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Background: Both histopathological image features and genomics data were
associated with survival outcome of cancer patients. However, integrating features of
histopathological images, genomics and other omics for improving prognosis prediction
has not been reported in head and neck squamous cell carcinoma (HNSCC).

Methods: A dataset of 216 HNSCC patients was derived from the Cancer Genome
Atlas (TCGA) with information of clinical characteristics, genetic mutation, RNA
sequencing, protein expression and histopathological images. Patients were randomly
assigned into training (n = 108) or validation (n = 108) sets. We extracted 593 quantitative
image features, and used random forest algorithm with 10-fold cross-validation to build
prognostic models for overall survival (OS) in training set, then compared the area under
the time-dependent receiver operating characteristic curve (AUC) in validation set.

Results: In validation set, histopathological image features had significant predictive
value for OS (5-year AUC = 0.784). The histopathology + omics models showed better
predictive performance than genomics, transcriptomics or proteomics alone. Moreover,
the multi-omics model incorporating image features, genomics, transcriptomics and
proteomics reached the maximal 1-, 3-, and 5-year AUC of 0.871, 0.908, and 0.929,
with most significant survival difference (HR = 10.66, 95%CI: 5.06–26.8, p < 0.001).
Decision curve analysis also revealed a better net benefit of multi-omics model.

Conclusion: The histopathological images could provide complementary features
to improve prognostic performance for HNSCC patients. The integrative model of
histopathological image features and omics data might serve as an effective tool for
survival prediction and risk stratification in clinical practice.
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INTRODUCTION

Head and neck cancer (HNC) comprises a variety of carcinomas
that originate from head and neck region, including the nasal
cavities and sinuses, oropharyngeal cavities, larynx, major and
minor salivary glands (Lydiatt et al., 2017). Moreover, HNC is
the sixth most common cancer with yearly incidence of 500,000–
600,000 cases worldwide (Suh et al., 2014). The head and neck
squamous cell carcinoma (HNSCC) accounts for more than 90%
of the cases (Suh et al., 2014). Tobacco, alcohol consumption and
human papillomavirus (HPV) infection are common risk factors
related with cancer incidence (Chaturvedi et al., 2008; Hashibe
et al., 2009). The 5-year mortality rate has remained flat at around
50% and not been improved by significant progress in treatment
regime (Chiesa et al., 2016). Prognosis prediction represents a
good opportunity to improve patient survival, because prognostic
markers contribute to the risk stratification and individualized
treatment protocol. Only traditional clinical predictors such as
tumor stage and tumor depth are unable to meet the growing
demand of precision oncology (Biankin et al., 2015). Therefore,
it is of crucial importance to apply more effective prognostic
markers and models for patients with HNSCC.

The histopathological images obtained by biopsy or resection
of lesions are widely used in the definitive diagnosis, staging
and prognosis of cancer patients. In recent years, the computer-
aided images analysis systems have been applied to assess
digital pathological images, with the advantages of high
accuracy, rapidity and consistency, which can make up for
the shortage of manual evaluation (Zhang et al., 2015). The
extracted histopathological image features (HIF) encompass
multiple morphological and histological information, such as
cell shape, size, texture patterns of nuclei and cytoplasm
(Soliman, 2015). Although these features cannot be recognized
by pathologists with visual inspection, previous studies have
shown the significant prognostic value of HIF in several cancers,
including breast cancer, lung cancer and brain tumor (Sertel et al.,
2009; Kong et al., 2013; Wang et al., 2013; Chen et al., 2015;
Yu et al., 2016).

In addition to pathological images, other omics profiles
including genomics, transcriptomics and proteomics have also
been widely used for risk stratification and survival prediction
of cancer patients (Wallner et al., 2006; Yanaihara et al., 2006).
For example, enhanced TP53 mutation, gene duplication and
3p loss were found in recurrent and metastatic HNSCC with
primary HPV infection, while TERT promoter mutation was
more frequent in HPV-negative cohort (Morris et al., 2017).
The TRAF3 deletion, E2F1 amplification and PIK3CA mutation
were related with abnormal activation of NF-κB signaling and
other carcinogenic pathways in HPV-positive HNSCC (Cancer
Genome Atlas Network, 2015). Moreover, the TP53 gain-of-
function (GOF) variant and mTOR pathway activation were
predictive of worse survival and early progression in HPV-
negative HNSCC patients (Niehr et al., 2018).

