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Protein ubiquitylation is an important posttranslational modification (PTM), which is
involved in diverse biological processes and plays an essential role in the regulation
of physiological mechanisms and diseases. The Protein Lysine Modifications Database
(PLMD) has accumulated abundant ubiquitylated proteins with their substrate sites
for more than 20 kinds of species. Numerous works have consequently developed
a variety of ubiquitylation site prediction tools across all species, mainly relying on
the predefined sequence features and machine learning algorithms. However, the
difference in ubiquitylated patterns between these species stays unclear. In this work,
the sequence-based characterization of ubiquitylated substrate sites has revealed
remarkable differences among plants, animals, and fungi. Then an improved word-
embedding scheme based on the transfer learning strategy was incorporated with the
multilayer convolutional neural network (CNN) for identifying protein ubiquitylation sites.
For the prediction of plant ubiquitylation sites, the proposed deep learning scheme could
outperform the machine learning-based methods, with the accuracy of 75.6%, precision
of 73.3%, recall of 76.7%, F-score of 0.7493, and 0.82 AUC on the independent testing
set. Although the ubiquitylated specificity of substrate sites is complicated, this work
has demonstrated that the application of the word-embedding method can enable the
extraction of informative features and help the identification of ubiquitylated sites. To
accelerate the investigation of protein ubiquitylation, the data sets and source code
used in this study are freely available at https://github.com/wang-hong-fei/DL-plant-
ubsites-prediction.

Keywords: ubiquitylation, plant, word embedding, deep learning, transfer learning, convolutional neural network

INTRODUCTION

As one of the most important posttranslational modification (PTM) processes, ubiquitylation is
a modification process in which one or more ubiquitin molecules covalently bind to substrate
proteins under the action of a series of enzymes (E1, E2, E3) (Weissman, 2001). The ubiquitin–
proteasome pathway (UPP) is the most important protein degradation pathway in eukaryotic cells
and participates in various physiological processes, including transcription regulation, cell cycle,
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apoptosis, DNA damage repair, metabolism, and immunity
(Tu et al., 2012). Moreover, its abnormal regulation is
often accompanied with the occurrence of diseases such
as cancer, neurodegenerative diseases, and liver diseases
(Hoeller et al., 2006; Popovic et al., 2014; Yamada et al.,
2018). UPP is closely related to plant physiology, and many
studies have proved that ubiquitin–proteasome degradation
is involved in plant growth and development, abiotic
stress, plant metabolism, and biological stress (Lu et al.,
2011;Marino and Rivas, 2012).

Because of the functional significance of ubiquitylation,
the identification of new ubiquitylation sites in proteins
is highly significant. However, wet laboratory experimental
validations are often time consuming and expensive (Nguyen
et al., 2016). In contrast, computation-based identification
methods, which combine big data and advanced algorithms,
can provide an alternative strategy for ubiquitylation site
prediction with fast speed and low cost. The population of
high-throughput proteomics experiment technology promotes
large-scale identification of ubiquitin-conjugated peptides and,
then, provides a very large dataset for automatic recognition of
ubiquitination sites (Nguyen et al., 2015). Recently, numerous
machine learning methods have been proposed for automatic
prediction of ubiquitination sites. The Ubipred (Tung and Ho,
2008) is the first online tool that employed the physical and
chemical properties of amino acids surrounding ubiquitination
sites as features and integrated with support vector machine
(SVM) to predict the ubiquitination sites. Then other machine
learning methods, such as the k-nearest neighbor and random
forest, are also used for ubiquitination site prediction (Radivojac
et al., 2010; Cai et al., 2012; Xiang et al., 2013; Jyun-
Rong et al., 2016). The hCKSAAP-UbSite (Chen et al., 2013)
employed the idea of the composition of k-spaced amino acid
pair (CKSAAP), which considers amino acid pair composition
features of a specific position. Qiu et al. (2015) believing,
through the simple observation of the composition of amino
acids, that the sequence order of proteins may be ignored,
utilized the pseudo-amino acid composition (PseAAC) to reserve
these essential features and developed the iUbiq-Lys. The
ubiquitylated protein data are collected from various eukaryotic
species, and, considering the features of species evolution,
Ubisite (Huang et al., 2016) proposed the position-specific
scoring matrices (PSSM), which are calculated through PSI-
BLAST. As a promising structural data modeling approach,
the deep learning method can extract features from original
data automatically without feature engineering, thus some
potential and essential features will not be ignored. He
et al. (2018) employed the deep learning approach on
ubiquitination site prediction and received a well performance on
their testing set.

