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INTRODUCTION

The free radical theory of aging, one of the nine suggested hallmarks of aging (López-Otín et al.,
2016), implicates the gradual accumulation of oxidative cellular damage as a fundamental driver of
cellular aging (Harman, 1956; Miquel et al., 1980). This theory has evolved over time to emphasize
the role of free radical induced mitochondrial DNA (mtDNA) mutations and the accumulation
of mtDNA deletions (Miquel et al., 1980; Cortopassi et al., 1992; Michikawa et al., 1999). Given
the proximity of mtDNA to the electron transport chain, a primary producer of free radicals,
it postulates that the mutations would promote mitochondrial dysfunction and concomitantly
increase free radical production in a positive feedback loop. The observation of oxidative damage
in the form of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) DNA oxidative lesions accumulating
with age has been a cornerstone of the free radical theory of aging (Fraga et al., 1990).

THE INFLUENCE OF STRESSORS ON MTDNA MUTATION
BURDEN AND AGING

A major assumption of the free radical theory of aging is that random de novo or somatic mtDNA
mutations gradually accumulate over time, eventually reaching pathological levels (Harman,
1956, 1972). However, data from Payne et al. support the hypothesis that, rather than gradually

accumulating over time, mtDNA turnover can lead to the clonal expansion of pre-existing
age-related mutations (Payne et al., 2011). Once amplified, these higher frequency mtDNA
mutations, that are potentially pathogenic, are referred to as heteroplasmy.

To further understand the potential link between mtDNA mutations and the free radical
theory of aging, our group examined aging in the context of tobacco smoking and human
immunodeficiency virus (HIV) infection, both believed to accelerate aging. While smoking has
long been known for its association with accelerated aging and oxidative damage (Kiyosawa
et al., 1990; Loft et al., 1992), HIV infection is also increasingly studied as a promoter of
accelerated aging (Effros et al., 2008; Deeks and Phillips, 2009). HIV-positive individuals experience
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a reported decrease in lifespan of up to 10 years (Lohse
et al., 2007; Antiretroviral Therapy Cohort Collaboration,
2008), as well as earlier onset and higher prevalence of age-
related comorbidities (Guaraldi et al., 2011). These include
cardiovascular disease, hypertension, diabetes, bone disease, and
renal failure among others, even in individuals whose viremia is
controlled by antiretroviral therapy (Guaraldi et al., 2011).

Our study found that both random somatic and heteroplasmic
mtDNA mutations, the latter defined as a frequency >2%, were
associated with older age (Ziada et al., 2019). Further, our
data suggest that smoking and HIV may distinctly contribute
to the accumulation of mtDNA mutations. Indeed, smoking
showed an association with increased mtDNA heteroplasmy but
not somatic mutations, while the reverse was observed with
HIV participants, but only in those with a history of high
viremia, reflecting poor control of HIV. These results suggest that
the chronic immune activation and subsequent oxidative stress
induced by HIV may lead to de novo mtDNA mutations, while
oxidative damage associated with exposure to tobacco smoking
may promote the clonal amplification of pre-existing mtDNA
mutations (Figure 1).

Consistent with this model, no heteroplasmic transversion
mutations, typically a signature of oxidative damage, were
observed among the 164 participants studied (Ziada et al.,
2019). Furthermore, within a given participant showing
heteroplasmy, identically mutated molecules of mtDNA would
be repeatedly observed; however, between participants, the
pattern of heteroplasmic mutation was generally unique (Ziada
et al., 2019). Such a pattern is not consistent with the gradual
build-up of random mtDNA mutations. Taken together, our
findings do not support the slow accumulation of mtDNA
transversion mutations as proposed by the free radical theory of
aging. Rather, they suggest that randomly mutated molecules of
mtDNA are being clonally amplified to generate unique patterns
of heteroplasmy in our participants.

MTDNA DAMAGE AND THE ROLE OF
POLYMERASE γ

Although the accumulation of mtDNA mutations has been
linked to older age and age-associated conditions (Michikawa
et al., 1999), several studies have provided new insight that
challenge the connection between oxidative damage and mtDNA
mutations. For example, the most studied oxidative lesion, 8-
oxodG (Yasui et al., 2014), is one of the 37major oxidative lesions,
and is known to induce transversion mutations (A↔ C, A ↔ T,
C ↔ G, G ↔ T) (Evans et al., 2004). However, recent studies
showing the accumulation of mtDNA mutations with aging did
not observe increases in mtDNA transversion mutations, but
rather increases in mtDNA transition mutations (A↔ G, C↔
T) (Trifunovic et al., 2004; Kennedy et al., 2013), believed to
be the hallmark of mitochondrial polymerase γ errors rather
than oxidative damage (Spelbrink et al., 2000; Longley et al.,
2001; Kauppila et al., 2017). Additionally, in our study, although
both somatic transition and transversion mutations increased
with older age, transition mutations were over 30 times more

abundant than transversion mutations, once again suggesting
that mtDNA replication errors are the major contributors to
mtDNA mutation burden (Ziada et al., 2019).

Mutations in mitochondrial polymerase γ, responsible for
mtDNA replication in mammalian cells (Hübscher et al., 1979),
can be broadly pathogenic and reduce fidelity, resulting in
mtDNA replication errors. Over time these errors, including
mtDNA point mutations, may undergo clonal expansion,
reaching pathogenic levels within the organisms lifetime. Among
the first to highlight the importance of polymerase γ errors
was a study performed by Trifunovic et al. using mutator mice
with proof-reading-deficient mitochondrial polymerase γ. These
mice not only showed an increase in mtDNA mutation burden,
the vast majority of which were transition mutations, they also
displayed a reduced lifespan and the premature onset of aging-
related phenotype with no evidence of increased oxidative stress
(Trifunovic et al., 2004). This paper provided a causative link
between the buildup of polymerase induced mtDNA mutations
and aging, forming the foundation for a new polymerase γ

focused theory of mitochondrial aging (Trifunovic et al., 2004;
Matkarimov and Saparbaev, 2020).

