonstrate resveratrol reduces hyperlipemia-
related endothelial damage by preserving mitochondrial homeostasis.

Keywords: resveratrol, mitochondria, oxidative stress, Bnip3, mitophagy

INTRODUCTION

Hyperlipemia has been established as an independent risk factor for the development of
atherosclerotic cardiovascular disease (Zeron and Albuquerque, 2019). Although statins have
been used in clinical studies to reduce hyperlipemia, therapeutic resistance occurs in patients
(Luirink et al., 2019), leading to additional studies on lipid-suppressing approaches for intervention.
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Although statins lower low-density lipoprotein (LDL) levels,
they have little influence on high-density lipoprotein cholesterol
(HDL-C) and triglycerides (Trieb et al., 2019). A remaining
challenge, therefore, is to develop new drugs or compounds
for controlling blood HDL-C levels. Resveratrol is a stilbenoid,
which is produced by several plants in response to injury or
when plants are under pathogen attack (Chen et al., 2019a;
Wang et al., 2019). Many foods also contain resveratrol,
including grapes, blueberries, raspberries, mulberries, and
peanuts (Kim et al., 2019), and its protective actions include
antioxidative and anti-inflammatory properties (Luo et al.,
2019). At nutritionally relevant concentrations, resveratrol
increases antioxidative enzyme gene expression and inhibits
transcription of proinflammatory cytokines (Lejri et al., 2019;
Rao et al., 2019). Previous studies have shown resveratrol
promotes glucose metabolism as an adjunctive therapy for the
management of diabetes-associated complications (Dludla et al.,
2020). Additionally, resveratrol accelerates white adipocyte tissue
browning (Li et al., 2020b) and fatty acid oxidation (Zhang et al.,
2019d). However, few studies have explored the protective roles
of resveratrol in hyperlipemia.

For the past few decades, most studies have focused on
the roles of hyperlipemia in the heart, kidneys, and pancreas.
Compared with these organs, endothelium is more vulnerable to
hyperlipemia-triggered pathological injuries, including oxidative
stress, metabolic disorder, cell senescence, and fibrosis (Wang
et al., 2020a; Zhou and Toan, 2020). Additionally, owing to
direct contact with blood, endothelium responds to blood
composition alterations (Heusch, 2019; Wang et al., 2020b).
Accordingly, hyperlipemia-mediated damage is likely to be seen
in endothelium (Korbel et al., 2018). In addition, LDL is
primarily degraded by endothelium through the LDL receptor,
which is expressed on the surface of endothelium. Impaired
endothelial function is associated with an increase in the blood
LDL (Su et al., 2019). Based on this information, endothelium
is an ideal barrier to regulate hyperlipemia. Several drugs
targeting endothelium have been developed or investigated
to attenuate hyperlipemia-related endothelial damage under
metabolic disorder. Sitagliptin, a glucagon-like peptide analog,
promotes upregulated vascular endothelial growth factor (VEGF)
and enhances angiogenesis in diabetic rats (Khodeer et al.,
2019). In a type-2 diabetes model, Empagliflozin inhibits
oxidative stress and promotes endothelial cell migration and
regeneration (Zhou et al., 2018c). Interestingly, resveratrol has
been reported to inhibit hyperglycemia-mediated inflammatory
“metabolic memory” in human retinal vascular endothelial cells
(Zhang et al., 2015). However, no data are available to confirm
whether resveratrol protects endothelial cells against high-fat-
induced injuries.

At the sub-cellular level, hyperlipemia-induced injuries
are usually caused by oxidative stress through free fatty
acid (FFA) metabolism (Cesar et al., 2018). Compared with
glucose, FFA metabolism consumes more oxygen, which is
correlated with elevated reactive oxygen species (ROS) (Lee
et al., 2019). In addition, hyperlipemia is always followed by
metabolic reprogramming, which primarily uses FFAs rather
than glucose as the energy substrates (Kowaltowski, 2019).