However, the pattern differences between the ubiquitylated
proteins of these species are not clear. To the best of our
knowledge, no related work focuses on ubiquitylation prediction
model development for a particular species. In this work, we
first analyzed the pattern differences of ubiquitylated proteins
between plants, animals, and fungus. Then an improved word-
embedding training scheme based on transfer learning was

proposed, connecting with the multilayer convolutional neural
network (CNN) for plant ubiquitylation site prediction.

MATERIALS AND METHODS

The workflow of this study is described in Figure 1. We
collected ubiquitination sites data from the Protein Lysine
Modifications Database (PLMD) (Xu et al., 2017), which
includes data collected from plants, animals, and fungus. In
order to understand the pattern differences of ubiquitylated
protein sequences between these species, feature investigations
of three species were conducted. Several important sequence
features were compared and analyzed to illustrate the pattern
differences between plants and other species. Then a novel
transfer learning-based word-embedding training scheme was
proposed in which two steps of training were conducted. The

FIGURE 1 | Schematic diagram of the workflow for this study.
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original plant protein sequence was used for pretraining of
the word2vec network through the skip-gram model, with
the optimized parameter transfer as the initial weights of
embedding layer and fine-tuning with the subsequent layers
together. The trained word-embedding layer captured the
sequence features of the plant protein and was appropriated to
ubiquitination site prediction at the same time. The multilayer
CNN was employed as a classifier and achieved acceptable
performance for plant ubiquitination site prediction. Sufficient
experiments illustrated that the proposed method outperforms
the conventional method on both cross-validation and the
independent testing set.

Data Collection and Preprocessing
In this study, the ubiquitination protein sequence is collected
from the PLMD database (Xu et al., 2017); the original data
contains 121,742 ubiquitination sites from 25,103 proteins. We
selected ubiquitination sites from Arabidopsis thaliana, Oryza
sativa subsp indica, and O. sativa subsp japonica for the plant
subset, ubiquitination sites from Homo sapiens and Mus musculus
for the animal subset, and Saccharomyces cerevisiae for the
fungus subset. To construct positive data of modeling, a sliding
window with a length of 31 was used to intercept the protein
sequences with ubiquitylated lysine residues in the center, where
31 equals 15 amino acids from each side of the lysine residue
plus one lysine residue. If the upstream or downstream residues
of a protein are less than 15, the lacking residue is filled
with a pseudoresidue X. Then, the sequence fragments that
contained a window length of 31 amino acids were centered
at the lysine residue without annotation of the ubiquitination
and were regarded as the negative data of modeling (non-
ubiquitylated lysines). We removed the redundant protein
fragments to eliminate homology bias using the CD-HIT (Li
and Godzik, 2006) with 30% identity to ensure that none of
the segments had a larger than 30% pairwise identity in both
positive and negative peptides. There are too many negative
peptides compared to the positive peptides. In order to keep
the data balanced, we selected the same number of negative
peptides randomly as positive peptides. Finally, we obtained
7,000 protein fragments for the plant subset, 60,000 protein
fragments for the animal subset, and 17,000 protein fragments
for the fungus subset.

We obtained 3,500 ubiquitination sites from plants after the
preprocessing steps through CD-HIT tools, and then, we selected
3,500 negative samples randomly to keep the data balanced. In
this work, we employed both the independent testing and cross-
validation method to evaluate the performance of the proposed
model. We selected 1,500 protein fragments randomly from the
7,000 samples as the independent testing set, which were used
to evaluate the tuned model. In addition, we utilized the 10-
fold cross-validation method to test the model performance using
the remaining 5,500 samples. The original dataset was randomly
partitioned into 10 equal-sized subsamples; a single subsample
was retained as the validation data for testing the model, and the
remaining nine subsamples were used as training data. The cross-
validation process was then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data.

