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Aging is the leading risk factor of human chronic diseases. Understanding of aging
process and mechanisms facilitates drug development and the prevention of aging-
related diseases. Although many aging studies focus on fruit fly as a canonical insect
system, minimal attention is paid to the potentially significant roles of other insects in
aging research. As the most diverse group of animals, insects provide many aging
types and important complementary systems for aging studies. Insect polyphenism
represents a striking example of the natural variation in longevity and aging rate. The
extreme intraspecific variations in the lifespan of social insects offer an opportunity to
study how aging is differentially regulated by social factors. Insect flight, as an extremely
high-intensity physical activity, is suitable for the investigation of the complex relationship
between metabolic rate, oxidative stress, and aging. Moreover, as a “non-aging” state,
insect diapause not only slows aging process during diapause phase but also affects
adult longevity during/after diapause. In the past two decades, considerable progress
has been made in understanding the molecular basis of aging regulation in insects.
Herein, the recent research progress in non-Drosophila insect aging was reviewed, and
its potential utilization in aging in the future was discussed.
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INTRODUCTION

Aging is regarded as the greatest risk factor of most chronic pathological conditions (Kennedy et al.,
2014), and becoming a socioeconomic problem worldwide (He et al., 2016). Between 2000 and
2050, the percentage of population aged above 60 years is projected to increase from approximately
11% to 22% worldwide (United Nations, 2017). As the aging population rapidly grows, aging-
related chronic conditions contribute to the biggest proportion of global healthcare burden, and
they are estimated to become the next global public health challenge (World Health Organization,
2017). Thus, understanding of aging mechanisms and identifying aging regulators are becoming
increasingly important.

Aging is an extraordinary complex process with a time-dependent loss of structure, function,
and physiological integrity (Lopez-Otin et al., 2013). Nine molecular aging hallmarks and
seven pillars of aging mechanisms have been characterized, including dysfunction or alterations
in metabolism, inflammation, stress adaptation, proteostasis, intercellular communication,
mitochondrial functions, telomere state, genomic stability, and epigenetics (Lopez-Otin et al.,
2013; Kennedy et al., 2014). Most of the current knowledges about aging mechanisms were
contributed by canonical model organisms, including yeast (Saccharomyces cerevisiae), worm
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(Caenorhabditis elegans), fruit fly (Drosophila melanogaster), and
house mouse (Mus musculus). Fruit fly is a canonical insect model
with advantages of rapid life cycle, high fecundity, convenient
and precise genetic manipulation, and easy maintenance
(Helfand and Rogina, 2003). Studies on fruit fly aging made
remarkable contributions to the understanding of conserved
aging-regulatory mechanisms, such as endocrine regulation
(Toivonen and Partridge, 2009), oxidative stress (Le Bourg,
2001), epigenetic alterations (Solovev et al., 2018), mitochondrial
dysfunctions (Guo, 2012), and genomic instability (Li et al.,
2013). Moreover, Drosophila contains approximately 70% of
known disease-related genes in humans (Reiter et al., 2001).
Thus, Drosophila has been widely used in modeling aging-related
diseases of humans and screening for anti-aging drugs (Piper
and Partridge, 2018). However, only focusing on a few number
of model species ignores the diversity of longevity and aging
traits that have evolved in nature, and the diversity provides
an opportunity to study various regulators and mechanisms
involved in aging plasticity and senescence evolution (Valenzano
et al., 2017). Therefore, more non-canonical systems are required
for deep understanding of aging biology.

As the most diverse group of living animals (Mayhew, 2007),
insects have the characteristics of phenotypic plasticity, flight, and
diapause (Figure 1), which are considerably essential for aging
studies. With single genotype, the lifespan of polyphenic insects,
especially social insects, can substantially vary depending on the
environment (Keller and Jemielity, 2006), thereby providing an
opportunity to study the effects of environmental and social
factors on aging. Insect flight achieves the highest metabolic rate
known (Kammer and Heinrich, 1978), and excessive oxidative
stress associated with hyperactive respiratory metabolism may be
the potential aging accelerator (Finkel and Holbrook, 2000). In
addition, a special stage of developmental arrest called diapause
has evolved in many insect species, enabling them to survive
extreme conditions, such as winter (Denlinger, 2002). Diapause
results in low metabolic activity and a profound extension of
insect lifespan, thereby providing an opportunity to understand
the mechanism underlying lifespan extension (Denlinger, 2008;
Hahn and Denlinger, 2010).

