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Human gut microbiota contains a large, complex, dynamic microbial community
of approximately 1014 microbes from more than 1,000 microbial species, i.e.,
equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human
health and diseases. Importantly, gut microbiota is involved in the development
and function of the brain through a bidirectional pathway termed as the gut-brain
axis. Interaction between gut microbiota and immune responses can modulate the
development of neuroinflammation and cancer diseases in the brain. With respect
of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid
protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte–
macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A,
interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g.,
nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor
necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate
apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA
integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions,
the signal transducer and activator of transcription (STAT) pathways, and tumor cell
proliferation and metastasis. The outcome of such interventions could be either oncolytic
or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut
microbiota by classifying the modification mechanisms into (i) amino acid deprivation
(arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv)
myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-
microbiota-brain-cancer axis, this review aims to help the research on the development
of novel therapeutic strategies that may aid the efficient eradication of brain cancers.

Keywords: indoleamine 2,3-dioxygenase-1, anti-tumor T-cells, tryptophan, gut microbiota, myeloid-derived
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INTRODUCTION

The incidence of primary brain cancer is estimated to be
7.2–12.5 per 100 million persons per year, accounting for
up to 2% and 23% of all adults and childhood cancers,
respectively (Wrensch et al., 2002; Marie and Shinjo, 2011).
Among the primary brain tumors, astrocytoma, originates
from glial cells is the most frequent brain tumor. The most
malignant form of astrocytoma is glioblastoma, which has an
incidence rate of 3 per 100,000 persons (Ostrom et al., 2017).
Currently, the main causes of many brain tumors remain
unknown. However, it has been suggested that some internal
factors (i.e., genetic elements such as POT1) and external
factors (i.e., environmental factors such as ionizing irradiation)
could increase the risk of brain tumors (Picano et al., 2012;
Robles-Espinoza et al., 2014).

It is well-known that some microorganisms have oncogenic
or oncolytic activity on tumor cells. For example, it is estimated
that up to 20% of all cancers are triggered by infectious
agents (e.g., human papillomaviruses, Helicobacter pylori, and
hepatitis B and C viruses) (De Martel et al., 2012). Interestingly,
healthy individuals and cancer patients have different microbial
flora in terms of population and diversity (Xuan et al., 2014).
The influence of gut microbiota in various cancers has been
extensively studied (Loo et al., 2017; Mehrian-Shai et al., 2019;
Wong et al., 2019). However, its possible association with
brain cancer is a new topic. Understanding the mechanisms of
involvement of the gut microbiota-brain axis in the development
or suppression of brain tumor could establish a new insight for
the generation of novel anti-tumor therapeutic interventions.
The gut-brain axis represents a complex multidirectional network
between the gastrointestinal (GI) tract microbiota, the enteric
nervous system, and the brain that influences immune responses,
inflammation processes, and metabolic functions (Fung et al.,
2017; Dehhaghi et al., 2019a).

The kynurenine pathway is the main route of tryptophan
metabolism that results in the biosynthesis of nicotinamide
adenine dinucleotide (NAD+) and various neuroactive
intermediates (Guillemin et al., 2007; Dehhaghi et al., 2019a).
In last decades, the involvement of the kynurenine pathway
in brain diseases particularly brain tumors has gained more
attention. Tryptophan is also catabolized through serotonin
pathway that leads to biosynthesis of neuroactive metabolites
such as serotonin and melatonin. It is important to note that
gut microorganisms utilize tryptophan as a substrate to produce
indoles indole derivatives, which are key molecules involved
in signaling pathways between GI tract and immune system
(Agus et al., 2018). Dysregulation of the kynurenine pathway
could contribute to cancer development by disrupting the
antitumoral immune response (Adams et al., 2012; Platten et al.,
2019). The expression of indoleamine 2,3-dioxygenase (IDO1)
and tryptophan 2,3-dioxygenase (TDO), two main enzymes
contributing in tryptophan degradation, has been linked to
various cancers such as melanoma, colon cancer, gynecological
malignancies, lung cancer, gliomas, and bladder cancer (Théate
et al., 2015; Amobi et al., 2017; Platten et al., 2019). In addition,
involvement of the kynurenine pathway metabolites such as

kynurenine, quinolinic acid, and 3-hydroxyanthranilic acid in
cancer progression has been previously investigated (Adams
et al., 2012). To the best of our knowledge, this review is
the first study that comprehensively discusses the possible
involvement of gut microbiota in brain cancers. The speculative
mechanisms for this gut-microbiota-brain-cancer axis have
been scrutinized in four sections: (i) through the kynurenine
pathway; (ii) through mediation of types 1 and 2 T helper cells
and the subsequent modulation of microglia (independent
of the kynurenine pathway); (iii) myeloid-derived suppressor
cells (MDSCs); and (iv) amino acid deprivation (i.e., arginine
and tryptophan). By providing state-of-the-art information on
the gut-microbiota-brain-cancer axis, this review aims to help
cancer researchers and clinicians with the development of novel
anti-tumor therapeutic strategies.

THE GUT MICROBIOTA-BRAIN AXIS

Microorganisms occur ubiquitously and have abilities to
metabolize a diverse range of metabolites ranging from enzymes
(Hamedi et al., 2015; Mohammadipanah et al., 2015), therapeutic
lead compounds (Mohammadipanah et al., 2016; Sajedi et al.,
2018), and antioxidants (Dehhaghi et al., 2018b, 2019a,c,
2020) to hydrocarbon-rich compounds, i.e., ethanol (Dehhaghi
et al., 2019a; Kazemi Shariat Panahi et al., 2019b), butanol
(Dehhaghi et al., 2019b), and methane (Dehhaghi et al., 2019b;
Tabatabaei et al., 2019).

Human gut is one of the most dynamic niches. It
contains a large and complex community of microorganisms
with approximately 104 microbial species, i.e., equivalent
to 4 × 106 genes. Interestingly, gut bacterial density has
been found to be 1012/mL, the largest microbial density
in any given ecosystem (Bhattacharjee and Lukiw, 2013;
Dehhaghi et al., 2018a). Firmicutes (∼51%) and Bacteroidetes
(∼48%) are the top two most abundant bacterial phyla
in the human gut in respect of population, followed by
other bacterial phyla including Actinobacteria, Cyanobacteria,
Fusobacteria, Proteobacteria, and Verrucomicrobia (Eckburg
et al., 2005; Sekirov et al., 2010; Dehhaghi et al., 2019a). These
microorganisms could have a profound role in human health and
diseases (Dehhaghi et al., 2018a).