Feature Investigation
Amino Acid Composition
As an important sequence feature, amino acid composition
(AAC) can reflect which kind of amino acid is more likely
to appear around the ubiquitylated lysine. In this work, we
calculated the AAC feature of each peptide using the following
equation:

Ar =
Nr

N
r = 1, 2, 3, . . . , 20

where Nr denotes the number of amino acid r, and N denotes the
length of the protein fragments.

Amino Acid Pairwise Composition
In order to understand the efforts of amino acid complexes
for ubiquitination in these species, we calculated the relative
frequencies of all possible dipeptides in the sequence. The
elements of the feature vector are defined as:

Dr,s =
Nr,s

N
, r, s = 1, 2, . . . , 20

where Nr,s denotes the count of the dipeptide r,s, and N
represents the total number of dipeptides in the encoded
segment. Consequently, a 400-dimensional vector would be
obtained for each segment. Then, heat maps were used to
illustrate the dipeptide composition difference between the
positive and negative samples, and the value of each pixel was
calculated using the following equation:

Pr,s = ln
∑

Dpositive∑
Dnegative

Positional Weighted Matrix
Then, we made the positional weighted matrix (PWM) to
illustrate the pattern differences of the amino acid distribution
around the ubiquitylated lysine between the positive and negative
samples, and three heat maps were plotted for these three
species, respectively. We define a two-dimensional matrix for
each fragment as Mi, whose horizontal axis denotes the positions
of protein fragments, and the central position is the targeted
lysine, while the vertical axis denotes all these 20 kinds of amino
acids. The final PWM for comparison of the positive and negative
samples is calculated through the following equation:

MPA = ln

∑
Mi

positive∑
Mi

negative

Two Sample Logo
We also employed the Two Sample Logo (Vacic et al., 2006)
web server to calculate and visualize the differences between
ubiquitylated fragments from different species. Two Sample
Logos can be used to determine statistically significant residues
around various active sites, protein modification sites, or to
find differences between two groups of sequences that share the
same sequence motif.

Sequence Encoding
Compared with the traditional machine learning and statistical
computation method, the deep learning approach can extract
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features automatically from original data without feature
engineering (Schmidhuber, 2015). Thus, transferring the amino
acid sequences to quantification vectors, which can be processed
by a computer program directly, is important (Hua and Quan,
2016). Word embedding is a set of techniques in natural language
processing in which words from a vocabulary are represented as
vectors using a large corpus of text as the input.

Generally, there are two main word-embedding techniques
used in sentence processing. The first method is embedding
layer in neural network (Neishi et al., 2017); the essence of
embedding layer is a fully connected neural network, which
can map the one-hot sequence to a dimensionally specified
vector. Some popular deep learning frameworks have predefined
functions for this layer. The process of parameter learning
of this method is supervised; the parameters are updated
with subsequent layers during the learning process under
the supervision of a class label. Several PTM site prediction
works are based on this scheme. Another word-embedding
technique is Word2vec (Mikolov et al., 2013), where similar
vector representations are assigned to the words that appear
in similar contexts based on word proximity as gathered from
a large corpus of documents. After training on a large corpus
of text, the vectors representing many words show interesting
and useful contextual properties. The training of word2vec is
unsupervised because the class label does not participate in the
learning process.

In this work, inspired by pretraining and fine-tuning
mechanisms of transfer learning, we first employed the original
plant protein sequences as training data and pretrained the
embedding layer based on the unsupervised skip-gram algorithm.
The optimized embedding layer can map each amino acid from
a sequence into a vector. The Euclidean distance of vectors can
reflect the relative position information of an amino acid. So, the
embedding layer can capture the spatial features of the amino
acids in the pretraining process. Then, the optimized parameters
are transferred as the initial weights of the embedding layer, and
fine tuning is done with the subsequent layers together under the
supervision of the label of fragments. By contrast, the traditional
word-embedding methods often initialize weights randomly
and are trained together subsequently, which may ignore the

sequence position information. Compared with traditional word-
embedding methods, the proposed scheme is more appropriate
for plant ubiquitination site prediction.