Decreased glucose metabolism is accompanied with a decline
in the production of antioxidative factors (Hysi et al., 2019).
These two effects work together to augment intracellular
oxidative stress, leading to endothelial cell dysfunction,
including proliferation arrest, angiogenesis delay, mobilization
inhibition, and apoptosis activation (Huang et al., 2018).
A total of 85% intracellular ROS are generated at dysfunctional
mitochondria through the tricarboxylic acid cycle and oxidative
phosphorylation because of decreased expression or activity of
mitochondrial respiration complexes (Silverblatt et al., 2019).
Two strategies ameliorate mitochondrial ROS production: one
is mediated through upregulation of endothelial antioxidative
capacity, and the other is achieved through acceleration of
dysfunction mitochondria clearance (Daiber and Chlopicki,
2020). Mitophagy, a selective form of autophagy, selectively
targets damaged mitochondria and sustains mitochondrial
homeostasis (Zhou et al., 2018d). The antioxidative property
of mitophagy has been reported to play a role in the setting of
diabetes, fatty liver disease, hypertension, and cardiac ischemia-
reperfusion injury (Shi et al., 2018; Zhou et al., 2018a, 2019).
Therefore, in this study, we investigated whether the ROS-
reducing effect of resveratrol on high-fat-treated endothelial cells
is mediated by mitophagy.

MATERIALS AND METHODS

Cell Treatment and Transfection
HUVECs were cultured at 37◦C in a humidified 5% CO2
environment (Zhang et al., 2019a). Culture medium was
refreshed every 2–3 days. Cells were passed using trypsin-EDTA
(Sigma, Steinheim, Germany) at 90–100%. HUVECs were used
up to passage five. HUVEC stock solutions up to passage two
were stored at 180◦C in Dulbecco’s modified Eagle medium
(DMEM) GlutaMAX containing 20% FBS and 10% DMSO
(Sigma) (Zhao et al., 2019).

HUVECs were transiently transfected in triplicate with siRNA
using Lipofectamine 2000 (Life Technologies, Frederick, MD,
United States) according to the manufacturer’s instructions.
Briefly, 8 mol/L siRNA and Lipofectamine transfection reagent
(twice the amount of the total DNA quantity) were prepared
separately in serum-free medium (Opti-MEM; Thermo Fisher
Scientific, Waltham, MA, United States). Lipofectamine solution
was added dropwise on DNA solution, and the mixture was
incubated for 30 min at 37◦C before gently added in each cell
culture dish (Zhu et al., 2019). After 4 h, transfection medium
was replaced with serum-free medium. After overnight recovery,
cells were incubated with ox-LDL for the indicated time (Zarfati
et al., 2019). Transient transfections were performed in triplicate
wells in HUVECs and repeated n times.

Real-Time Quantitative Polymerase
Chain Reaction (RT-qPCR)
Total RNAs were extracted with TRIzol reagent (Strasbourg,
France) according to the manufacturer’s instructions, and
integrity was assayed by gel agarose electrophoresis. First-strand
cDNA was synthesized with 1 µg of total RNA using iScriptTM
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cDNA Synthesis Kit (Bio-Rad, Hercules, CA, United States)
according to the manufacturer’s instructions in a total volume
of 20 µL (Zhang et al., 2019c). Transcript cDNA levels were
analyzed in duplicate by RT-PCR performed with the CFX96
RT-PCR system (Bio-Rad) using SsoAdvancedTM Universal
SYBR R© Green Supermix (Bio-Rad), of which three contained
500 10−9 mol/L specific primers (Eurofins MWG Operon,
Online Table I). Serial dilutions of pooled cDNA were used in
each experiment to assess PCR efficiency. Gene expression was
quantified relative to the geometric means of the housekeeping
gene expression amplified in the same tube of investigated genes,
and the 1 1 Ct method was used to determine gene expression
(Zhang et al., 2019b).

ROS Measurement
HUVECs were suspended in DMEM and exposed to ox-LDL
after transfection with Bnip3 siRNA. Total ROS production was
measured by immunofluorescence with a 2′,7′-dichlorofluorescin
diacetate Cellular ROS Detection Assay Kit (ab113851; Abcam,
Cambridge, MA, United States) according to the manufacturer’s
instructions (Quispe et al., 2019). Mitochondria-derived ROS
levels in cardiomyocytes were measured using a mitochondrial
superoxide indicator (MitoSOXTM Red, M36008; Thermo Fisher
Scientific) through immunofluorescence as previously described
(Knani et al., 2019).