Recently, it has been suggested that human gut microbiota can
modulate the development and function of the central nervous
system (CNS) through a bio-directional pathway termed as the
gut-brain axis (Barbara et al., 2007; Foster and Neufeld, 2013;
Dehhaghi et al., 2018a). The regulation of brain function occurs
through modulating key processes such as neuroinflammation,
neurogenesis, and neurotransmission. Microorganisms that
reside in the GI tract can influence the brain activities
through synthesizing neurotransmitters [i.e., dopamine, γ-amino
butyric acid (GABA)] and short chain fatty acids (SCFAs),
or through modulating immune responses and amino acid
metabolism (Sherwin et al., 2016; Dehhaghi et al., 2019a). Many
in vivo studies have shown that germ-free mice suffered from
upregulation of genes that are associated to plasticity, steroid
hormone metabolism, and synaptic long-term potentiation in the
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hippocampus, compared to normal mice (Buffington et al., 2016;
Dehhaghi et al., 2018a; Spichak et al., 2018).

In CNS, for example, vagal afferents are responsible for
transferring sensory messages (i.e., gut distension, food
availability, and motor activity) to the nucleus of the solitary
tract located in the brain stem (Furness et al., 2014). Neuronal
inputs are subsequently sent to the higher parts of the CNS or are
involved in long vago-vagal reflexes (Mulak and Bonaz, 2004).
Afferent fibers in the vagus nerve direct the signals from the
gut to secondary afferent neurons located in the dorsal horn.
Secondary afferent neurons project to the CNS with the aid of
spinothalamic pathways, which are considered to be the major
pain signaling routes in the gut-brain axis (Mulak and Bonaz,
2004; Furness et al., 2014). In addition, the enteric nervous
system is responsible for receiving and transmitting signals to
and from the autonomic nervous system, providing a critical role
in the gut-brain axis communication (Furness, 2012). A growing
body of evidence has highlighted the obvious impact of the gut
microbial community on the gut-brain axis functions (Quigley,
2017; Dehhaghi et al., 2018a, 2019a).

It is important to note that gut microorganisms can directly
stimulate the afferent sensory neurons. Microbial SCFAs have
a profound influence on enteroendocrine cells for producing
various enteric neuropeptides. These can pass through the lamina
propria and reach the blood stream and relevant receptors to
strongly impact the extrinsic vagal innervation or enteric nervous
system neurons. Bacterial circulating SCFAs, such as butyrate and
propionate can bind to monocarboxylate transporters, which are
extensively present at the blood-brain-barrier (BBB) and enter
the CNS (Maurer et al., 2004). Monocarboxylate transporters
are also expressed on the surface of neuronal and glial cells,
providing a mechanism through which these compounds can
be taken up and utilized as the main source of cellular energy
particularly in early stages of brain development (Pellerin, 2005;
Burokas et al., 2015).

It should be noted that the diversity, population, and
metabolites of gut microbiota may control the state and level
of both local and systemic immunity. The modulation of
the immune system may be through the kynurenine pathway
or through a direct effect on immune cells. For example,
a bidirectional communication exists between gut microbiota
and neuroendocrine system through the hypothalamic-pituitary-
adrenal (HPA) axis (Farzi et al., 2018). HPA axis is a significant
neuroendocrine system that controls body to ensure adequate
responses to physical and psychological stressors (Smith and
Vale, 2006). It has been observed that the existence of
the gut microbiota in early stages of life could influence
neuroendocrine responses to stress (Dinan and Cryan, 2012;
O’Mahony et al., 2017). Furthermore, some disorders related
to gut microbiota such as irritable bowel syndrome has a
potential link with neuroendocrine system disorder such as
depression. Interestingly, HPA axis is reportedly increased in
both mentioned disorders (Videlock et al., 2016; Juruena et al.,
2018). A reverse relationship is also true through which, for
example, irritable bowel syndrome is resulted following the
generation of depression due to chronic or early life stresses
(Whitehead et al., 1992; Liu et al., 2017; Farzi et al., 2018).

More specifically, the activation of HPA axis can increase
gastrointestinal permeability and the gut microbiota composition
(Heim et al., 2000; De Punder and Pruimboom, 2015). However,
to this date, there is no reports on the interaction of gut
microbiota in the development of brain cancer through HPA
axis. In respect to brain cancer, gut-microbiota may influence
the tumor microenvironment by controlling T-cell expansion
and activation, microglia, cytokines production, arginine and
tryptophan availability, kynurenine pathway, and ROS and
antioxidants generation (Table 1).

AMINO ACID DEPRIVATION

Gut microbiota can decrease the availability and metabolism
of some dietary amino acids such as tryptophan (see Section
“Tryptophan”) and arginine by utilizing them for the production
of microbial protein and various metabolites (Mardinoglu et al.,
2015; Dehhaghi et al., 2019a). The depletion of these amino
acids could influence the progression and severity of tumor
cells, including GBM.

Arginine
Arginine is a semi-essential amino acid for humans that can
be provided through diet, endogenous synthesis, and protein
turnover. The human body uses arginine to produce several
metabolites, some of which may affect tumors. Some pro-tumor
arginine-derived metabolites in the body include polyamines
and nitric oxide. Through depletion of dietary arginine, gut
microbiota may decrease the metabolism of arginine-derived
pro-cancer metabolites by decreasing the arginine flux in body.
However, gut microbiota could also produce some arginine-
derived pro-cancer metabolites during the assimilation of dietary
arginine. For example, polyamines and nitric oxide are two
arginine-derived metabolites that are produced by gut microbiota
(Dai et al., 2015; Kao et al., 2015). The produced polyamines,
then, could translocate into the brain by blood circulatory system.
Following passing blood-brain-barrier, the microbial originated
polyamines may induce the proliferation and metastasis of
tumor cells through upregulating the expressions of ornithine
decarboxylase, spermidine/spermine acetyltransferase, and Akt1
(Dai et al., 2017).