In the past two decades, advances in genomics, genetic
manipulation, and gene editing technology enable the aging
studies to approach the multiple phenotypes and molecular levels
in the non-Drosophila insects. Considerable progress has been
achieved in explaining these fantastic aging traits in insects. Here,
the recent advances in aging studies of non-Drosophila insects
were discussed, and the special values of insects as model systems
for aging biology were highlighted.

PHENOTYPIC PLASTICITY AND AGING
IN INSECTS

Studies conducted in twins demonstrated that approximately
25% of the variation in human longevity is due to genetic factors,
while the rest is due to individual behavior and environmental
factors (Herskind et al., 1996; Sebastiani and Perls, 2012).
The studies on diet, exercise, chemical exposure, and social

connection all demonstrate to affect aging and lifespan in humans
through complex and largely unknown mechanisms (Lopez-Otin
et al., 2016; Yang et al., 2016; Krutmann et al., 2017; Duggal et al.,
2018). Understanding the mechanisms underlying the effects of
modifiable environments on aging could help develop treatments
to promote human health span.

Many insects have evolved the ability of one genotype to
produce more than one alternative phenotype when exposed
to different environments (Whitman and Ananthakrishnan,
2009; Simpson et al., 2011). Polyphenic insects offer striking
examples of natural variation in longevity, such as reproductives
and workers in social insects, gregarious and solitary locusts,
spring and summer butterflies, and winged and wingless
aphids (Keller and Jemielity, 2006; Pener and Simpson, 2009;
Ogawa and Miura, 2014; Freitak et al., 2019). Unlike canonical
model species, polyphenic insects exhibit up to 100-fold
changes in longevity in response to environmental changes
(Remolina and Hughes, 2008), revealing their specific value
in studying the effects of environmental factors on aging.
Moreover, a number of environmental factors are involved
in regulating the phenotypic plasticity of insects (Whitman
and Ananthakrishnan, 2009; Simpson et al., 2011). Diet,
reproduction, behavior, social interaction, population density,
photoperiodic cues, and temperature contribute to lifespan
variations in polyphenic insects (Keller and Jemielity, 2006; Pener
and Simpson, 2009; Ogawa and Miura, 2014; Freitak et al.,
2019). Therefore, the extreme lifespan differences and enormous
influencing factors provide an opportunity to deeply understand
the mechanisms behind aging plasticity induced by complex
environmental changes.

The differences in the lifespan of divergent morphs of
butterflies, aphids, and locusts are suitable samples for studying
the effects of photoperiodic cues and temperature, environmental
stress, and population density on aging, respectively (Pener and
Simpson, 2009; Ogawa and Miura, 2014; Freitak et al., 2019).
Although previous studies have discovered some interesting
aging characteristics, such as key roles of population density
at the early life on locust aging (Boerjan et al., 2011) and the
positive relationship between immune activity and longevity
in seasonally polyphenic butterfly (Freitak et al., 2019), the
mechanisms remain unknown.

SOCIAL INSECTS IN AGING

Social insects such as honey bees, bumble bees, ants, and
termites, represent the ideal model systems to investigate the
mechanisms behind the effects of social factors on aging because
of the enormous intraspecific variation in their lifespan and
aging rate (Keller and Jemielity, 2006; Kramer et al., 2016).
Highly reproductive honeybee queens can survive for two years,
whereas sterile workers can only survive between few weeks
and one year (Seeley, 1978; Winston, 1987). The reproductives
of social ants and termites can live up to 30 years (Hölldobler
and Wilson, 1990), while workers frequently have 10-fold
shorter lifespans (Kramer and Schaible, 2013). Moreover, the
aging rate and lifespan of workers considerably vary depending
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FIGURE 1 | Overview of insect traits with aging-regulatory functions and major molecular mechanisms underlying the effects of these insect traits. Phenotypic
plasticity, flight, and diapause have effects on aging. The representative insects and the research implications are shown. Several factors, such as oxidative stress,
endocrine factors, telomere, transposable elements, transcription factors, and epigenetics, play important roles in the effects of these insect traits.

on environmental and task changes. For example, the tasks
of honeybee workers change in an orderly and usually age-
dependent manner, with young workers performing nursing
duties and old ones foraging (Winston, 1987). The timing of
transition from in-hive tasks to foraging is the most significant
predictor of worker lifespan, because foragers senesce faster
than their same-aged nurse counterparts (Seehuus et al., 2006a;
Behrends et al., 2007; Münch et al., 2008; Quigley et al.,
2018). Honeybee workers can revert from foraging duties
to hive activities, and this reversion is associated with the
reversal of aging biomarkers (Amdam et al., 2005; Baker et al.,
2012; Herb et al., 2012). Some eusocial ants possess a type
of social organization that enables adult workers to become
reproductive individuals or gamergates following removal of

queen (Brunner et al., 2011). With the reallocation of tasks, the
fertile workers could achieve an extended lifespan (Hartmann
and Heinze, 2003; Schneider et al., 2011; Kohlmeier et al., 2017).