We employed the skip-gram method (Du et al., 2018) on
the construction of word2vec mapping network. The protein
sequences were represented as a collection of counts of n-grams,
in which n adjacent amino acids were recognized as a word.
Inspired by the idea of Hamid and Friedberg (2018), the length
of the gram of 1, 2, 3 was tested in our work, and n = 2
was optimal, leading to 202

= 400 bigrams. Figure 2 simply
shows the representation learning for bigrams with the skip-gram
training. For each protein sequence, we created two sequences
by starting the sequence from the first and second amino acids,
so that we can consider all of the overlapping bigrams for a
protein sequence. We generated the training instances using a
context window of size ±2, where we took the central word
as input and used the surrounding words within the context
window as outputs. The neural network architecture for training
was used on all of instances, then a 200-dimensional vector for
each bigram was generated by the neural network. The trained
hidden layer weights were transferred as the initial parameters
of the embedding layer in the proposed ubiquitination site
prediction model.

Word2vec With Convolutional Neural
Network
After sequence encoding, one-dimensional CNN was employed
to take the bigram encoding vectors as input and predict the
label of this fragment whose lysine in the central position can be
ubiquitylated or not. The forward calculation of the CNN deep
structure is an automatic feature extraction and selection process
in each layer. As shown in Figure 3, each bigram maps into a 20-
dimensional vector so that a sequence of 31 amino acid residues
is represented as a 30× 20 matrix, which was denoted as X. The
next step is the convolutional layer where the filters were used to
extract sequence features from the encoding matrix. The process
is denoted as

C1 = δ1(W1 × X + b1)

FIGURE 2 | Word2vec training process of the bigram pattern.
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FIGURE 3 | Proposed deep structure for ubiquitination site prediction model.

where δ1 is the rectified linear (Relu) function, W1 denotes the
weights of the convolution kernel, and b1 is the bias of this
layer. Then, the max pooling function is used for downsampling
procedure to reduce the feature dimension.

C1,out = max pooling(C1)

The CNN deep structure contained three same sequentially
connected blocks, and each block covered a convolution layer
with the Relu as its activation function and a max pooling layer.
The number of convolution kernels was set as 128, and the
convolution kernel size was set at 3. The size of the max pooling
windows was 2. Two fully connected layers with 128 and 64
neurons, respectively, are used to integrate features. The output
layer contained a single neuron and ends with sigmoid activation
to calculate the output x of this layer as

Sigmoid (x) =
1

1+ e−x

The backward process of the CNN network is backward
propagation, which updates and gets optimal parameters with the
following binary cross-entropy loss function.

BCE
(
ŷ, y

)
= −

1
N

n∑
i=1

[
yi · log

(
ŷi
)
+ (1− yi) · log

(
1− ŷi

)]
During the training of the CNN models, the dropout units (the
drop rate was set at 0.5) were added after each max pooling
layer in the convolutional layer, which are usually required for
generalization on unseen data and to avoid overfitting.

Implementation and Training Parameters
The proposed model was achieved through the Keras framework
under the Python language. We set the initial learning rate
as 0.001, and the RMS prop optimization method was used
with β = 0.9. We initialized the weights of the convolutional
network randomly with a Gaussian distribution (µ = 0, σ = 0.01).

The batch size is 500, and 120 epochs were conducted for
each training. All the experiments were performed on a server
equipped with Geforce RTX 2080 Ti.

RESULTS

Comparison of Features Between
Species
Amino Acid Composition
Figure 4 provides the average of positive and negative
segments, respectively, and a histogram for each species
was plotted. We can analyze the amino acid composition
differences between the positive and negative segments to show
different patterns of these spices. For the plant subset, the
average percentage of arginine (R) in ubiquitylated protein
fragments is doubled in non-ubiquitylated protein segments. By
contrast, the arginine differences between ubiquitylated and non-
ubiquitylated segments in animals and fungi are not obvious,
although the figure of positive samples is 0.7% higher than the
negative samples in animals. For animals and fungi, the average
percentage of lysine (K) in the positive protein segments is about
1% higher than in the negative samples, and this difference is not
obvious in plant samples. What is more, the percentage of leucine
(L) in ubiquitylated proteins of animal is 1% higher than in non-
ubiquitylated samples; this finding is contrary in plants and fungi.
So, the amino acid composition shows really different patterns in
different species.