However, given the heterogeneity of cancer patients and
complexity of survival prediction, the research work is far
from stopping. The interconnections between histopathology
and omics and how to integrate these features for better

outcome prediction and personalized treatments still need
further exploration. Previous study has revealed a significant
association between several gene expressions (such as HYAL2 and
HLA-DRA) and morphological features of nuclei texture in liver
hepatocellular carcinoma (Zhong et al., 2019). Also, the obvious
interconnections of TP53 mutation and histological features of
nuclei and cytoplasm were reported in lung adenocarcinoma (Yu
et al., 2017). In addition, some studies established integrative
models based on omics and histopathological image data in liver
cancer, lung cancer, renal cancer and breast cancer, which showed
an improved prognostic accuracy than individual factors (Cheng
et al., 2017; Yu et al., 2017; Sun et al., 2018; Zhong et al., 2019).
These results indicated the widespread application value and
development prospects of histopathological images and omics
data for predicting prognosis.

After literature review, we were of opinion that there is
still room for improvement. Some studies only focused on
single omics profile such as genomics, transcriptomics or
proteomics, and lacked the comprehensive survival analyses of
each omics combined with histopathological image features.
Moreover, the prognostic performance of models that integrate
histopathological and omics features for HNSCC patients is
still unclear. Therefore, in this study, we aimed to evaluate
and compare the prognostic role of histopathological images,
genomics, transcriptomics and proteomics in HNSCC patients.
Furthermore, different combinations of multi-omics models were
established to improve prognostic accuracy, and to highlight the
contribution of histopathological images in prognosis modeling.

MATERIALS AND METHODS

The overall flowchart of image features extraction and multi-
omics prognostic models establishment was presented in
Figure 1. The histopathological images were divided into small
sub-images and analyzed by CellProfiler to extract image features.
Afterward, the random forest (RF) algorithm was used to
combine images features and omics to build prognostic models
and generate the average prediction accuracy. Finally, we applied
time-dependent receiver operating characteristic curve, Kaplan-
Meier survival curve, and decision curve analysis to estimate and
compare the prognostic values between models. The details of
each part were described in the following sections.

Data Acquisition and Images
Segmentation
We obtained a dataset consisting of clinical, genetic and
transcriptomics information of HNSCC patients from the
Cancer Genome Atlas (TCGA) data portal1. The corresponding
protein profile via reverse phase protein array (RPPA)
were downloaded in the Cancer Proteome Atlas (TCPA)
repository2. The corresponding hematoxylin and eosin (H&E)
histopathological images were downloaded from the Cancer

1https://portal.gdc.cancer.gov
2http://tcpaportal.org/tcpa/
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FIGURE 1 | The workflow of data analysis and integration. (A) The whole-slide histopathological images of head and neck squamous cell carcinoma were cropped
into small sub-images of 1,000 × 1,000 pixels. Then we excluded the sub-images containing white space more than 50% and selected 20 sub-images for each
patient. Next, CellProfiler estimated the images and obtained mean value of image features related to shape, intensity and texture. (B) We integrated features of
histopathological images, genomics, transcriptomics and proteomics to generate improved prognostic models by random forest method with in training set, then
evaluated the model predictive performance in validation set.

Imaging Archive (TCIA) portal3. Since the whole-slide images
(20× or 40×magnification) were too large to extract features, we
performed images segmentation by the Openslide Python library

3http://www.cancerimagingarchive.net/

(Goode et al., 2013) to facilitate subsequent analyses. Firstly, 216
whole-slide images were divided into 341,649 small sub-images
of 1,000 × 1,000 pixels, and changed into tiff format from svs
format. Next, we excluded the sub-images containing white space
more than 50%. Moreover, for each patient, 20 sub-images were
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randomly included to reduce sample selection bias and decrease
calculation amount.

Histopathological Image Features
Extraction
We used CellProfiler4 to automatically measure images and
extract histopathological features (Carpenter et al., 2006). The
images processing and measurement modules of CellProfiler
transformed the color images stained by hematoxylin and
eosin into grayscale images, then obtained 10 aspects of image
features including area occupied, correlation, granularity, image
intensity, image quality, object intensity, object neighbors, object
radial distribution, object size shape and texture. These features
focus on objective image information, which are different
from accustomed pathological characteristics (e.g., cellular
pleomorphism, nuclear atypia, and mitoses) recognized by
visual inspection of pathologists. For instance, object size shape
outputs several cell-level features containing area, perimeter,
form factor (4πarea/perimeter2), eccentricity, lengths of major
axis and minor axis, Euler number, Zernike shape features
and so on. Texture evaluation module of CellProfiler provides
information about variations in the spatial distribution of
intensities of grayscale images, including Haralick’s features and
Gabor "wavelet" features (Haralick et al., 1973). Image intensity
and object intensity describe total pixel intensities in images
or specific objects (e.g., nuclei or cells), respectively. Finally,
we extracted 593 quantitative image features for each sub-
image, then calculated the average values of 20 sub-images
for each patient.