The impact of nitric oxide on cancer cells is controversial and
significantly depends on its concentration, exposure time, cell
type, and microenvironment. High levels of nitric oxide could
suppress anti-tumor T-cell activity through enriching MDSCs
(see Section “Myeloid-Derived Suppressor Cells”). Moreover,
aberrant production of nitric oxide by gut microbiota could
increase the flux of peroxynitrite, following its reaction with
superoxide radicals. Peroxynitrite is one of the key compounds
that promotes MDSC suppressive activity on T-cell function
(see Section “Myeloid-Derived Suppressor Cells”). Alternatively,
nitric oxide interferes with T-cell function through the inhibition
of MHC class II transcription (Rivoltini et al., 2002), the
inhibition of the JAK3-STAT5 signaling pathway, and the
induction of T-cell apoptosis (Bingisser et al., 1998; Harari
and Liao, 2004). Furthermore, high levels of nitric oxide
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TABLE 1 | Some important factors in cancer that are affected by gut microbiota.

Factor A1 Presence of gut microbiota References

Genus/Strain B2 Modulatory Mechanisms

GM-CSF D3 Lactobacillus reuteri,
Enterococcus faecalis,
Lactobacillus crispatus and
Clostridium orbiscindens

P4 Reduced expansion and activation of MDSCs by IL-17A-induced release of GM-CSF Menetrier-Caux et al., 1998; Brown
et al., 2017

IL-4 I5 Lactobacillus spp. P Reduced suppressive activity of MDSCs on anti-tumor T-cells by decreasing the
expression of IL-4 and IL-13 and subsequent downregulation of arginase 1 expression

Rutschman et al., 2001; Bronte
et al., 2003; Johansson et al., 2012

Arginine availability − Diverse P -Reduced availability of arginine through the depletion of dietary arginine in gut.
-Increased radio sensitization of arginine-depleted cancer cells.
-More efficient arginine deprivation therapy.
-Induced autophagy and apoptosis in arginine auxotrophic cancer cells.

Syed et al., 2013; Hinrichs et al.,
2018; Zou et al., 2019

Arginine and
endogenous nitric
oxide availability

− Prevotella spp. P -Reduced availability of arginine and its lower subsequent conversion into nitric oxide.
-Improved activity of anti-tumor T-cell by inhibiting MSDCs expansion.

Dai et al., 2015; Kao et al., 2015

Nitric oxide − − P -Conversion of dietary arginine into nitric oxide.
-Increased permeability of mitochondrial membrane and subsequent promoted release
of cytochrome c, expression of apoptosis inducing factor, and activation of certain
caspases at high level of nitric oxide.
-Nitric oxide-induced DNA damage and cell death in cancer cells.
-Increased sensitization of resistant tumor cells to apoptosis during
chemo-immunotherapy in the presence of nitric oxide.

Sarti et al., 2012; Bonavida and
Garban, 2015; Chang et al., 2015;
Tengan and Moraes, 2017

N6 -Conversion of dietary arginine into nitric oxide.
-Increased MSDCs expansion and subsequent decreased activity of anti-tumor T-cells.

Peroxynitrite I − N -Conversion of dietary arginine into nitric oxide and the subsequent formation of
peroxynitrite upon reaction with superoxide radicals.
-Increased MSDCs-mediated suppressive activity on T-cells.
-Promoted tumor progressions by rendering T-cell unresponsive due to aberrant
nitration of the T-cell receptor and CD8+ molecules in the presence of excessive
amounts of peroxynitrite.

Nagaraj et al., 2007; Gabrilovich
and Nagaraj, 2009
Bentz et al., 2000; Cobbs et al.,
2003; Gabrilovich and Nagaraj,
2009

Polyamines availability − − N Conversion of arginine into polyamines which may induce the proliferation and
metastasis of tumor cells.

Dai et al., 2017; Zou et al., 2019

Antioxidants − Diverse P -Reduced suppressive activity of MDSCs on anti-tumor T-cells by some microbial
metabolites such as vitamins, antioxidants, and polyphenols that scavenge ROS.

Dehhaghi et al., 2018a, 2019a

(Continued)
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TABLE 1 | Continued

Factor A1 Presence of gut microbiota References

Tryptophan availability − Burkholderia, Ralstonia,
Klebsiella, Citrobacter, and
Bifidobacterium infantis

N -Assimilation of dietary tryptophan which causes an aberrant proliferation and functions
of effector T-cells due to the inhibition of fatty acid synthesis in human primary CD4+
T-cells by overactivating GGN2
-Induced tumor immunoresistance and survivability by the phosphorylation of
eukaryotic initiation factor 2α

Ye et al., 2010; Eleftheriadis et al.,
2015; Schalper et al., 2017; Kaur
et al., 2019

IDO-1
IFN-γ

I − N -Overactivation of AhR by tryptophan-derived metabolites of gut microbiota (e.g.,
kynurenine, kynurenic acid)
-Ligand-activated AhR eventually increases IDO-1 by increasing the release of IL-6 and
IFN-γ.

Glauben et al., 2006; DiNatale
et al., 2010; Litzenburger et al.,
2014; Wang et al., 2014; Dehhaghi
et al., 2018a, 2019a;
Martin-Gallausiaux et al., 2018;
Kaur et al., 2019

P -Inhibited IFN-γ and IDO-1 expression by microbial SCFAs through their downregulatory
effects on STAT1 and histone deacetylase

IDO-1 I − N -Increased pathogenesis of gliomas by overactivating IDO-1 through the production of
inflammatory cytokines, amyloid peptide, and lipopolysaccharides.
-IDO-1-suppressed expansions of T-cells and other immune cells via tryptophan
depletion route (see above)

−

IFN-γ I − N -Weak determinant for impacting T-cell suppressive potency, accumulation, or
phenotype of MDSCs
− Increases cancer pathogenesis through modification of kynurenine pathway at IDO-1
step (see above).

−

Microglia dysbiosis I Diverse for example Clostridium
spp.

N -Microbial SCFAs induce the release of TGF-β that triggers dysbiosis of Th1 and Th2 in
favor of microglia M2c phenotype and inhibits cytokine production, lymphocyte
proliferation, and T cell differentiation.