Amino Acid Pairwise Composition
As shown in Figure 5, the blue pixels mean this dipeptide is
more likely to appear around ubiquitylated lysine than in non-
ubiquitylated lysine, while the red means it is less likely to appear
in ubiquitylated fragments than in the negative samples. The
darker the color, the greater the difference. For the ubiquitination
of plants, cysteine (C) is less often composed with other amino
acids, such as glycine (G), methionine (M), serine (S), and
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FIGURE 4 | Comparison of the amino acid composition (AAC) features between three species. (A) Comparison of AAC features between positive and negative
samples of plants. (B) Comparison of AAC features between positive and negative samples of plants. (C) Comparison of AAC features between positive and
negative samples of plants.
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FIGURE 5 | Heatmaps for the amino acid pairwise composition (AAPC) features of three species. (A) Heatmap for the AAPC features of plants. (B) Heatmap for the
AAPC features of animals. (C) Heatmap for the AAPC features of fungi.
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tryptophan (W). The Pr,s of these dipeptides are less than
−0.75, which denotes that the distribution of these dipeptides
presents obvious differences between the ubiquitylated and non-
ubiquitylated fragments in the plant subset. In addition, the
pairs that contain arginine (R), especially with alanine (A)
and glutamic acid (E), are more likely to appear around the
ubiquitylated lysine with Pr,s of more than 0.5. However, these
phenomena above do not appear in the animal and fungus
subsets. For the animal subset, the value of Pr,s for the majority
of the amino acid combinations range from−0.25 to 0.25, which
means that there are no obvious differences between the positive
and negative samples, expect that tryptophan (W), combined
with cysteine (C), and methionine (M), is less likely to appear
in ubiquitylated peptides than in non-ubiquitylated samples. For
the fungus subset, cysteine (C), combined with methionine (M),
and histidine (H), as well as tryptophan (W), combined with
cysteine (C), histidine (H), and phenylalanine (F), are less likely
to appear in ubiquitylated peptides than in non-ubiquitylated
samples. The Pr,s of these amino acid combinations are less than
−0.7. The statistical differences of the AAPC feature between
the ubiquitylated and non-ubiquitylated fragments show very
different patterns in three different species.

Positional Weighted Matrix
As shown in Figure 6, blue means that the amino acid is more
likely to appear in this position of ubiquitylated fragments,
and red means this position is less likely to find this amino
acid. For the ubiquitylated segments of the plant, it is more
likely that arginine (R) will be found around the ubiquitylated
lysine, especially on the 1st to 8th and −9th to −5th positions.
In addition, it is clear that histidine (H), cysteine (C), and
tryptophan (W) hardly appeared around the ubiquitylated lysine.
The feature patterns in fungi and animals are different. For fungi,
there is also some lysine (K) often appearing in the preorder of
the ubiquitylated lysine, especially on the −9th to −1st position
with M more than 0.75. However, lysine (K), which is followed by
another lysine (K) in the next position usually is not ubiquitylated
with M less than−0.75. For animals, we can find that the glutamic
acid (E) more likely appeared on the −1st and −2nd positions
near the ubiquitylated lysine with M of more than 0.75, but it
less likely to appear on 1st and 2nd positions. The features of
specific amino acid distribution in each position also differ in
different species.

Two Sample Logo
We employ the Two Sample Logo to show the differences of
amino acid distribution in each position between ubiquitylated
fragments from different species. The larger fonts denote the
amino acid that is more likely to appear in this position with
statistical significance. As shown in Figure 7A, we set the plant
ubiquitylated fragments as positive samples and the animal
ubiquitylated fragments as negative samples. We can see that
more arginine (R), glutamic acid (E), aspartic acid (D), and
alanine (A) appeared around the ubiquitylated lysine in the
plants than in the animals, while it is less likely to find leucine
(L). Then we set the plant ubiquitylated fragments as positive
samples and the animal ubiquitylated fragments as negative

samples, which are shown in Figure 7B. It is obvious that arginine
(R) and glutamic acid (E) are more likely to appear around
the ubiquitylated lysine in plants. As for the comparison of
ubiquitylated fragments between animals and fungi, there were
no obvious patterns except that there is more leucine (L) around
the ubiquitylated lysine (Figure 7C).

According to the analyses above, the sequence features of the
ubiquitylated fragments are really different between these three
species. It is significant to build a ubiquitylation site prediction
model for a single species, which can avoid the interference of
feature differences from other species.