Statistical Analysis
1. Survival analysis: Patients were divided into two groups

based on the median value of each histopathological
image feature. The hazard ratio (HR) and 95% confidence
interval (CI) for overall survival (OS) were calculated
by univariate Cox regression analysis. The least absolute
shrinkage and selection operator (LASSO)-Cox regression
method was also utilized to show significant image features
(Tibshirani, 1997). Then Kaplan-Meier survival curve and
log-rank test compared the differences of survival results
between two groups. The p-value < 0.05 was regarded as
statistically significant.

2. Feature selection: We first randomly divided the HNSCC
patients into training (n = 108) or validation (n = 108)
sets. The genomics data contained 14,794 features and the
transcriptome data contained 19,754 features. By contrast,
histopathological images contained 593 features and the
proteomics contained 161 features. Therefore, in the
training set, we included all features of histopathological
images and proteomics, while conducted preliminary
screening of genomics and transcriptomics to reduce their
dimensionality. The 100 most common somatic mutations
were used for further analyses. Next, we defined patients
with a survival time more than 60 months as the long-
term survival group, while died patients with a survival

4https://cellprofiler.org/

time of 1–12 months were considered as the short-term
survival group. The R DESeq2 package was used for the
normalization and analysis of differently expressed genes
(DEGs) between groups in training set. Then 100 most
significant DEGs were applied to predict survival. The
feature selection could reduce the potential bias caused
by large difference in feature numbers among omics, and
may reduce potential confounders (e.g., low frequency
mutations or non-significant expressed genes).

3. Gene set enrichment analysis: To find the differences
of Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways between short-term and long-term survival
groups, we used the Gene Set Enrichment Analysis (GSEA)
to sort DEGs according to the degree of differential
expression, and examined the enriched gene sets in two
groups (Subramanian et al., 2005). Statistical significance
was defined as p < 0.05 or false discovery rate q < 0.25.

4. Integrative prognostic models: Each type of data
(histopathological image features/HIF, genomics,
transcriptomics, and proteomics) and various fusions of
multiple features (HIF + genomics, HIF + transcriptomics,
HIF + proteomics, HIF + omics) were involved to evaluate
and compare the usefulness in prognosis modeling. In the
training set, we applied the random forest (RF) method to
build prognostic models via R randomForestSRC package
(Breiman, 2001; Ishwaran et al., 2014). RF is a widely
used machine-learning method in high-dimensional
data processing, which can handle thousands of input
variables at the same time, evaluate the predictive ability
of each feature and exclude uncorrelated ones. At the
same time, it can use internal cross-validation to generate
unbiased estimation of generalization error and ensure
high accuracy. The RF classifier with 1,000 decision trees
and 10-fold cross-validation were used in training set.
Next, we calculated the area under the curve (AUC) of
time-dependent receiver operating characteristic curve
(ROC) to verify the performance and robustness of new
models in validation set. Moreover, based on the median
value of risk score estimated from models, patients of the
validation set could be divided into high-risk and low-
risk groups. Then we conducted Kaplan-Meier analysis
and log-rank test to evaluate the prediction ability of
models. Decision curve analysis (DCA) was performed to
measure the net benefits of each model based on 5-year OS
(Vickers et al., 2008).

RESULTS

Patients Characteristics
A dataset of 216 HNSCC patients (154 males and 62 females)
with data of histopathological images and other omics from
TCGA project was included (Table 1). The median age at initial
diagnosis was 62 years (range 19–90 years) of patients. This
cohort comprised squamous cell carcinoma of oral cavity (61
tongue, 6 alveolar ridge, 6 buccal mucosa, 25 floor of mouth, 6
hard palate, and 39 non-specific lesions), larynx (57 patients),
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TABLE 1 | Demographic and clinical characteristics of patients.