Mantovani et al., 2004; Heijtz et al.,
2011; Erny et al., 2015; Bauché
and Marie, 2017; Dehhaghi et al.,
2018a, 2019a, 2018b; Roesch
et al., 2018; Mehrian-Shai et al.,
2019

− N Induced MDSCs suppressive activity on anti-tumor T-cells due to a higher production of
ROS in the brain by activated and inflamed microglia in response to microbiota-derived
neurotoxic substances or metabolites (e.g., amyloid proteins and LPS)

1Anti-cancer impact by gut microbiota.
2 Effect on the brain cancer development.
3Decreased.
4 Increased.
5Positive.
6Negative.
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could increase the permeability of the mitochondrial membrane
that subsequently triggers the release of cytochrome c, the
expression of an apoptosis inducing factor, and the activation of
certain caspases (Sarti et al., 2012; Tengan and Moraes, 2017).
Interestingly, cancer cells are more susceptible to cytotoxic effects
(DNA and mitochondria damage) of nitric oxide due to aberrant
P53 protein, compared to normal cells (Chang et al., 2015).
Moreover, the sensitization of resistant tumor cells to apoptosis
during chemo-immunotherapy, increases in the presence of
nitric oxide (Bonavida and Garban, 2015).

It should be noted that arginine starvation can have both
positive and negative effects on tumors. Like arginase 1 in
MDSCs, the assimilation of L-arginine by gut microbiota will
lead to its depletion from the tumor microenvironment. This
phenomenon has an inhibitory effect on T-cell proliferation by
suppressing T-cell cell cycle regulators (cyclin-dependent kinase
4 and cyclin D3) and downregulating the expression of T-cell
antigen, i.e., CD3 zeta(ζ)-chain (Rodriguez et al., 2002, 2007).
Accordingly, the failure of T-cells to upregulate the mentioned
cell regulators, arrests T-cell in the G0-G1 phase of the cell
cycle. This is done through aberrant downstream signaling, i.e., a
blocked GCN2 signaling pathway that involves a lower level of Rb
protein phosphorylation, and weak E2F1 expression and binding.

On the positive side, the depletion of nutritional arginine
by gut microbiota can be beneficial for eradication of
arginine auxotrophic tumors, which lack the enzyme (i.e.,
argininosuccinate synthetase) required for the conversion of
citrulline to arginine (Feun et al., 2008; Syed et al., 2013; Khoury
et al., 2015; Zou et al., 2019). Therefore, these types of tumor
cells must rely on the exterior source of arginine to meet their
extremely high metabolic rate and intensive growth. Even the
sensitization of nonauxotrophic glioblastoma is induced in
the absence of arginine (Hinrichs et al., 2018). Under arginine
depletion stress, tumor cells switch to autophagy to maintain
their functions, but eventually undergo apoptosis due to
excessive autophagy.

Tryptophan
Tryptophan is an essential amino acid, which means it cannot
be synthesized endogenously in the human body and must be
supplied through dietary intake. Two forms of tryptophan, i.e.,
either bound to albumin or free form, can be found in the
human body (Dehhaghi et al., 2019a). Only the free form of
tryptophan can across the BBB through non-specific L-amino
acid transporters. Although the level of tryptophan in human
tissues is lower than other amino acids, it is a critical component
of several metabolic pathways. After tryptophan uptake, it
participates in protein synthesis or enters various metabolic
pathways based on the tissue and the enzymes expressed. While
approximately, 90% of tryptophan is metabolized through the
kynurenine pathway, generating various neuroactive metabolites
in the body, 3–10% of tryptophan is utilized for the synthesis
of chemical messengers such as serotonin, tryptamin, and other
indole-derived metabolites (Palego et al., 2016; Dehhaghi et al.,
2019a). Biotransformation of tryptophan and its availability
is regulated by both endogenous and exogenous factors. The
association of tryptophan depletion with some neurological

disorders such as depression and mood-affective diseases are
well-known (Kanchanatawan et al., 2018).

With respect to cancers, tryptophan depletion is
increasingly being identified as a critical factor in tumor
cell development. Importantly, tryptophan is highly catabolized
in a microenvironment of tumor cells and inflammation
regions. This local tryptophan depletion promotes T-cells to
activate general control nonderepressible-2 (GCN2) kinase,
i.e., a serine-threonine kinase that responds to amino acid
deprivation. Consequently, a stress response is induced by
activated GCN2 that leads to an aberrant proliferation of effector
T-cells (Schalper et al., 2017). More specifically, activated GCN2
is able to inhibit fatty acid synthesis in human primary CD4+
T-cells that is essential for their regular proliferations and
functions (Eleftheriadis et al., 2015). It is worth mentioning
that CD4+ T-cells show a reduced survivability in the presence
of kynurenine under tryptophan-depleted locations. In tumor
cells, abnormal angiogenesis is associated with the lack of
blood supply, which is directly related to the development of
hypoxia and the deprivation of glucose, amino acids, and other
essential nutrients. Under this condition, the phosphorylation
of eukaryotic initiation factor 2α (eIF2 α) occurs by activation
of GCN2, which upregulates activating transcription factor
4 (ATF4) expression, increases amino acid biosynthesis, and
eventually induces tumor immunoresistance and its survival (Ye
et al., 2010). Additionally, IDO-1 expressing tumor cells respond
to tryptophan shortage by expressing amino acid transporter
genes (i.e., SLC7A11, SLC1A4, and SLC1A5). The upregulation
of ATF4-dependent expression of SLC1A5 and its splice variants
eventually increase glutamine and tryptophan uptake that are
highly demanded for rapid amino acids synthesis in tumor cells
(Timosenko et al., 2016).