Model Performance Evaluation
The proposed word embedding and CNN-based ubiquitination
prediction model is evaluated through a validation test scheme.
A 10-fold cross-validation is carried out on the training set
for the fine-tuning of the hyper-parameters, as well as for
evaluating the reliability of the model. In order to make the
experiment results statistically significant, five repeated runs were
conducted for each fold cross validation; the mean and standard
deviation of the 50 results were regarded as the final result. The
independent testing set was used for generalization evaluation
and performance comparison with the baseline method. The
confusion matrix of the prediction model is shown in Table 1,
and the performance evolution indexes are defined as follows:

(a) Accuracy that indicates the proportion of correctly
classified subjects among the whole subset

Accuracy =
TP + TN

TP + TN + FP + FN

(b) Precision that quantifies the proportion of samples
correctly classified among the classification

Precision =
TP

TP + FP

(c) Recall is the fraction of relevant instances that have been
retrieved over the total amount of relevant instances

Recall =
TP

TP + FN

(d) F-score considers both the precision and recall and evaluate
the model performance synthetically

F − Score =
2× Precision× Recall

Precision+ Recall

We first compared the proposed model performance with
different tuning options through the 10-fold cross-validation
scheme. Mean and standard deviation results of the cross
validation are calculated, and the comparison results are shown
in Table 2. The best performance with a mean accuracy of
78.1% and an F-score of 0.782 is given by the proposed model,
which combines the transfer word-embedding mechanism and
multilayer CNN. By contrast, the traditional one-hot sequence
encoding method combined with a 2D CNN classifier obtains the
worst performance with only a mean accuracy of 62.3% and an
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FIGURE 6 | Heatmaps for the positional weighted matrix (PWM) features of three species. (A) Heatmaps for the PWM features of plants. (B) Heatmaps for the PWM
features of animals. (C) Heatmaps for the PWM features of fungi.
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FIGURE 7 | Comparison of the Two Sample Logo of three species. (A) Two Sample Logo of positive samples between plants and animals. (B) Two Sample Logo of
positive samples between plants and fungi. (C) Two Sample Logo of positive samples between animals and fungi.

F-score of 0.647. This is mainly because the one-hot encoding
matrix is sparse, and the conventional filters cannot capture
useful sequence features. The pretrained word2vec encoding
model without supervised weights updating also received a
poor performance with a mean accuracy of 68.5% and an
F-score of 0.6771. The word2vec model was trained on original
plant protein sequences, which learned the amino acid bigram
patterns of plants. However, without the fine-tuning process,
the fixed weights cannot be adjusted to fit the ubiquitination
site prediction task well. In addition, the supervised embedding
layer with randomly initialized parameters also got a general
performance; the effort of pretraining is obvious in ubiquitination
site prediction in our proposed method. What is more, our
results suggest that the recurrent neural network (RNN) does
not contribute much to ubiquitination site prediction; this
may because the distant sequence correlation modeling is not
useful for this task.

Independent Testing Performance
A series of sequence features were extracted for modeling,
including AAC, AAPC, the CKSAAPs, as well as the position-
specific scoring matrix (PSSM). Our experiments indicated

that the random forest (RF) model outperform other popular
algorithms on all these predefined features. Table 3 shows the
comparison between the proposed model and traditional feature-
based random forest method on the testing set. The proposed
model achieved the best performance with a mean accuracy
of 75.6% and an F-score of 0.749. The random forest model
also achieved an acceptable performance based on features of
k-spaced amino acid pairs, with a mean accuracy of 73.6% and an
F-score of 0.717. The PSSM represented the evolutionary profile
of the protein sequence; the RF based on the PSSM features can
achieved a mean accuracy of 71.1% and an F-score of 0.6942.
Then as shown in Figure 8, we plotted the ROC curve with AUC
of these RF-based model and our model. The proposed model is
obvious, overall, in terms of the ROC curve with an 0.81 AUC,

TABLE 1 | Confusion matrix of ubiquitylated site prediction model.

Predicted
positive (Ub)

Predictive
negative (non-Ub)

Actual positive (Ub) True positive (TP) False negative (FN)

Actual negative (non-Ub) False positive (FP) True negative (TN)
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TABLE 2 | Cross validation performance comparison between different deep structures and feature encondings.