Characteristic Total (n = 216) Training set (n = 108) Validation set (n = 108) P-value

Age: mean ± SD 62.0 ± 11.9 61.3 ± 12.3 62.6 ± 11.4 0.434

Gender

Male 154 (71.3%) 76 (70.4%) 78 (72.2%)

Female 62 (28.7%) 32 (29.6%) 30 (27.8%) 0.764

Anatomic subdivision

Oral cavity 143 (71.3%) 68 (63.0%) 75 (69.4%)

Larynx 57 (26.4%) 33 (30.6%) 24 (22.2%)

Others 16 (7.4%) 7 (6.5%) 9 (83.3%) 0.365

Cancer stage

I 11 (5.1%) 5 (4.6%) 6 (5.6%)

II 35 (16.2%) 14 (13.0%) 21 (19.4%)

III 35 (16.2%) 17 (15.7%) 18 (16.7%)

IV 135 (62.5%) 72 (66.7%) 63 (58.3%) 0.546

Cancer status

Tumor free 114 (52.8%) 53 (49.1%) 61 (56.5%)

With tumor 83 (38.4%) 45 (41.7%) 38 (35.2%)

NA 19 (8.8%) 10 (9.3%) 9 (8.3%) 0.548

Survival time: mean ± SD 36.7 ± 33.6 32.5 ± 28.7 40.9 ± 37.6 0.064

tonsil (13 patients), and hypopharynx (3 patients). There were
106 patients died (50 in training set and 56 in validation set)
during follow-up, the median survival time was 41.8 months
(range 3.5–175.1 months) for alive patients and 15.2 months
(range 0.1–213.9 months) for died patients. Moreover, 83 patients
had tumor progression including locoregional recurrence, distant
metastasis and new primary malignancy. Chi-squared analyses
and t-tests showed no statistically significant differences in age,
gender, tumor types, cancers stage, cancer status and survival
time between training and validation groups.

Prognostic Value of Histopathological
Image Features
To estimate the association between individual histopathological
image features and survival results, we firstly divided patients
into two groups according to median values of each feature.
The results of univariate Cox analyses showed that 163
image features were significantly predictive of OS (p < 0.05,
Supplementary Table 1). We also presented 20 representative
image features with the most significant differences (Figure 2A),
which effectively separated two survival groups. Moreover,
after the LASSO-Cox regression analysis, eight histopathological
features (four Zernike shape features, three granularity features,
and one cells intensity characteristic) were selected. More
specifically, Zernike features are a series of 30 shape features
based on Zernike polynomials from order 0 to order 9
(Li et al., 2009). Granularity is a texture measurement to
show the matching degree between structural elements and
images texture (Vincent, 2000). Intensity-Mass Displacement
describes the distance between gravity center of gray-level
and binary representation of cells. The Kaplan-Meier survival
curves of four image features showed the significant differences
between high-level and low-level features (Figure 2B). We
also analyzed the relation between HPV status and image

features in 44 patients (33 HPV− and 7 HPV+) by Wilcoxon
rank sum test. Then 200 features had different distributions
between groups, and four most significant features were
provided in Figure 2C.

Integrative Model of Histopathological
Image Features With Genomics
To decrease the dimension of genomics data and increase stability
of analyses, we examined the gene mutation status in the training
set, and involved 100 most common somatic mutations in
prognostic models (Supplementary Table 2). The waterfall plot
showed 15 most frequently altered genes (Figure 3A). Previous
studies also reported frequent mutations of TP53, CDKN2A,
PIK3CA, NOTCH1, and NSD1 in HNSCC (Huang et al., 2019).
Among them, the tumor suppressor protein p53 (TP53) mutation
is commonly detected in HNSCC with report rate of 50–80%
(Poeta et al., 2007), which can inhibit regulatory function of cell
cycle, DNA repair and apoptosis (Vogelstein et al., 2000). In
addition, mutations of TP53, p16INK4a, and overexpression of
cyclin D1 and MET were regarded as poor predictors of survival
and cancer progression in HNSCC patients (Bova et al., 1999;
Muzio et al., 2006; Poeta et al., 2007).