Expression of IDO-1 in non-antigen-presenting cells, such
as tumor cells, promotes the escape of the tumors from
immunosurveillance (Munn and Mellor, 2007). Generally, IDO-
1 can inhibit glucose uptake, glycolysis, and glutaminolysis,
which contribute in its immunosuppressive activity (Eleftheriadis
et al., 2013). Like activated T cells, highly proliferating cells
such as cancer cells change their metabolic pathways from
pyruvate oxidation to the glycolytic and glutaminolytic pathways.
Cancerous cells showed Warburg’s phenomenon in which is an
enhanced cytoplasmic glycolysis/mitochondrial oxidation ratio
(Warburg, 1956; Wang et al., 2011). Most cancer cells can
directly or indirectly affect the function of p53 (a potent tumor
suppressor) that inhibits cell proliferation by arresting the cell
cycle in G1-phase. In addition, p53 plays significant role in the
modulation of cellular metabolism through inhibiting glucose
uptake and aerobic glycolysis (Brady and Attardi, 2010; Shen
et al., 2012). With respect to the similarity in glucose metabolism
in activated T cells and cancer cells, it has been shown that IDO-
induced tryptophan depletion increased p53 level. Both IDO-1
and p53 inhibited the aerobic glycolysis in alloreactive T cells
(Eleftheriadis et al., 2014). IDO-induced tryptophan depletion
also activated the GCN2 kinase leading to p53 up-regulation in
T cells (Eleftheriadis et al., 2014).

Based on in silico analyses, bacterial phyla residing in
the human GI tract including Actinobacteria, Bacteroides,
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Firmicutes, Fusobacteria, and Proteobacteria possess complex
pathways to metabolize tryptophan and produce neuroactive
metabolites such as kynurenine, kynurenic acid, quinolinate,
tryptamine, indole, and indole-derivatives (DiNatale et al.,
2010; Kaur et al., 2019). Some gut bacterial genera (e.g.,
Burkholderia, Ralstonia, Klebsiella, and Citrobacter) have higher
potential to convert tryptophan to neuroactive compounds,
compared to other bacteria (Kaur et al., 2019). Interestingly,
microbial tryptophan-derived indole and indole derivatives
could profoundly modulate gut homeostasis and cellular gene
expression. Moreover, indolyl metabolites may be significant
signaling molecules between the gut and immune system as
they can bind to the aryl hydrocarbon receptor (AhR) and
activate it locally and systemically (Cheong and Sun, 2018;
Dehhaghi et al., 2019a). More importantly, gut-microbiota
can affect the disease state of cancer by modulating IDO-1
activity (see Section “Kynurenine Pathway”) through regulating
AhR activity. The interaction of some tryptophan-derived gut
microbiota with AhR causes its activation. Ligand-activated AhR
then regulates the functions of a wide range of innate and
adaptive immune system such as dendritic cells, natural killer
cells, macrophages, regulatory T-cells, and type 17 and 22 helper
T-cells (Cheong and Sun, 2018). The dissociation of AhR from the
chaperone heat shock protein 90 occurs after binding ligands to
AhR. The ligand-activated AhR translocates nucleus and forms
a heterodimeric complex with the AhR nuclear translocator
(ARNT) protein. The AhR-ARNT complex is a transcription
factor that regulates the expression of IL-6 in macrophages,
IL-10 in natural killer cells and dendritic cells (Litzenburger
et al., 2014; Wang et al., 2014). IL-6 then activates IDO-1 and
indirectly contributes in increased kynurenine and kynurenic
acid production and AhR activation. Moreover, AhR activation
in natural killer cells induces INF-γ production that subsequently
induces IDO-1 expression and eventually leads to tryptophan
depletion (Figure 1).

Overall, the depletion of tryptophan has pro-cancer activities
(Table 1) and increases the survivability and severity of tumors.
In a tryptophan-depleted microenvironment, the responses of
antigen-specific T-cells are suppressed through accumulation of
tryptophan-derived immunosuppressive metabolites (Mellor and
Munn, 2008). As tryptophan is essentially provided through
the diet, gut microbiota may help cancer cells to evade
immunity in the human body through assimilation of available
tryptophan in the gut.

KYNURENINE PATHWAY

Tryptophan, an essential amino acid for animals and humans, is
mainly supplied through dietary nutrient intake. The kynurenine
pathway is the main route of tryptophan catabolism, contributing
to de novo synthesis of nicotinamide adenosine dinucleotide
(NAD) through the production and conversion of various
neuroactive intermediates (Figure 2; Chen and Guillemin,
2009; Dehhaghi et al., 2019a). The heme-enzymes IDO-1,
indoleamine 2,3-dioxygenase-2 (IDO-2), and tryptophan 2,3-
dioxygenase (TDO-2) are three regulatory enzymes of the

kynurenine pathway that catalyze the first step of tryptophan
degradation. TDO and IDO are predominantly expressed in
liver and various cells (e.g., intestinal cells, microglia, astrocytes,
macrophages, and neuronal cells), respectively (Ball et al., 2014).
IDO-1 expression is significantly induced by interferon gamma
(INF-γ). However, other inflammatory cytokines, amyloid
peptide, lipopolysaccharides, and TLR ligands could also induce
its expression (Guillemin et al., 2003; Adams et al., 2012). The
kynurenine pathway-derived metabolites, particularly kynurenic
acid and quinolinic acid, could potentially have neuroprotective
and neurotoxicity effects on the neuronal activity in the central
and peripheral nervous systems, respectively (Carpanese et al.,
2014; Filpa et al., 2015). Therefore, an aberrant kynurenine
pathway metabolism could be triggered by unbalanced gut
microbiota.

Clinical studies have suggested IDO-1 activity could be
associated with various cancers including melanoma, colorectal,
breast, lung, and brain cancers (Ferdinande et al., 2012; Zhai et al.,
2015, 2018). Glioma and glioneuronal tumors show increased
tryptophan uptake and catabolism. Compared to control healthy
cells, the activity of IDO-1 is induced in malignant glioma cells
due to the presence of INF-γ (Adams et al., 2012). This could
induce pro-cancer activities through depletion of tryptophan (see
Section “Tryptophan”). The upregulation of IDO-1 mRNA levels
is positively correlated with the glioma grade, while it has an
inverse relationship with the survival rate in patients with gliomas
(Zhai et al., 2017). In fact, the overexpression of IDO-1 in cancer
cells helps to evade immune surveillance by suppressing the
expansion of T-cells and other immune cells.