Several mechanisms are involved in regulating caste-specific
aging rate in social insects. First, the difference in antioxidant
capacity is one of the putative reasons. The level of vitellogenin
(Vg), which protects organisms from oxidative stress (Seehuus
et al., 2006b), is higher in honeybee individuals with longer
lifespan; for instance, it is higher in queens than in workers and
higher in nurses than in foragers (Amdam et al., 2005; Corona
et al., 2007; Münch and Amdam, 2010). Polyunsaturated fatty
acids that are high in pollen but negligible in royal jelly may
result in the cellular membrane of honeybee workers becoming
more susceptible to lipid peroxidation than that of queens
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(Haddad et al., 2007; Martin et al., 2019). However, the role
of antioxidant genes in queen-biased longevity is controversial.
Some studies on honeybees and ants revealed a lower level
of antioxidant genes in reproductives than in workers (Parker
et al., 2004; Corona et al., 2005; Schneider et al., 2011). Second,
endocrine factors also play key roles in caste-specific aging
phenotypes. The interaction between insulin/IGF (insulin-like
growth factor)-like signaling (IIS), juvenile hormone (JH), and
Vg jointly regulates longevity and reproduction (Rodrigues
and Flatt, 2016). However, the aging-regulatory functions of
endocrine network are not conserved across social insects. For
example, unlike the fire ant and several primitively eusocial
insects (Robinson and Vargo, 1997; Bloch et al., 2002), in
honeybee workers, JH appears to be life-shortening hormone
because JH and Vg are configured in a mutually repressive
regulatory circuitry during adult stage (Guidugli et al., 2005;
Page and Amdam, 2007). Less conserved interaction pathways
between endocrine factors (e.g., microRNAs) may contribute to
species variation in the longevity regulation of endocrine network
(Marco et al., 2010; Nunes et al., 2013). Third, the difference in
the maintenance of genomic stability and telomere may be one
of potential mechanisms. The heads of termite reproductives,
not the major workers, prevent aging-related genomic damages
caused by transposable element activity through continued
upregulation of the piRNA pathway (Elsner et al., 2018).
Telomerase activity displays a 70-fold increase in brains of adult
honeybee queens compared to those of adult workers (Korandová
and Frydrychová, 2016). The piRNA pathway and telomerase
being primarily in germline suggests that the reproductives
of highly social insects could be regarded as equivalent to
germline of a colony, whereas the workers are equivalent
to disposable soma (Elsner et al., 2018). The reproductives
have evolved germline-corresponding anti-aging mechanisms to
sustain themselves through generations. The fourth potential
mechanism is epigenetic regulation. Caste-specific methylation
profiles are associated with conserved aging-regulatory pathways,
including IIS components, IIS-related metabolic systems, JH-
responsive genes, and telomere maintenance (Bonasio et al.,
2012; Foret et al., 2012), suggesting that DNA methylation
may contribute to the aging differences between queens and
workers. Genomic demethylation by pharmacological inhibition
increases Vg expression and extends the lifespan of worker bees
(Cardoso-Júnior et al., 2018), indicating the potential roles of
DNA methylation in regulating aging in workers.

Although considerable progress has been achieved in
understanding the mechanism behind aging divergences in
social insects, research evidence remains lacking in some
important related issues. Many aging-regulatory genes display
differences at the transcriptional level between castes in social
insects, suggesting that transcriptional regulation plays crucial
roles in caste-specific aging trajectories. Epigenetics connects
environmental inputs with transcription and thus may be the
key to the aging differences between castes (Benayoun et al.,
2015). However, the interplay between many types of epigenetic
mechanisms and caste-specific aging is rarely studied, although
the crucial roles of histone modifications and microRNAs
in establishing caste-specific transcriptional programs and

caste differentiation have been proposed (Weaver et al., 2007;
Bonasio et al., 2010; Spannhoff et al., 2011; Guo et al., 2013;
Simola et al., 2013, 2016; Shi et al., 2015; Ashby et al., 2016;
Wojciechowski et al., 2018).