Model tuning Accuracy Precision Recall F-score

One-hot encoding + 2D convolutional neural network (CNN) 0.623 ± 0.037 0.662 ± 0.028 0.636 ± 0.019 0.647 ± 0.021

Embedding layer + CNN 0.732 ± 0.006 0.745 ± 0.011 0.692 ± 0.024 0.716 ± 0.029

Fixed word2vec + CNN 0.685 ± 0.024 0.701 ± 0.019 0.653 ± 0.015 0.677 ± 0.022

Transfer embedding + recurrent neural network (RNN) 0.743 ± 0.012 0.749 ± 0.004 0.716 ± 0.017 0.729 ± 0.015

Proposed method 0.782 ± 0.008 0.791 ± 0.013 0.785 ± 0.011 0.782 ± 0.016

TABLE 3 | Performance comparison between different methods on the testing set.

Method Accuracy Precision Recall F-score

Random forest (RF) with amino acid composition (AAC) 0.703 ± 0.012 0.685 ± 0.026 0.703 ± 0.019 0.694 ± 0.022

RF with amino acid pairwise composition (AAPC) 0.711 ± 0.008 0.706 ± 0.017 0.679 ± 0.021 0.692 ± 0.031

RF with k-spaced AAP (k = 5) 0.736 ± 0.006 0.721 ± 0.009 0.714 ± 0.015 0.717 ± 0.019

RF with position-specific scoring matrices (PSMM) 0.722 ± 0.014 0.718 ± 0.008 0.706 ± 0.025 0.713 ± 0.018

Proposed method 0.756 ± 0.006 0.733 ± 0.015 0.767 ± 0.017 0.749 ± 0.009

which indicates that the developed classifier has high confidence
on plant ubiquitination site prediction.

In order to evaluate the generalization of the proposed model,
we also collected data from the dbPTM and iPTMnet databases
as an extra testing set. The dbPTM (Huang et al., 2019) and
iPTMnet (Huang et al., 2018) contain 107 and 50 proteins
of A. thaliana, respectively. The CD-HIT, with 30% identity,
was employed to remove the redundant protein fragments and
eliminate homology bias with the PLMD training data. Finally, 91
positive and 217 negative fragments were used for extra testing.
The optimal model in cross validation achieved an accuracy
of 74.2%, precision of 73.1%, recall of 73.7%, and F-score of
0.733. The proposed model can also achieve equal performance
on other datasets.

FIGURE 8 | ROC curve of the different methods on the testing set.

Comparison With Other Prediction Tools
We compared the performance of the proposed method with
other popular ubiquitylation prediction tools on the independent
set. For UbPred (Xiang et al., 2013), iUbiq-Lys (Qiu et al.,
2015), and Ubisite (Huang et al., 2016), we uploaded our testing
data to their website and counted the confusion matrix of
output results to compute the performance indexes. For the
Deep ubiquitylation (He et al., 2018) and DeepUbi (Fu et al.,
2019), we reproduced their proposed structure with Keras, as
well as training steps through our data, then calculated the
evaluation indexes. As shown in Table 4, our proposed method
achieved a balanced and reasonable performance with a mean
precision of 73.3%, recall of 76.7%, and F-score with 0.749,
although it only achieved a mean accuracy of 75.6%. It can
be found that the iUbiq-Lys and Ubisite yielded a high recall
and a poor precision, which means that these tools are more
likely to classify the suspected samples as positive. Compared
with Deep ubiquitylation, the first deep learning-based tool, our
method achieved a better overall performance, which is mainly
because the word-embedding scheme is more effective to extract
the sequence features. The proposed method also outperformed
the DeepUbi to some extent because the transfer learning-based
method can capture the sequence pattern of plant proteins with
word2vec model and the weights of embedding layer just fine-
tuned around the pretrained value. In addition, the DeepUbi did
not achieve the performance they claimed; this is mainly because
the testing experiments are curried out on our plant data with on
a small scale. Their proposed structure may need a larger training
set to achieve optimal performance due to their training of the
embedding layer from a random initial value. Overall, compared
with popular tools and methods, our proposed model achieved a
better performance on plant ubiquitylation site prediction.