Compared with traditional ROC, the time-dependent
ROC is more suitable for time-to-event outcome and can
comprehensively describe the predictive models (Kamarudin
et al., 2017). In the validation set, we found that histopathological
image features (HIF) model reached better AUCs of 1-year (0.711
vs. 0.605), 3-year (0.747 vs. 0.574), and 5-year (0.784 vs. 0. 560)
than genomics model (G). Furthermore, the model (HIF + G)
including image features and genomics mutations had improved
predictive accuracy (AUC = 0.751, 0.807, 0.830) than models
using HIF or genomics alone (Figure 3B). Afterward, we divided
patients into high-risk and low-risk groups by median value of
risk score predicted from each model. The integrative model
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FIGURE 2 | Univariate survival prediction using histopathological image features. (A) Survival difference between groups separated by median values of image
feature in Cox regression analyses. (B) Kaplan-Meier curves for “Mean_Cells_AreaShape_Zernike_9_1,” “Median_Cells_AreaShape_Zernike_6_2,”
“Median_Cells_Intensity_MassDisplacement,” and “StDev_Cells_Granularity_9.” (C) The different distribution of image features between HPV- and HPV + patients.

(HIF + G) showed better performance for prognosis (HR = 5.49,
95%CI: 3.17–10.90, p < 0.001, Figure 3C) than single-omics in
HNSCC patients (Table 2).

Integrative Model of Histopathological
Image Features With Transcriptomics
Besides genomics analysis, transcriptomics is also an important
mean to estimate cells phenotype and function, and provides
additional information of tumor features. To reduce the
dimensionality, some patients of training set were classified into
two groups based on survival status (12 months ≥ uncensored
OS ≥ 1 month vs. OS ≥ 60 months), and 100 differently
expressed mRNA genes (padj < 0.05) between groups were
selected (Supplementary Table 3). Moreover, the GSEA of
mRNA sequencing data showed that three KEGG pathways
were enriched in the short-term survival group (Figure 4A).
Among them, the overexpression of vascular epithelial growth
factor (VEGF) can strongly induce angiogenesis in hypoxia
environment of tumors, and are related with enhanced risk
of death in HNSCC (Kyzas et al., 2005; Haase, 2009).
Therefore, the up-regulation of VEGF signaling pathway may
indicated the necessity of VEGF-targeting therapy (e.g., tyrosine
kinase inhibitors).

Next, in the validation set, the transcriptomics features
(RNA) yielded a good predictive performance with 1-, 3-,
and 5-year AUC of 0.713, 0.732, and 0.632, which was better
than genomics, but not more significant than histopathological
features (Figure 4B). By combination of transcriptomics and
image features, the integrative model (HIF + RNA) increased 1-
year AUC to 0.775, 3-year AUC to 0.827, and 5-year AUC to
0.837. Similar results were also revealed in Kaplan-Meier survival
curves (Figure 4C), the HIF + RNA model had more significant
prognostic value for OS (HR = 6.26, 95%CI: 2.79–9.71, p< 0.001).

Integrative Model of Histopathological
Image Features With Proteomics
We included proteomics data of TCPA repository via RPPA
technology, which is a cost-effective method to analyze the
expression and variation of marker proteins in the samples
(Li et al., 2013). Totally 151 patients with protein and
histopathological profiles were eligible for analyses. As shown
in Figure 5C, the 5-year AUC was increased to 0.817 by
incorporating image features and proteomics (HIF + P)
compared with AUC of 0.772 and 0.614 for proteomics or image
features alone. The 1- and 3-year AUCs were also improved when
using combined features (Figures 5A,B). Moreover, the high-risk
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FIGURE 3 | Prognostic model integrating histopathological image features with genomics. (A) The waterfall plot of 15 common somatic mutant genes in training set.
(B) The 1-, 3-, and 5-year area under the time-dependent receiver operating characteristic curve (AUC), and (C) Kaplan-Meier survival curves showed improved
predictive performance of integrative histopathology + genomics model (HIF + G) than histopathological image features alone (HIF) or genomics alone (G) in
validation set.

TABLE 2 | Predictive performance of prognostic models.

Data category Single-omics model Data category Integrative model

HR 95% CI P-value HR 95% CI P-value

HIF 4.77 2.51–9.06 <0.001 HIF + genomics 5.49 3.17–10.90 <0.001

Genomics 2.13 1.16–6.22 0.037 HIF + transcriptomics 6.26 2.79–9.71 <0.001

Transcriptomics 2.73 1.69–5.88 <0.001 HIF + proteomics 3.98 1.79–6.41 <0.001

Proteomics 2.33 1.26–4.31 0.007 Multi-omics model 10.66 5.06–26.8 <0.001

HIF, histopathologic image features; HR, hazard ratio, CI, confidence interval.

patients based on risk stratification of integrative model (HIF + P)
were significantly associated with worse survival (HR = 3.98,
95%CI: 1.79–6.41, p < 0.001, Figure 5D).