FLIGHT AND AGING IN INSECTS

Metabolic rates may be related to aging and longevity. The
rate of living theory proposed at the beginning of the 20th
century suggests that a slowed rate of metabolism is associated
with lengthened longevity (Rubner, 1916). In line with this
view, recent studies revealed that increased resting metabolic
rate is a risk factor for mortality in humans (Ruggiero et al.,
2008; Jumpertz et al., 2011). High metabolic rates have been
hypothesized to come with a cost in terms of increased level of
reactive oxygen species (ROS), the byproducts of mitochondrial
metabolism, which leads to accelerated aging through damaging
macromolecules, including DNA, lipid, and proteins (Harman,
1956; Finkel and Holbrook, 2000). Data from humans revealed
that changes in metabolic rates are accompanied by changes in
oxidative stress and may underlie variation in aging rate (Redman
et al., 2018). However, the relationship between metabolic rate,
ROS, and lifespan is highly complex. The positive relationship
between metabolic rate and ROS production provokes great
debate (Speakman, 2005), and the beneficial roles of ROS in
regulating lifespan, metabolism, and development have been
demonstrated (Santos et al., 2018). The true mechanisms of
the association between metabolic rates and aging are not
well understood.

Insect flight has the highest metabolic rate (Kammer and
Heinrich, 1978) and profound effects on aging process. In line
with the early metabolic and locomotor senescence in Drosophila
after forcing flight (Lane et al., 2014), aging is accelerated in
honeybee workers after transitioning from infrequently flying
nurses to frequently flying foragers (Seehuus et al., 2006a;
Behrends et al., 2007). Moreover, foraging bees with flight
restriction do not display aging-related learning deficits as the
free-flying ones (Tolfsen et al., 2011). Flight restriction similarly
decreases the mitochondrial damage and extends lifespan to
approximately threefold of the normal in houseflies (Agarwal
and Sohal, 1994; Yan and Sohal, 2000). These results collectively
implicated the negative effects of flight on insect aging. However,
flight experience is not always detrimental. For instance, flight
restriction leads to increased oxidative damage in brains of honey
bees and early senescence of flight performance in fruit flies
(Tolfsen et al., 2011; Lane et al., 2014). A high flight activity rate
within the activity days has no negative effects on longevity in two
bee species in the fields (Straka et al., 2014). In Glanville fritillary
butterfly (Melitaea cinxia), peak flight metabolic rates are
positively associated with lifespan (Niitepõld and Hanski, 2013).
Flight treatment alone has no effect on the longevity of some
butterflies, including Glanville fritillary butterfly (Woestmann
et al., 2017), Mormon fritillary (Speyeria mormonia) (Niitepõld
and Boggs, 2015), speckled wood butterfly (Pararge aegeria)
(Gibbs and Van Dyck, 2010), and squinting bush brown butterfly
(Bicyclus anynana) (Saastamoinen et al., 2010). Therefore, the
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effects of flight behavior on insect longevity and aging seem to
vary depending on species, flight traits, physiological states, and
some other factors.

Elevated oxidative stress is considered as the primarily
mechanism underlying the negative effects of flight on lifespan.
In insects, flight could induce oxidative stress by increasing ROS
generation from respiratory metabolism and altering membrane
lipid composition that is more susceptible to ROS (Sohal et al.,
1984; Yan and Sohal, 2000; Magwere et al., 2006; Williams et al.,
2008; Margotta et al., 2018). Elevated oxidative stress in insects
is deleterious in most cases. An increase in oxidative stress by
pharmacological and genetic manipulations shortens lifespan in
some insects (Phillips et al., 1989; Parkes et al., 1998; Kirby et al.,
2002; Duttaroy et al., 2003; Cui et al., 2004; Margotta et al.,
2018). However, the mechanism underlying the non-negative
effects of insect flight on lifespan has not yet been studied.
One potential explanation for these effects is that the oxidative
stress generated by moderate flight may induce long-term stress
response, thus protecting organisms from damage accumulation
(Gems and Partridge, 2008). Another possible explanation is
that some insects may evolve specific antioxidant mechanisms.
For example, to resist oxidative stress during hovering flight,
the tobacco hornworm (Manduca sexta) fed with nectar sugar
generated antioxidant compounds by shunting glucose via low-
energy pentose phosphate pathways (Levin et al., 2017). In
addition, ROS does not always play negative roles in insect
longevity; it could extend longevity by inducing diapause in
cotton bollworm (Helicoverpa armigera) (Zhang et al., 2017).