Gut microbiota can influence the kynurenine pathway
through the regulation of immune system-associated IDO-
1 activity or the modulation of tryptophan availability. For
instance, the levels of tryptophan circulation increase in
the absence of gut microbiota (in germ-free models) or
altered microbial composition induced by antibiotics (Dehhaghi
et al., 2019a). This aberrant tryptophan level further decreases
kynurenine-to-tryptophan ratio in plasma by modifying IDO-1
activity. Unlike the circulatory tryptophan level, both kynurenine
metabolites and the peripheral serotonin level decrease in germ
free animals (Clarke et al., 2013; Yano et al., 2015). It is important
to note that the introduction of some gut microorganisms,
for example Bifidobacterium infantis, can restore the normal
kynurenine-to-tryptophan ratio (Desbonnet et al., 2008). This
is because gut microbiota is capable of degrading tryptophan
to various metabolites that consequently limit the availability of
tryptophan for the kynurenine pathway and other tryptophan
catabolism routes such as the serotonin production pathway.

Interestingly, IDO-1 and gut microbiota have feedback control
on each other. While IDO-1 can induce an immunosuppressive
response in the GI tract through the regulation of microbial
metabolism and immune reactivity, gut microbiota can alter
the kynurenine pathway and IDO-1 activity by affecting
tryptophan availability (Dehhaghi et al., 2019a). Moreover,
molecular analyses of bacterial genomes have revealed homologs
of TDO, 3-hydroxyanthranilate-3,4-dioxygenase, kynurenine-
3 monooxygenase, and kynureninase. These genes confer gut
microbiota the potential to produce neuroactive metabolites.
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FIGURE 1 | Interaction between gut microbiota, immune system and tryptophan metabolism in brain tumor development. The gut microbiota can influence the brain
tumor cells proliferation and metastasis through direct and indirect regulation of tryptophan and arginine metabolism, inflammatory cytokine production, release of
short chain fatty acids, aryl hydrocarbon receptor modulation, microglia maturation, and T cell proliferation. AhR, aryl hydrocarbon receptor; Arg, arginine; ARNT,
AhR nuclear translocator; ATF4, activating transcription factor 4; eIF2α, eukaryotic initiation factor 2α (eIF2 α); GCN2, general control nonderepressible-2; HDAC,
histone deacetylase; MDSCs, myeloid-derived suppressor cells; ROS, reactive oxygen species; SCFAs, short chain fatty acids; STAT, signal transducer and activator
of transcription.

The microbial products of these homologs can influence the
expression and activity of IDO-1.

Some microbial derived metabolites in GI such as SCFAs
exert an anti-inflammatory effect and modulate the immune
system and kynurenine pathway through regulation of IDO-
1 activity. Generally, the interaction between cells and SCFAs
activates a signaling cascade that involve G-protein coupled
receptors (GPR41, GPR43, and GPR109a) (Brown et al., 2003;
Dehhaghi et al., 2018a). SCFAs (especially, butyrate) that are
produced by gut microbiota play a significant role in intestinal
homeostasis and cancer protection. It has been demonstrated
that butyrate-associated IDO-1 regulation is mainly conducted
by two mechanisms that are independent of the known G-protein
coupled receptors (i.e., GPR41, GPR43, and GPR109a) for SCFAs
(Martin-Gallausiaux et al., 2018). The first mechanism involves
the downregulation of the expression of signal transducer and
activator of transcription (STAT) 1, which is a main mediator
of IDO-1 expression. Decreased STAT1 expression inhibits

INF-γ-dependent STAT1 phosphorylation, and subsequently
reduces STAT1-dependant transcriptional activity of IDO-1. In
the second mechanism, IDO-1 activity is affected through a
STAT1-independent route for the inhibition of IDO-1 activity.
In this mechanism, IDO-1 activity is regulated by SCFAs
through their histone deacetylase (HDAC) inhibitory properties
(Dehhaghi et al., 2018a). The inhibition of HDAC could
suppress the production of proinflammatory cytokines such as
tumor necrosis factor-α (TNF-α), IFN-γ, and IL-6 and could
subsequently inhibit IDO-1 activity (Glauben et al., 2006).

GUT DYSBIOSIS AND MICROGLIAL
DYSFUNCTION

Immunity responses in the brain are controlled by microglial
cells, i.e., resting microglia and activated microglia
(viz., proinflammatory microglia, M1 phenotype; and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 November 2020 | Volume 8 | Article 562812

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-562812 November 13, 2020 Time: 21:38 # 9

Dehhaghi et al. Microbiota Impact on Brain Cancer

FIGURE 2 | Kynurenine pathway, the main route of tryptophan catabolism (Dehhaghi et al., 2019a).

immunosuppressive and tissue-regenerating phenotype
microglia, M2 phenotype). The polarization process could
be controlled by stimulus, period, and environment, which
modulate the expression of CD86, CD45, MHC class II in
microglia (Ma et al., 2017). More specifically, the resting
microglia could be activated and polarized toward M1
phenotype through stimulation by trauma-induced cellular
debris, bacterial-derived compounds (e.g., lipopolysaccharide),
cytokines produced by type 1 T helper (Th1) cells and astrocytes
(e.g., interferon-γ, and TNF-α). Many of these compounds
are also produced or induced by gut microbiota (Heijtz et al.,
2011; Dehhaghi et al., 2018a). M1 phenotype produces (i)
proteolytic enzyme matrix metalloproteinase-3 and matrix
metalloproteinase-9, (ii) redox signaling molecules such as
reactive oxygen species and nitric oxide, and (iii) several
proinflammatory cytokines, including IL-1ß, IL-6, targeting
chemokine (C-C motif) ligand 2, TNF-α, C-X-C motif
chemokine 10. Normally over time, type 2 T helper (Th2)

cells stimulate the polarization of microglia into M2 phenotype
through the production of IL-4 and IL-13. Unlike M1, M2
microglia produce scavenger receptors and anti-inflammatory
cytokines, including tumor necrosis factor-β (TGF-β), insulin-
like growth factor 1, IL-4, IL-10, and IL-13. Three phenotypes of
M2 activated microglia function in inflammation suppression
(i.e., M2a sub-class) and tissue regeneration (M2c sub-class),
while M2b still has an unknown role (Latta et al., 2015; Mecha
et al., 2015).