Cell Survival Assay
A total of 50,000 cells/well were plated onto a 12-well plate.
After 22 h, cells were replenished with fresh growth medium
(Wolint et al., 2019), then 2 h later, cells were transfected
with siRNA. Twenty-four hours after transfection, cell viability
was measured through MTT assay as previously described
(Trindade et al., 2019).

Mitochondrial Isolation
Mitochondria were isolated from cells, digested with trypsin,
homogenized with a glass/Teflon Potter Elvejhem homogenizer
(Thomas Scientific, Swedesboro, NJ, United States), and then
centrifuged at 800 × g for 10 min at 4◦C. The supernatant was
centrifuged at 8,000 × g for 10 min at 4◦C, and the remaining
supernatant was discarded. The pellet containing mitochondria
was washed and centrifuged at 8,000 × g for 10 min at 4◦C
before resuspension (Zakeri et al., 2019). Mitochondrial protein
concentration was determined by colorimetry using Bio-Rad
protein assay dye reagent (500-0006; Bio-Rad).

Cellular Respiration Assays
XPF extracellular flux analyzer (Seahorse Biosciences) was
used for real = time analysis of the oxygen consumption
rate (OCR) of intact cells according to the manufacturer’s
instructions (van Duinen et al., 2019). Briefly, macrophages
were seeded at 5 × 105 cells/well in. After incubation with
siRNA, mitochondrial respiration was detected according to the
manufacturer’s instructions (Vijayan et al., 2019). Results were
normalized to the actual cell count immediately after OCR
recordings (Zhong et al., 2019).

Immunostaining and Fluorescence
Microscopy
Cells were quickly rinsed with PBS and fixed with 4%
paraformaldehyde at room temperature for 15 min.
Paraformaldehyde was then neutralized with NH4Cl for
15 min before cells were permeabilized with 0.5% Triton X-100
for 5 min, washed three times with PBS, rinsed with PBS 5%
BSA for 40 min, then incubated overnight at 4◦C with primary
antibodies, followed by washes and incubation with Alexa
Fluor R© 633 goat anti-rabbit IgG (H + L) (Molecular Probes,
A21071; 1:1,000) for 1 h at room temperature (Xiao et al.,
2019). Next, cells were rinsed with PBS, incubated with 5 µg/mL
Hoechst 33342 (Sigma) for 5 min, washed again with PBS,
and mounted with 15 µL Mowiol R© 4–88 (Calbiochem, San
Diego, CA, United States). Cells were examined with a confocal
microscope (Leica TCS-SP8 gated STED) (Yan et al., 2018).
Alexa Fluor 633 was excited at 633 nm with a white light laser,
and emission measured at 640–800 nm with a hybrid detector.
Hoechst 33342 was excited by a 405-nm diode, and emission
measured at 420–460 nm.

Statistical Analysis
All data are shown as the mean ± standard error of the mean
(SEM). A 2-sided, unpaired Student’s T-test between the groups
for normal distributed variables and Mann-Whitney test for non-
normal distributed variables were used for statistical testing.
Differences across three or more groups were tested with ANOVA
using Turkey’s multiple-comparison test or multiple Student’s
T-test with Holm-Sidak corrections for multiple comparison.
A p–value less than 0.05 was considered significant.

RESULTS

Resveratrol Ameliorates Oxidized
Low-Density Lipoprotein
(ox-LDL)-Mediated Endothelial
Dysfunction
To understand the role of resveratrol in the dysfunction of
high-fat-mediated endothelial cells, human umbilical venous
endothelial cells (HUVECs) were cultured with ox-LDL in the
presence or absence of resveratrol. Then, endothelial cell viability,
proliferation, and mobilization were determined. Figure 1A
shows that compared with the control group, MTT assay
demonstrated ox-LDL reduced endothelial viability, whereas this
alteration was corrected by resveratrol. Immunofluorescence
assay for caspase-3 also showed that the expression of caspase-
3 was rapidly increased or drastically inhibited by ox-LDL or
resveratrol, respectively (Figures 1B,C). Therefore, these results
indicate that resveratrol sustains endothelial viability in the
setting of hyperlipemic stress. RNA analysis of cyclin D1 and
cyclin E also illustrated that endothelial cell proliferation rate was
impaired by ox-LDL (Figures 1D,E). Interestingly, resveratrol
treatment upregulated the transcription of cyclin D1 and
cyclin E (Figures 1D,E), suggesting that resveratrol attenuates
high-fat-induced endothelial growth arrest. With respect to
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endothelial mobilization, Transwell assay demonstrated that
the number of migrated endothelial cells was downregulated
after exposure to ox-LDL (Figure 1F). Resveratrol pretreatment
maintained endothelial cell mobilization through increasing
the number of migrated cells. Thus, these data indicate that
endothelial mobility is preserved by resveratrol in the setting
of hyperlipemia.