Studies on the mechanisms behind the effects of insect flight
on aging mainly focused on oxidative stress, and few studies
on other aging-regulatory mechanisms are available. Insect
flight induces substantial changes in endocrine status and gene
expression (Rademakers and Beenakkers, 1977; Goldsworthy,
1983; Margotta et al., 2013; Kvist et al., 2015; Woestmann et al.,
2017). Whether and how these endocrine and transcriptional
changes influence aging process remain elusive. Moreover,
insect flight experience influences oxidative damage in a tissue-
dependent manner (Williams et al., 2008; Margotta et al., 2013,
2018). Flight-susceptible tissues may further affect systemic aging
through inter-tissue crosstalk (Demontis et al., 2013). However,
the key tissues and signals involved are still unknown. Lastly,
insect species vary widely in flight traits, such as wingbeat
frequency, flight duration, and wing morphology (Molloy et al.,
1987; Dudley, 2002). Such variations in flight traits have effects on
the differences in flight metabolic properties (Casey et al., 1985;
Feller and Nachtigall, 1989; Darveau et al., 2014), and they may
be involved in species variation in the effects of flight on aging
through unknown mechanisms.

DIAPAUSE AND AGING IN INSECTS

How to extend lifespan has always fascinated people throughout
human history. Science fictions depict that humans extend
lifespan and reach the future through achieving hypometabolic
states and cryonics. Interestingly, this specific ability is common
in insects. Diapause, a state of programmed arrest of development

coupled with suppressed metabolic activity, helps insects to
survive unfavorable environmental conditions (Denlinger, 2002).
During diapause, insects do not experience the same fast “aging
clock” as in direct development, resulting in drastically extended
lifespan (Tatar and Yin, 2001). Moreover, insects have evolved
diapause at different life cycle stages, including eggs, larvae,
pupae, and adults, thereby providing opportunities to study the
effects of various diapause types on aging (Denlinger, 2002).
Studying insect diapause could provide new insights into aging
interventions and lifespan extension (Denlinger, 2008).

Insect systems demonstrate organismal and genetic links
between diapause and aging. Similar with Drosophila, which
undergoes a negligible senescence during reproductive diapause
(Tatar et al., 2001a,b), adult monarch butterflies and grasshoppers
with reproductive diapause induced by surgical removal of the
corpora allata have doubled lifespan (Herman and Tatar, 2001;
Tatar and Yin, 2001). In addition, a handful of evidence revealed
the roles of pupal and larval diapauses on the extension of pre-
adult longevity (Lu et al., 2013; Lin and Xu, 2016; Lin et al., 2016;
Zhang et al., 2017; Wang et al., 2018). Noteworthy, diapause not
only slows aging during diapause phase, but also has species-
dependent effects on adult longevity after diapause. For example,
maize stalk borer (Busseola fusca) and spotted stem borer (Chilo
partellus) have shortened adult lifespans after diapause (Gebre-
Amlak, 1989; Dhillon and Hasan, 2018), but cotton bollworm
(H. armigera) and multivoltine bruchid (Kytorhinus sharpianus)
display extended lifespans after diapause (Ishihara and Shimada,
1995; Chen et al., 2014).

Transcriptional regulation may play a crucial role in
diapause-related aging regulation (Denlinger, 2002). Several
key transcription factors involved have been characterized.
In the mosquito Culex pipiens, transcription factor FoxO,
which is regulated by insulin and JH signaling, alters the
expression of aging-regulatory genes during diapause (Sim
and Denlinger, 2008, 2013a,b; Sim et al., 2015). In the moth
H. armigera, accumulation of FoxO induced by high ROS activity
during diapause also promote lifespan extension (Zhang et al.,
2017). The diapause-related ROS increase is attributed to the
downregulation of hexokinase expression, which is regulated
by transcription factors CREB, c-Myc, and POU (Lin and Xu,
2016). In addition, repression of mitochondrial activity, which
may be related to lifespan extension of diapause, is regulated
by a network of transcription factors HIF-1α, CREB, Smad1,
POU, and TFAM (Lin et al., 2016; Li et al., 2018; Wang et al.,
2020). Except for transcription factors, epigenetic mechanism
may also influence the transcriptional alterations of aging-
regulatory genes during diapause (Reynolds, 2017). Studies
have proposed that DNA methylation (Pegoraro et al., 2016),
histone modifications (Lu et al., 2013; Hickner et al., 2015; Sim
et al., 2015; Reynolds et al., 2016), non-coding RNAs (Reynolds
et al., 2013, 2017; Poupardin et al., 2015; Yocum et al., 2015;
Reynolds, 2019), and RNA methylation (Jiang et al., 2019) may
all contribute to diapause-related transcriptional changes and
phenotypes. The phenomenon of extended adult lifespan after
diapause in some insects suggests that the expression levels
of aging-regulatory genes persist after diapause termination.
The possible cause of species variation in this phenomenon is
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species-specific transcriptional maintenance. The transcriptional
regulatory mechanisms underlying diapause seem to vary across
insects. Interspecific comparisons revealed little transcriptional
similarity among diapauses across invertebrates (Ragland et al.,
2010). DNA methylation play roles in diapause regulation in the
wasp Nasonia vitripennis but not in the silkmoth Bombyx mori
(Pegoraro et al., 2016; Yuichi et al., 2016).