Therefore, Th 1 and Th 2 cells could mediate microglial
phagocytosis, and their production of cytokines and other
effector molecules that ultimately suppress the cause of
inflammation. The disruption of these control mechanisms;
however, could cause autoimmune diseases as well as brain
cancer. The latter complication may be attributed to the
unregulated tissue reconstruction triggered by activated M2
microglia. Switching to anti-inflammatory M2 phenotype,
specifically M2c subtype, is induced by cytokines and
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corticosteroids produced by tumor cells, such as IL-10,
TGF-β, and glucocorticoids. Accordingly, M2c phenotype is a
deactivated form of microglia which is associated with tumor
growth and brain malignancies (Mantovani et al., 2004; Roesch
et al., 2018). More specifically, human high-grade gliomas have
overexpressed amounts of cytokine colony stimulating factor 1
(CSF1), CSF1 receptor, and cytokines (i.e., IL-6 and TGF-β). It
is worth mentioning that CSF1 is produced by microglia and
macrophages, whereas IL-6 and TGF-β are released by Th 2
cells. TGF-β strongly inhibits cytokine production, lymphocyte
proliferation, and T cell differentiation. In contrast, IL-2 and
IL-12 are released from Th 1 cells in normal tissues and are absent
in glioblastoma tumors (Mehrian-Shai et al., 2019; Figure 1).

Further, intestine epithelial cells produce high levels of
TGF-β that is controlled by gut microbiota. For example,
microbial fermentation products such as SCFAs (i.e., butyrate,
acetate, and propionate) could be produced by Clostridium
spp. (Dehhaghi et al., 2019a) even in gut, promoting TGF-β
production (Bauché and Marie, 2017; Dehhaghi et al., 2019a).
While the role of TGF-β in neuronal and glial cell development
has been well documented, gut microbiota may play a crucial
role in microglial maturation and function through controlling
TGF-β production. This hypothesis has been supported by an
in vivo study involving germ-free mice (Erny et al., 2015).
Compared to the control normal mice, germ-free mice showed
substantial changes in the properties of the microglia, including
alteration in morphological features, gene expression, and the
maturation process. Additionally, microbiota diversity is also
correlated with the maturation of microglia. In fact, limited
gut microbiota diversity could result in defective microglia
(i.e., the number of immature microglia in the brain cortex
increased) (Erny et al., 2015). It is worth mentioning that gut
microbiota may also increase the severity of cancer by the
production of neurotoxic substances (e.g., amyloid proteins,
and lipopolysaccharides) that could pass BBB. Once in the
brain, these microbial compounds increase ROS production by
the activation and inflammation of microglia (Dehhaghi et al.,
2018a). The induced inflammation then may trigger IDO-1
overactivation (see Section “Kynurenine Pathway”), tryptophan
depletion (see Section “Tryptophan”), or MDSCs activation (see
Section “Myeloid-Derived Suppressor Cells”).

MYELOID-DERIVED SUPPRESSOR
CELLS

MDSCs are a heterogenous population of immunosuppressive
cells that originate from immature myeloid cells. Following
immature myeloid cells generation in bone marrow, they
are released for their subsequent differentiation into mature
myeloid cell, i.e., dendritic cells, macrophages, or granulocytes in
peripheral organs. Unlike in a steady state, a partial inhibition
in the differentiation of immature myeloid cells into mature
myeloid cells occurs during various pathological conditions
including cancer, and to a significantly lesser extent, infection,
inflammation, sepsis, and trauma (Gabrilovich and Nagaraj,
2009; Raychaudhuri et al., 2015; Alban et al., 2019). These

diseases expand MDSC in the circulatory system of patients by
modifying STAT3 and Janus protein family members (Bromberg,
2002). Moreover, during pathological conditions, the activated
immature myeloid cells remarkably express reactive oxygen
species (ROS), nitrogen species (i.e., inducible nitric oxide
synthase (iNOS) and nitric oxide), arginase 1, and other immune
suppressive factors that increase the suppressive activity of
MDSCs on T-cells in lymphoid organs, circulation, and tumors
(in case of cancer) (Gabrilovich and Nagaraj, 2009).

In humans, CD11b+CD14−CD33, HLA-DR−-CD33, or
HLA-DR−-CD15+ phenotypes of MDSCs have been identified
(Gabrilovich and Nagaraj, 2009). MDSCs have the morphology
of monocytes or granulocytes and can significantly suppress
T-cell responses. Up to 5.4% of the total cells in GBM tumors
is made up of MDSCs that mainly include lineage negative
(CD14−CD15−), followed by granulocytic (CD14−CD15+) and
monocytic (CD14+CD15−) subtypes (Raychaudhuri et al., 2015).
The accumulation of MDSCs in GBM tumors attracts T
regulatory cells but suppresses anti-tumor T-cell proliferation
and functions. A positive correlation exists between the
intratumoral density of glioma-associated MDSCs, and the
patient’s survival and histological grade of gliomas (Gieryng and
Kaminska, 2016). Intriguingly, T cell effector responses that are
required for tumor rejection could be restored when MDSCs are
removed (Movahedi et al., 2008; Gabrilovich and Nagaraj, 2009).

One of the promising methods for reducing the population
of MDSCs is through enriching gut microbiota that increases
granulocyte–macrophage colony-stimulating factor signaling
(GM-CSF) (Brown et al., 2017). Moreover, gut microbiota can
block STAT6 in MDSC by decreasing the expression of IL-4
that is important for signaling downstream of IL-4 receptor
α-chain. In fact, this deficient signaling pathway prevents both
the activity and production of arginase 1, which in turn, decrease
the T-cell suppressive function of MDSCs (Rutschman et al.,
2001; Gabrilovich and Nagaraj, 2009). It is worth mentioning that
the IL-4 receptor α-chain-STAT6 pathway does not induce tumor
immunosuppression in all tumor microenvironment.