The development of the polymerase γ theory of aging led
to renewed examination of the links between free radicals and
mitochondrial aging. Mirroring the results in humans (Kennedy
et al., 2013; Ziada et al., 2019), a recent study in Drosophila
showed that age was associated with accumulation of somatic
mtDNA transition, but not transversion, mutations suggesting
that the role of polymerase γ errors in mitochondrial aging
is not limited to humans (Itsara et al., 2014). Building on
these results, neither the loss-of-function of antioxidant or DNA
damage repair enzymes were shown to increase somatic mtDNA
point mutation burden in that model (Itsara et al., 2014). Taken
together, these findings lend strong support to the role of
polymerase γ errors, with respect to their direct contribution
toward somatic mtDNA point mutation burden, and confine free
radicals to a comparatively minor role.

Understanding the role that free radicals may play in a
polymerase γ centric model of mitochondrial aging is an active
area of research. Zsurka et al. suggest that oxidative stress may
induce mtDNA deletions rather than point mutations, and that
the polymerase γ nucleotide selectivity may prevent the fixation
of 8-oxodG induced transversion mutations (Zsurka et al., 2018).
Nevertheless, while the 8-oxodG lesion may not directly induce
lasting transversion mutations (Basu et al., 1989; Kreutzer and
Essigmann, 1998), one or more of the other 37 products of
oxidative damage (Evans et al., 2004), some of which induce
transition mutations, may contribute to the somatic mtDNA
transition mutation burden observed with older age (Kennedy
et al., 2013; Ziada et al., 2019).

It has also been suggested that under specific circumstances,
reactive oxygen species (ROS) may play an important role
in normal mitochondrial function. One Drosophila study
demonstrated that while ROS production increases with age
and correlates with the functional deterioration of mitochondria,
increasing ROS production at a choice site within the electron
transport chain can act as a signal to maintain mitochondrial
function and extend lifespan (Scialò et al., 2016). Studies in
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FIGURE 1 | The updated role of oxidative damage and mtDNA polymerase γ in age-associated mtDNA mutations. The free radical theory of aging hypothesizes that

oxidative damage to the mtDNA induces random de novo mtDNA mutations which gradually accumulate over time, potentially reaching pathological levels. Recent

studies have shown that transition mtDNA mutations (purple triangles) rather than transversion mutations (green inverted triangles) gradually build up overtime and are

amplified, via clonal expansion, to pathological levels. Given that transition mutations are generally associated with replication errors made by the mitochondrial

polymerase γ, the age associated accumulation of mtDNA mutations could result from free radicals interacting with polymerase γ, potentially reducing its fidelity

and/or inhibiting mtDNA replication. This would in turn lead to random de novo transition mutations and their subsequent clonal amplification. Conditions

hypothesized to induce accelerated aging via oxidative damage/stress could include chronic infections such as HIV, chronic inflammatory conditions, or tobacco

smoking. Stressors that induce mitochondrial biogenesis or cellular turnover, which could be mediated via oxidative stress, would in turn promote clonal expansion of

existing damage. Created with BioRender.com.

C. elegans have also suggested that low levels of mitochondrial
stress may be protective and extend longevity (Palikaras
et al., 2015; Merkwirth et al., 2016). These findings fit into
our growing understanding of the role ROS may play in
mitochondrial aging, whereby low ROS levels they may be
beneficial, but in excess contribute to mitochondrial dysfunction.
Through their interaction with mitochondrial polymerase
γ, excess of ROS could potentially reduce the enzyme’s
fidelity, indirectly contributing to an age-associated increase in
somatic mtDNA mutations.

An alternate model proposed by Matkarimov and Saparbaev

suggest that the spontaneous decay of mtDNA, rather than the

accumulation of polymerase γ errors, could be a major source
of endogenous mutations (Matkarimov and Saparbaev, 2020).
This model is predicated on the spontaneous decomposition

of DNA bases (Lindahl and Andersson, 1972; Lindahl and

Karlstrom, 1973; Lindahl and Nyberg, 1974), a process that
is accelerated when the DNA is in a single stranded form,
such as during mtDNA replication, and would result in the
accumulation of transition mutations over time (Matkarimov
and Saparbaev, 2020). While this model very effectively explains
the accumulation of somatic transversion mutations with older
age (Kennedy et al., 2013; Ziada et al., 2019), mechanism(s) have
been put forward by which such decay could be affected by factors
and diseases with increased somatic transitionmtDNAmutations
(Ju et al., 2014; Ziada et al., 2019; Matkarimov and Saparbaev,
2020).

CONCLUSION

Recent research support the theory that mtDNA replication
errors are the major drivers of cellular mtDNA mutation burden
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(Trifunovic et al., 2004; Kennedy et al., 2013; Kauppila et al.,
2017). Nonetheless they do not exclude a comparatively minor
role for 8-oxodG-induced transversion mutations, or the many
other DNA oxidative lesions that can induce transitionmutations
(Basu et al., 1989; Kreutzer and Essigmann, 1998). Based on
recent findings, an updated understanding regarding the role
of free radicals in contemporary theories of mtDNA aging is
needed. It seems likely that rather than directly contributing to
mtDNA mutations via oxidative lesions, free radicals may affect
the mitochondrial polymerase and decrease its fidelity, indirectly
increasing somatic transition mutations. ROS may also act as
a signaling molecule and influence mitochondrial biogenesis
and/or mitochondrial turnover, which could in turn promote the
clonal expansion of pre-existing mtDNA mutations.
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