Some gaps exist in understanding the effects of diapause
on aging. Although a great variation in the expression of
aging-related genes during diapause has been documented,
experimental evidence of cause-and-effect relationships between
gene expression and aging is still lacking. Moreover, whether
the expression levels of these diapause-induced aging-regulatory
genes persist after diapause termination and the underlying
mechanisms involved are unclear.

CONCLUSION AND PERSPECTIVE

Substantial progress has been achieved in enhancing the
understanding of the molecular basis of aging regulation in insect
aging. Obviously, these underlying molecular mechanisms were
highly intertwined processes. Transcriptional differences are the
most observed differences in aging-regulatory genes involved in
endocrine regulation, oxidative stress responses, maintenance of
telomere, and genomic stability (Amdam et al., 2005; Corona
et al., 2007; Bonasio et al., 2010; Elsner et al., 2018). These
transcriptional differences may be attributed to variations in
transcription factors and epigenetic states, which in turn are
influenced by endocrine factors (Sim and Denlinger, 2008, 2013a;
Vaiserman et al., 2018). The mechanisms mentioned above also
play critical roles in mammalian and human aging (Lopez-Otin
et al., 2013). For instance, reduced insulin signaling is related
to extended longevity in social insects and mammals (Tatar
et al., 2003; Corona et al., 2007; Ament et al., 2008), although
the insulin pathways considerably vary across species (Corona
et al., 2007; Smýkal et al., 2020). DNA methylation is closely
related to aging from insects to mammals (Herb et al., 2012; Yan
et al., 2015; Horvath and Raj, 2018), although the differences in
genomic DNA methylation between insects and vertebrates are
highly significant (de Mendoza et al., 2020). This finding suggests
that aging-regulatory pathways are evolutionarily conserved,
although the detailed mechanisms may vary across species.
Thus, aging studies on non-Drosophila insects could expand the
understanding of aging regulators and help develop anti-aging

interventions. Here, several perspectives for further studies on
insect aging are provided as follows.

First, studying the aging mechanisms underlying aging
plasticity in non-social insects is highly valuable. Transcription
regulation represents one of the key mechanisms underlying
aging regulation, and it is the downstream of environment-
induced epigenetic changes. Thus, transcriptome analysis could
be used to screen key aging genes and pathways underlying aging
plasticity in these species.

Second, determining epigenetic mechanisms underlying aging
plasticity is essential. A large number of studies suggest that
epigenetic factors have potential roles in aging regulation in
polyphenic insects. Epigenetic marks are plastic, and many
drugs targeting epigenetic enzymes are available (Heerboth et al.,
2014). Investigating the link between epigenetic information
and environment cues and the epigenetic mechanisms behind
insect aging could provide new insights into treatments for aging
retardation and reversal.

Third, the effects of insect flight and diapause on aging vary
largely depending on insect species. The diversity of insects offers
rich resources for cross-species comparisons. Thus, interspecific
analysis could help elucidate the mechanisms underlying the
beneficial effects of insect flight and diapause on adult longevity,
which may reveal new strategies to prevent collapse during aging.

Thousands of insect genomes have been sequenced (Li et al.,
2019), and gene editing tools have been developed in various
insects (Gantz and Akbari, 2018; Hillary et al., 2020). A strong
and growing arsenal of powerful technologies provides a huge
support for elucidating the molecular mechanisms underlying
insect aging. These novel insect models are expected to result
in groundbreaking discoveries and ultimately promote human
healthy aging in the future.
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