Oxidative Stress Is Inhibited by
Resveratrol in ox-LDL-Treated
Endothelial Cells
To explain the protective effects underlying resveratrol-sustained
endothelial viability, proliferation and mobilization, endothelial
redox status, mitochondrial oxidative stress was analyzed. First,
the levels of mitochondrial ROS were elevated in response
to ox-LDL treatment (Figures 2A,B); resveratrol ameliorated
this effect, confirming its antioxidative property. Antioxidative
factors such as GSH, SOD, and GPX neutralized upregulated

ROS. However, GSH, SOD, and GPX transcriptions were
drastically downregulated in ox-LDL-treated endothelial
cells (Figures 2C–E), although resveratrol could restore
their expressions.

Mitochondrial ROS are primarily generated by mitochondrial
respiration complexes, especially mitochondrial respiration
complex I and III (DeLeon-Pennell et al., 2018). Using ELISA,
we found that the mitochondrial respiration complex I and
III activities decreased with ox-LDL treatment, whereas this
phenotypic alteration could be normalized with resveratrol
(Figures 2F,G). Mitochondrial respiration complex I and III
transcriptions were also downregulated or upregulated by ox-
LDL or resveratrol, respectively (Figures 2H,I). Owing to
mitochondrial ROS overload, mitochondrial function, which is
evaluated by the mitochondrial membrane potential, was also
blunted in ox-LDL-treated endothelial cells (Figure 2J). However,
resveratrol pretreatment stabilized mitochondrial membrane
potential in the presence of ox-LDL (Figure 2J). Together,
our results indicate that mitochondrial oxidative stress, which

FIGURE 1 | Resveratrol ameliorates ox-LDL-mediated endothelial dysfunction. (A) HUVECs were incubated with ox-LDL in the presence or absence of resveratrol.
Cell viability was determined through MTT assay. (B,C) Immunofluorescence staining was used to observe the alterations of caspase-3 in endothelial cells under
ox-LDL treatment. (D,E) RNA was collected from HUVECs after treatment with ox-LDL in the presence or absence of resveratrol. Then, transcription of cyclin D1
and cyclin (E) were measured to reflect endothelial cell proliferation. (F) Transwell assay was used to detect endothelial cell migratory response. The number of
migrated endothelial cells was recorded. *p < 0.05.
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FIGURE 2 | Oxidative stress is inhibited by resveratrol in ox-LDL-treated endothelial cells. (A,B) Immunofluorescence assay for mitochondrial ROS in endothelial cells
treated with ox-LDL in the presence or absence of resveratrol. (C–E). ELISA was used to evaluate the activities of GSH, SOD, and GPX in endothelial cells. (F,G).
The activities of mitochondrial respiration complex I and III were measured through ELISA. (H,I) qPCR was used to analyze the transcription of mitochondrial
respiration complex I and III. (J) JC-1 probe was used to stain mitochondrial membrane potential. The red-to-green fluorescence intensity was used to quality
mitochondrial membrane potential. *p < 0.05.
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is triggered by ox-LDL, could be repressed by resveratrol in
endothelial cells.