Then predictions were conducted on two types of single
plant protein: one contains ubiquitylated substrate sites, and
the other has no ubiquitylated sites. The proposed model was
compared with three popular ubiquitylation prediction tools,
which provide websites for sequence input. The ubiquitylated
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TABLE 4 | Performance comparison with other prediction tools.

Tool Accuracy Precision Recall F-score

UbPred (Xiang et al., 2013) 0.719 0.626 0.738 0.678

iUbiq-Lys (Qiu et al., 2015) 0.799 0.563 0.837 0.671

Ubisite (Huang et al., 2016) 0.752 0.596 0.794 0.681

Deep Ub (He et al., 2018) 0.683 ± 0.021 0.674 ± 0.018 0.703 ± 0.011 0.687 ± 0.024

DeepUbi (Fu et al., 2019) 0.739 ± 0.014 0.733 ± 0.011 0.741 ± 0.021 0.734 ± 0.011

Proposed method 0.756 ± 0.006 0.733 ± 0.015 0.767 ± 0.017 0.749 ± 0.009

TABLE 5 | Performance comparison with other tools on two types of single protein.

UniProt AC Organism Sequence length Number of lysine Reported ubiquitylated sites Predicted ubiquitylated sites

Tools Results

O23063 Arabidopsis thaliana
(Mouse-ear cress)

364 47 142; 222; 225 iUbiq-Lys 3; 4; 103; 217; 225; 363

UbPred 98; 142; 197

Ubisite 142; 225; 265; 297

Proposed model 142; 222; 225; 363

O03042 Arabidopsis thaliana
(Mouse-ear cress)

479 24 None iUbiq-Lys None

UbPred 8; 32; 201; 356; 474

Ubisite 474

Proposed model None

protein was selected from an independent testing set randomly,
and the protein that does not contain a ubiquitylated substrate
site was selected from Uniport with no ubiquitylation sites
reported. As shown in Table 5, the protein with Uniport AC
O23063 contains 47 lysine and the positions of 142, 222,
225 are ubiquitylated (Walton et al., 2016). The iUbiq-Lys
predicted five ubiquitylated sites, and only one is correct. The
UbPred predicted one ubiquitylated site with other two false
positive results. The Ubisite identified two sites successfully,
while the proposed model can predict all the ubiquitylated
sites correctly. It should be noted that the 363 position
predicted by the proposed model is a false-positive sample;
the performance of the proposed model still has room for
improvement for some fragments. The protein with Uniport
AC O03042 contains 24 lysine but no ubiquitylated site among
them. The UbPred and Ubisite provided wrong predictions, while
the iUbiq-Lys and the proposed model can classify them as
non-ubiquitylated sites.

The proposed model outperforms traditional machine
learning and deep structure mainly because of its two novel
characteristics. First, contrastive analyses found pattern
differences of ubiquitylated fragments between the three species.
Modeling for proteins from a single species can avoid the
interference of feature differences from other species. Second,
the transfer learning mechanism was employed to pretrain the
embedding layer through the original plant protein sequence
by the word2vec method, which can capture the sequence
features of plant proteins and vectorize them. The Euclidean
distance of vectors can reflect the relative position information
of the amino acids. The embedding layer can capture the spatial
features of amino acids in the pretraining process. So, the model

is appropriate for the plant ubiquitination site prediction and
achieved a better performance.

CONCLUSION

In this work, we analyzed the sequence features of ubiquitylated
protein from plants, animals, and fungi, respectively, then
indicated the feature pattern differences between these features.
We found that the amino acid distribution around the
ubiquitylated lysine of plants differ from other species obviously,
such as the clustering of arginine (R). The species of the plant
was selected as the research target for modeling. A novel transfer
learning-based word-embedding model training scheme was
proposed. The original plant protein sequence was used for
pretraining of the word2vec network through the skip-gram
model, then the optimized parameter transfer as the initial
weights of the embedding layer, fine-tuning with the subsequent
layers together. The multilayer CNN was employed as a classifier
and achieved acceptable performance for plant ubiquitination
site prediction. Compared with related prediction tools, our
method performs excellent suitability for plant ubiquitination site
prediction. Considering the pattern differences between different
species, in future work, we will integrate more data and establish
species-specialized tools for ubiquitination site prediction.
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