Gut-microbiota can also decrease the suppressive activity of
MDSCs through modification of ROS level. The generation of the
ROS may occur during physiological processes (i.e., endogenous
ROS), interaction with external harmful stress (exogenous ROS)
such as ionizing radiation, or in a response to disease state
(Dehhaghi et al., 2019c). ROS examples include nitric oxide and
peroxynitrite, singlet oxygen, hydroxyl radicals, superoxide, and
peroxides (Dehhaghi et al., 2019c). The speculative intervention
of gut microbiota in the ROS level of the brain could be
through the production of microbial metabolites (Bonaz et al.,
2018; Dehhaghi et al., 2019a). Some of these metabolites
such as SCFAs (see Section “Kynurenine Pathway”), vitamins,
antioxidants, and polyphenols inhibit the ROS. The existence
of gut microbiota could suppress extensive colonization of
pathogens in the gastrointestinal tract while could also regulate
the immune response and the permeability of BBB and intestinal
barrier (Dehhaghi et al., 2018a). Some of these modifications
and interferences may lower the generation of ROS in the
body, even in the brain, and hence, inhibit MSDCs suppressive
activity. Gut microbiota could also manipulate central nervous
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system ROS flux through providing extra amounts of some
neurotransmitters (e.g., gamma-amino butyric acid, serotonin,
and dopamine) and/or through kynurenine pathways (see
Section “Tryptophan”).

On the downside, gut microbiota may also increase the
severity of cancer through activation of microglia and the
subsequent induction of ROS generation (see Section “Myeloid-
Derived Suppressor Cells”). Gut microbiota could also increase
the flux of nitric oxide (see Section “Arginine”) and peroxynitrite
in the body and the brain. Excessive amounts of peroxynitrite
render T-cells unresponsive, which could be associated with the
tumor progressions in many cancer types (Bentz et al., 2000;
Cobbs et al., 2003; Gabrilovich and Nagaraj, 2009). This could
be attributed to the ability of peroxynitrite for modifying the
antigen-specific stimulation response of T-cells due to aberrant
nitration of the T-cell receptor and CD8+ molecules (Nagaraj
et al., 2007; Gabrilovich and Nagaraj, 2009).

Alternatively, gut microbiota can induce the expression
and activation of INF-γ following the assimilation of gluten
which cannot be completely digested by humans (Dehhaghi
et al., 2019a). INF-γ may inhibits anti-tumor T-cells through
the expression of iNOS, arginase by MDSCs in the tumor
microenvironment. However, further study has shown that
although INF-γ has the potential to signal through the
STAT1 pathway, it is not a key determinant for impacting
T-cell suppressive potency, accumulation, or phenotype of
MDSCs (Sinha et al., 2012). Therefore, gut microbiota-
induced IFN-γ probably increases cancer pathogenesis through
modification of the kynurenine pathway at IDO1 step (see
Section “Kynurenine Pathway”).

CONCLUSION

Gut-brain axis may negatively or positively influence cancer
development, including brain cancer, through the production
of various metabolites. These metabolites may induce or
suppress the release of specific cytokines, which could trigger
inflammatory or anti-inflammatory responses. The intervention
of gut microbiota in cancer development can be both negative
and positive. For example, gut microbiota can modulate
suppressive activity of MDSCs on anti-tumor T-cells by
producing pro-inflammatory (e.g., amyloid proteins and
lipopolysaccharides) and anti-inflammatory substances (e.g.,
antioxidants, polyphenols, and vitamins). With respect to anti-
tumor activities, some gut microorganisms such as Lactobacillus
reuteri, Enterococcus faecalis, Lactobacillus crispatus and
Clostridium orbiscindens can induce the differentiation of
MDSCs into mature myeloid cells. This is done by mediating the
release of GM-CSF that is controlled by IL-17A. Individuals with
a high population of Lactobacillus spp. in their GI track show a
lower expression of IL-4 that suppressed the activity of MDSCs
on anti-tumor T-cells by downregulating arginase 1 expression.

Through depletion of some dietary amino acids, gut
microbiota can modulate the tumor microenvironment. On
this basis, the assimilation of dietary arginine in the gut by
microorganisms (e.g., Prevotella spp.) reduces flux in the human

body that favors anti-tumor activities. Under an arginine depleted
condition, arginine-auxotrophic cancers cells must extensively
rely on autophagy to meet their rapid metabolisms that eventually
trigger apoptosis. As a result of reduced arginine flux, a lower
level of nitric oxide is synthesized by the body that inhibits
the expansion of MSDCs, and hence, improves the activity
of the anti-tumor T-cell. However, microbial derived nitric
oxide could be also produced during the assimilation of dietary
arginine by gut microbiota. The resultant nitric oxide could
then form peroxynitrite upon its reaction with superoxide
radicals. Both nitric oxide and peroxynitrite can induce tumor
development by increasing MSDC-mediated suppressive activity
on T-cells, whereas polyamines (another group of arginine-
derived microbial compounds in the gut) induce the proliferation
and metastasis of tumor cells. Alternatively, peroxynitrite causes
pro-cancer activity through rendering T-cells unresponsive
due to aberrant nitration of the T-cell receptor and CD8+
molecules. Nevertheless, it should also be noted that tumor
cells are more prone to nitric-oxide-mediated cellular damages
(i.e., mitochondria and DNA) and apoptosis due to their
aberrant P53 pathway.

Unlike arginine, the depletion of tryptophan by gut microbiota
(e.g., Burkholderia, Ralstonia, Klebsiella, Citrobacter, and
Bifidobacterium infantis) induced tumor immune-resistance and
survivability by the phosphorylation of eukaryotic initiation
factor 2α. Moreover, fatty acid synthesis in human primary
CD4+ T-cells is disrupted due to the overactivation of GGN2
in tryptophan depleted environments. This leads to aberrant
proliferation and functions of effector T-cells in favor of
tumor cells. Gut microbiota may also convert tryptophan
into kynurenine and kynurenic acid that over-activate AhR.
Ligand-activated AhR then can induce IDO-1 activity through
promoting the release of IL-6 and INF-γ. IDO-1 could also be
overactivated due to the production of inflammatory cytokines,
amyloid peptide, and lipopolysaccharides. Interestingly, IDO-
1 overactivation leads to further tryptophan depletion. In
contrast, gut microbiota may also produce anti-inflammatory
products such as SCFAs that inhibit both INF-γ and IDO-1
by downregulating STAT1 and histone deacetylase. However,
SCFAs could also induce the release of TGF-β that triggers
dysbiosis of Th1 and Th2 in favor of microglia M2c phenotype
and inhibits cytokine production, lymphocyte proliferation, and
T cell differentiation.
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