Resveratrol Activates Bnip3-Related
Mitophagy in Endothelial Cells in the
Presence of ox-LDL
As a compensatory repairing system, mitophagy selectively
guides dysfunction to be degraded by lysosome contributing to
intracellular redox balance. Therefore, we investigated whether
resveratrol regulated endothelial mitochondrial oxidative stress
through mitophagy. Mitophagy is activated by several adaptors,
including Parkin and BCL2/adenovirus E1B 19-kDa protein-
interacting protein 3 (Bnip3) (Zhou et al., 2018b). Interestingly,
ox-LDL treatment repressed Parkin and Bnip3 expression
in endothelial cells (Figures 3A,B). Resveratrol treatment
reversed Bnip3 expression but had a slight effect on Parkin
expression in ox-LDL-treated endothelial cells (Figures 3A,B),
suggesting that endothelial mitophagy could be activated by
resveratrol in a manner dependent on Bnip3. To demonstrate
the promotive action by resveratrol on mitophagy, mt-
Kemia probe, an acid mitochondria indicator, was added into
endothelial cell medium. Under normal conditions, mitophagy
is moderate and, thus, parts of acid mitochondria could be
detected (Figures 3C,D). After exposure to ox-LDL, the acid
mitochondrial number was reduced, and this trend could
be corrected by resveratrol (Figures 3C,D). In addition,
RNA analysis demonstrated that ATG5 and Beclin1, the
mitophagy markers, were transcriptionally inhibited by ox-LDL
(Figures 3E,F). However, resveratrol treatment upregulated the
ATG5 and Beclin1 RNA expression (Figures 3E,F), reconfirming
a contributory action underlying resveratrol on endothelial
mitophagy in the presence of ox-LDL.

Inhibition of Bnip3-Related Mitophagy
Suppresses Resveratrol-Induced
Protection on Mitochondrial
Homeostasis
To understand whether Bnip3-related mitophagy is required for
resveratrol-induced mitochondrial protection, we silenced Bnip3
in resveratrol-treated endothelial cells. Then, mitochondrial
function and redox biology were analyzed. Figures 4A,B
shows that compared with the control group, mitochondrial
ROS production was elevated by ox-LDL. Although resveratrol
suppressed mitochondrial ROS generation, this effect was
abolished by Bnip3 siRNA (Figures 4A,B). The levels of
antioxidative factors, such as GSH, SOD, and GPX, were
downregulated by ox-LDL and reversed to near-normal levels
after resveratrol pretreatment (Figures 4A–E). Interestingly,
with the loss of Bnip3-related mitophagy, resveratrol failed
to upregulate intracellular antioxidative factors in ox-LDL-
treated endothelial cells (Figures 4C–E). In addition, ox-
LDL repressed mitochondrial respiration complex I and III
activities. Resveratrol corrected this alteration in a manner
dependent on Bnip3 (Figures 4F,G), suggesting that Bnip3-
mediated mitophagy may promote mitochondrial respiration.

Last, TUNEL staining was used to confirm whether Bnip3-
related mitophagy was necessary for endothelial cell survival.
Figures 4H,I shows that compared with the control group, ox-
LDL increased the ratio of TUNEL-positive endothelial cells.
Although resveratrol could inhibit ox-LDL-mediated endothelial
cell death, this protective action was undetectable in endothelial
cells transfected with Bnip3 siRNA (Figures 4H,I). Together,
our results indicate that Bnip3-related mitophagy is required
for resveratrol-mediated mitochondrial protection in ox-LDL-
treated endothelial cells.

Resveratrol Regulates Bnip3 Through
Hypoxia-Induced Factor 1 (HIF1) and 5′

AMP-Activated Protein Kinase (AMPK)
Previous studies have reported that Bnip3 is primarily
regulated by two pathways: one is HIF1 (Guo et al., 2001)
and the other is AMPK (Park et al., 2013). Experiments were
conducted to understand whether these two pathways were
activated by resveratrol, promoting Bnip3-related mitophagy.
Immunofluorescence assay demonstrated that both HIF1
and AMPK were downregulated in response to ox-LDL
treatment (Figures 5A–C). Interestingly, resveratrol treatment
was associated with an increase in HIF1 and AMPK levels
(Figures 5A–C), confirming our hypothesis that both HIF1
and AMPK could be positively regulated by resveratrol. To
investigate whether increased HIF1 and AMPK were implicated
in resveratrol-induced Bnip3 upregulation, acriflavine (Acr)
and compound c (CC), the antagonists of HIF1 and AMPK,
respectively, were incubated with endothelial cells before
resveratrol treatment. Then, Bnip3 transcription and mitophagy
activity were remeasured. Figure 5D shows that resveratrol
treatment sustained the transcription of Bnip3 in ox-LDL-
treated endothelial cells. However, once supplemented with
either Acr or CC, the transcription of Bnip3 was downregulated
(Figure 5D), suggesting that inhibition of HIF1 or AMPK
could abolish the regulatory effects by resveratrol on Bnip3.
mt-Kemia assays showed resveratrol upregulated the number of
acid mitochondria in the presence of ox-LDL (Figures 5E,F),
indicative of mitophagy activation in response to resveratrol.
However, treatment with Acr or CC reduced acid mitochondrial
content in resveratrol-treated endothelial cells, suggesting that
HIF1 blockade of AMPK is followed by mitophagy inactivation.
Taken together, our results indicate that resveratrol upregulates
Bnip3-related mitophagy through HIF1 and AMPK.