Multi-Omics Model for Survival
Prediction
The previous analyses showed that histopathological image
features had individual prognostic ability for OS. Additionally,
the histopathology + omics models could improve predictive
performance than genomics, transcriptomics or proteomics alone

in HNSCC cohort. Finally, we established a multi-omics model
to investigate the prognostic power when incorporating all above
features. In the validation set, the 1-, 3-, and 5-year AUCs
were 0.871, 0.908, and 0.929 (Figure 6A), which were higher
than those of HIF + genomics, HIF + transcriptomics and
HIF + proteomics models. Kaplan-Meier analysis demonstrated
a significant different survival between high-risk and low-risk
patients (Figure 6B), with a HR of 10.66 (95%CI: 5.06–26.8,
p < 0.001). Furthermore, the multi-omics model had a better
net benefit than others if the risk threshold probabilities >10%
in DCA analysis (Figure 6C).
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FIGURE 4 | Prognostic model integrating histopathological image features with transcriptomics. (A) Three representative signaling pathways in short-term survival
patients of training set by Gene Set Enrichment Analyses (GSEA). (B) The multivariate model of histopathological and transcriptomics features (HIF + RNA) reached
higher 1-, 3-, and 5-year AUCs, and (C) more significant survival difference of Kaplan-Meier curves than models of image features alone (HIF) or transcriptomics
alone (RNA) in validation set.

DISCUSSION

In this study, we extracted the histopathological image features
(HIF), utilized machine-learning algorithms to establish
prognostic models combining features of histopathological
images, gene mutations, RNA and protein expression in
training set, and estimated the prognostic capability of
models in validation set of HNSCC patients. As far as we
know, such finding for HNSCC is firstly reported in this
research. The results showed that individual HIF were able to
predict OS, especially the Zernike shape features, granularity
and cells intensity. The prognostic model based on HIF
reached better predictive accuracy than other omics (i.e.,
genomics, transcriptomics and proteomics). Moreover, the
predictive performance of integrative models using more
than two types of data outperformed than that of single-
omics models (Table 2). The DCA curve also underlined a
higher clinical net benefit of multi-omics model compared
with others. Taken together, it suggested that multi-omics
model integrating histopathological images with omics
may be an effective risk stratification approach to improve
personalized treatments in clinical practice. For instance,

low-risk patients should avoid over-treatment while high-risk
patients might benefit from active treatments and strict follow-up
(Cheng et al., 2017).

The histopathological examination is regarded as a gold
standard for diagnosis and staging in patients with cancer.
However, the accuracy of grading would be affected by
pathologists’ experience, and cancer patients at the same
stage can have diverse survival results. The enormous
amount of information in pathological slices is not easily
obtained by subjective evaluation of pathologists, which
poses great challenges, but also brings opportunities.
Recently, the computational systems are developed to
assist the image features extraction, and these features are
associated with tumor characteristics and survival outcomes
(Beck et al., 2011; Romo-Bucheli et al., 2016; Moon et al.,
2017). The automated approach also has the strengths
of improving efficiency and reducing human resource
costs. Unlike previous studies including one representative
or entire images (Yu et al., 2016; Cheng et al., 2017),
we randomly selected 20 sub-images from whole-slide
images, which decreased both computational cost and
potential biases.
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FIGURE 5 | Prognostic model integrating histopathological image features with proteomics. (A–C) Predictive power of histopathological image features (HIF), protein
expression (P), and combination of images and proteomics (HIF + P) for survival in validation set. (D) Kaplan-Meier curves revealed a more significant survival
difference between high-risk and low-risk groups in HIF + P model.

Additionally, our results of univariate COX analysis,
multivariate LASSO and RF model all demonstrated the
significant prognostic value of image features for OS.
These features provide an objective and quantitative
measurement of the morphology and texture of nuclei
and cytoplasm. For example, the Zernike shape features
mark the nucleic pixels as 1 and cytoplasmic region as
0, then produce Zernike polynomials from binary images
(Li et al., 2009). Granularity estimates the size of image
texture by using enlarged structure elements to match the
texture (Vincent, 2000). It indicated the relation between
survival outcomes and cell-level morphological structure

(e.g., occupied area and shape) as well as the overall pixels
characteristics of images (e.g., texture and intensity) in HNSCC
cohort. Therefore, the histopathological images analysis
may have potential practical value in predicting survival
for HNSCC patients.