DISCUSSION

Oxidized LDL contributes to endothelial dysfunction, which is
followed by vascular inflammation, smooth muscle proliferation,
plaque formation, luminal stenosis, and other pathological
alterations involved in the development of atherosclerosis. Statin
treatment results in significant reductions in cardiovascular
risk; however, individuals with well-controlled LDL levels may
remain at increased risk owing to persistent high triglycerides
and low HDL (Seidel et al., 2019). Therefore, an urgent
need exists for hyperlipemia management. In the present
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FIGURE 3 | Resveratrol activates Bnip3-related mitophagy in endothelial cells in the presence of ox-LDL. (A,B) After treatment with ox-LDL, RNA in endothelial cells
was collected and Parkin and Bnip3 transcription was measured. (C,D) Endothelial mitophagy was detected through mt-Kemia. The acid mitochondria number was
recorded to reflect the activity of mitophagy. (E,F) ATG5 and Beclin1 transcription was determined through qPCR. Endothelial cells were treated with ox-LDL in the
presence or absence of resveratrol. *p < 0.05.
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FIGURE 4 | Inhibition of Bnip3-related mitophagy suppresses resveratrol-induced protection on mitochondrial homeostasis. (A,B) Bnip3 siRNA was transfected into
endothelial cells before treated with resveratrol. Then, mitochondrial ROS levels were measured through immunofluorescence. (C–E) ELISA was used to evaluate
GSH, SOD, and GPX activity in endothelial cells. (F,G) Mitochondrial respiration complex I and III activities were measured through ELISA. (H,I) TUNEL staining was
used to quantify apoptotic endothelial cells in response to Bnip3 knockdown. *p < 0.05.
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FIGURE 5 | Resveratrol regulates Bnip3 through the HIF1 and AMPK. (A–C) Immunofluorescence assay for HIF1 and AMPK in endothelial cells treated with ox-LDL
in the presence or absence of resveratrol. Acriflavine (Acr) and compound c (CC), the antagonists of HIF1 and AMPK, respectively, were incubated with endothelial
cells before resveratrol treatment. (D) qPCR was used to determine the Bnip3 alteration in endothelial cells treated with ox-LDL, resveratrol, Acr, or CC. (E,F)
Endothelial mitophagy was detected through mt-Kemia. The acid mitochondria number was recorded to reflect mitophagy activity. *p < 0.05.

study, we found that resveratrol improved endothelial function
through sustaining endothelial cell viability, proliferation, and
mobilization (Rusnati et al., 2019). Resveratrol treatment
activated HIF1 and AMPK pathways, contributing to Bnip3
upregulation and mitophagy activation. Subsequently, Bnip3-
related mitophagy attenuated oxidative stress and sustained
mitochondrial function in the setting of hyperlipemia. To
our knowledge, these data provide the first evidence for the
use of resveratrol in preventing high-fat-mediated endothelial
dysfunction. Our results identify Bnip3-related mitophagy as
a primary protective mechanism responsible for resveratrol-
mediated endothelial protection.

Most previous in-depth studies have explored the roles
of resveratrol in cardiovascular disorders. For example,
resveratrol enhances the expression of Nrf2 in myocardium
and, thus, alleviates myocardial ischemia-reperfusion injury
(Schreiber et al., 2019; Xu et al., 2019). Administration of
resveratrol is shown to retard the progression of pulmonary
arterial hypertension (Ferreira et al., 2019). Treatment with
resveratrol attenuates isoprenaline-related cardiotoxicity in
Wistar rats (Sammeturi et al., 2019). Resveratrol prevents
ventricular hypertrophy (Chelladurai et al., 2019) and
cardiac remodeling following chronic kidney disease (Li et al.,
2020a). Resveratrol also helps to protect aortic valve stenosis
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(Samiei et al., 2019), septic cardiomyopathy (Liang et al., 2019),
diabetic cardiomyopathy (Hoseini et al., 2019), and heart failure
(Algieri et al., 2019). Most associated studies have focused on the
influence of resveratrol on hyperlipemia-related cardiomyocyte
damage or metabolic reprogramming, but not on high-fat-related
endothelial dysfunction. Our data support that resveratrol,
leading to improved endothelial function in the setting of
hyperlipemia, may open a therapeutic window for the treatment
of atherosclerosis.

At the molecular level, two mechanisms involved in
how resveratrol attenuates hyperlipemia-related cardiomyocyte
injury have been reported: one is driven by upregulation of
antioxidative factors and the other involves downregulation of
pro-inflammation cytokines. For example, resveratrol attenuates
lipid peroxidation (Jalili et al., 2019) through modulation of
several antioxidative signaling pathways such as Nrf2 (Zhuang
et al., 2019), Sirt1 (Liu et al., 2019a), Akt/mTOR (Radwan
and Karam, 2020), and ERK1/2 (Fathalipour et al., 2019).
In addition, the mRNA expression of inflammatory cytokines
in diabetic mice are largely inhibited by resveratrol (Xing
et al., 2020). Inflammation-related signaling pathways, such
as NF-κB (Ma et al., 2020), Smad2/3 (Zou et al., 2019),
and HSP70 (Khafaga et al., 2019), are also blocked by
resveratrol. In the present study, we found that resveratrol
modulated mitochondrial ROS production through affecting
mitochondrial respiration complex I and III activities. This
provides novel insight into the regulatory actions of resveratrol
on redox biology. Similar to our results, previous studies have
also reported the involvement of resveratrol in mitochondrial
homeostasis (Nwadozi et al., 2019). For example, resveratrol
improves mitochondrial ATP generation through the AMPK
pathway in the ischemic brain (Pineda-Ramirez et al., 2020).
Mitochondrial biogenesis is partly enhanced by resveratrol
through the miR-22/Sirt1 signaling pathway (Mao et al., 2019).
Mitochondrial calcium homeostasis and mitochondrial potential
stabilization are also under the control of resveratrol (Algieri
et al., 2019). Mitochondrial morphological alterations, such as
mitochondrial fission and fusion, are also balanced by resveratrol
in different types of cells, such as hepatocytes (Chen et al.,
2019b), cardiomyocytes (Lu et al., 2019), and endothelium
(Yu et al., 2019).

Our data identified Bnip3-related mitophagy was activated
by resveratrol and attenuated ox-LDL-induced mitochondrial
damage as well as oxidative stress. Interestingly, after exposure
to ox-LDL, both Parkin and Bnip3 were downregulated,
whereas resveratrol upregulated Bnip3 transcription. This finding
is consistent with a previous study that Parkin-dependent
mitophagy usually works in neurodegenerative disease, whereas

Bnip3-related mitophagy affects metabolic disorders such as
fatty liver disease and diabetes (Li et al., 2018). Additionally,
we demonstrated resveratrol upregulated Bnip3 transcription
through HIF1 and AMPK. AMPK is a sensor of cellular energy
status. Increased AMPK is able to upregulate gene transcription,
including Bnip3. This phenomenon has been observed in
diabetic nephropathy (Liu et al., 2019b) and muscle atrophy
(Bak et al., 2019). HIF1 is a hypoxia-activated transcriptional
factor (Martinez-Outschoorn et al., 2010), whereas Bnip3 is a
hypoxia-related gene (Guo et al., 2001). Additional studies have
reported the causal relationship between HIF1 activation and
Bnip3 upregulation (Park et al., 2013). In the present study, we
found that both AMPK and HIF1 were employed by resveratrol
to enhance Bnip3-related mitophagy. The interlinked signaling
pathways of Bnip3-related mitophagy in response to resveratrol
treatment would offer new targets for therapeutic approaches of
endothelial protection in the setting of hyperlipemia.

Together, using biochemical approaches and genetic deletion
in vitro, we identify a potentially novel pathway by which
resveratrol attenuates high-fat-induced endothelia dysfunction
dependently of the Bnip3-related mitophagy. However, clinical
data and animal studies are necessary to support our findings.
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