Given the heterogeneity and diversity of tumors, molecular
and genetic detection are becoming routine approaches to
differentiate cancer characteristics such as genotypes and
phenotypes, and play a leading role in the field of precision
oncology (O’Connor et al., 2008; Kather et al., 2019).
Some studies have reported the improved effectiveness of
prognostic models combining genomics and image features
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FIGURE 6 | Multi-Omics Model integrating histopathological image features with omics data. (A) The time-dependent receiver operating characteristic curve, and
(B) Kaplan-Meier curves for multi-omics model involving image features, genomics, transcriptomics, and proteomics in validation set. (C) Decision curve analysis for
each model in validation set. The gray oblique line represented net benefit of intervening all patients, and horizontal gray line meant that net benefit of no patients
with intervention. The multi-omics had the highest net benefit compared with other models across the range of >10% in risk threshold.

than individual models in other cancers (Cheng et al.,
2017; Yu et al., 2017; Sun et al., 2018; Zhong et al., 2019).
Our study had several differences from published articles.
Firstly, machine-learning frameworks including LASSO
and RF with 10-fold internal cross-validation can achieve
more stable estimation of predictive ability. Secondly,
instead of classical ROC curve that only determines the
discrimination ability of markers at a fixed time point, we
utilized time-dependent ROC to describe survival status
in a range of time, and yielded dynamic values of AUC
throughout the study (Kamarudin et al., 2017). Lastly, we
estimated a variety of quantitative molecular biomarkers
including somatic gene mutation, RNA sequencing data
and protein expression. The prognostic role of each profiles
and integration with histopathology were compared, which
showed that the histopathology + omics models were better
than models using one type of data, and multi-omics
model achieved highest accuracy. Our results indicated
the complementary effect between histopathological image
features and other omics data for survival prediction.
Therefore, we suggested that, when omics data were
limited, histopathological images might provide effective
features to improve prognostic prediction with small
additional effort.

Previous studies have showed that patients with HPV+
HNSCC had a better prognosis and therapeutic response
(Dayyani et al., 2010). The HPV status was considered as
a validated molecular characteristic of HNSCC to guide the
treatment strategies (Suh et al., 2014). For example, less intensive
treatments are being considered for HPV+ oropharyngeal SCC
patients (Mirghani et al., 2015). The CT radiomics features
have been reported to distinguish RNA-defined HPV subtypes
in HNSCC (Huang et al., 2019). The correlation between HPV
status and histopathological image features is also worthy of
research. In the situation of limited samples, we only showed
the different distribution of image features between HPV+ and
HPV− groups. However, we hypothesized that identification
of HPV status was within the ability of histopathological

images analysis, which needs a comprehensive estimation
in larger cohorts.

There were some limitations in this study. Firstly, we
built models by 10-fold cross-validation in training set and
conducted verification in another validation set to make
predictive estimation as robust as possible. However, since it
was difficult to find other datasets with complete information
of histopathology and omics, this study was limited in one
cohort and small sample size, lacking external validation.
Therefore, the generalizability of current results should be
considered within these limitations. Secondly, we balanced the
basic clinical characteristics between two sets, but others such
as complication and treatment may be potential confounding
factors. Moreover, there may exist selection bias in TCGA
dataset, because the representative tumor slices were more
likely to be uploaded, and its typical histopathological patterns
might help machine-learning model for classification (Yu
et al., 2016). Nevertheless, clinicians actually examine many
slices, thus the feasibility of proposed predictive models in
clinical practice needs to be studied. Finally, as a retrospective
study, although the integrative models showed prognostic
value in our work, it requires prospective estimation by
multi-center large-scale studies before routine use. In future
research, other machine-learning or deep-learning methods (e.g.,
convolution neural networks) can be used to generate prognostic
models, but the latter require massive samples for training
(Mobadersany et al., 2018). Similarly, multiparameter such as
immunochemical stained images could provide richer feature sets
for predicting survival.

CONCLUSION

The results indicated that histopathological image features had
potential as significant prognostic biomarkers for overall survival
in patients with HNSCC. The integrative models of genomics,
transcriptomics, and proteomics along with histopathological
image features may more accurately predict survival outcome
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than single-omics models, which might contribute to the risk
stratification and personalized treatment for cancer patients.
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