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Background: Post-surgical recurrence of the metastatic colorectal cancer (mCRC)

remains a challenge, even with adjuvant therapy. Moreover, patients show variable

outcomes. Here, we set to identify gene models based on the perspectives of intrinsic

cell activities and extrinsic immune microenvironment to predict the recurrence of mCRC

and guide the adjuvant therapy.

Methods: An RNA-based gene expression analysis of CRC samples (total = 998,

including mCRCs = 344, non-mCRCs = 654) was performed. A metastasis-evaluation

model (MEM) for mCRCs was developed using the Cox survival model based on the

prognostic differentially expressed genes between mCRCs and non-mCRCs. This model

separated the mCRC samples into high- and low-recurrence risk clusters that were

tested using machine learning to predict recurrence. Further, an immune prognostic

model (IPM) was built using the COX survival model with the prognostic differentially

expressed immune-related genes between the two MEM risk clusters. The ability of

MEM and IPM to predict prognosis was analyzed and validated. Moreover, the IPM

was utilized to evaluate its relationship with the immune microenvironment and response

to immuno-/chemotherapy. Finally, the dysregulation cause of IPM three genes was

analyzed in bioinformatics.

Results: A high post-operative recurrence risk was observed owing to the

downregulation of the immune response, which was influenced by MEM genes (BAMBI,

F13A1, LCN2) and their related IPM genes (SLIT2, CDKN2A, CLU). The MEM and

IPM were developed and validated through mCRC samples to differentiate between

low- and high-recurrence risk in a real-world cohort. The functional enrichment analysis

suggested pathways related to immune response and immune system diseases as the

major functional pathways related to the IPM genes. The IPM high-risk group (IPM-

high) showed higher fractions of regulatory T cells (Tregs) and smaller fractions of resting

memory CD4+ T cells than the IPM-low group. Moreover, the stroma and immune cells in

the IPM-high samples were scant. Further, the IPM-high group showed downregulation

of MHC class II molecules. Additionally, the Tumor Immune Dysfunction and Exclusion
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(TIDE) algorithm and GDSC analysis suggested the IPM-low as a promising responder

to anti-CTLA-4 therapy and the common FDA-targeted drugs, while the IPM-high was

non-responsive to these treatments. However, treatment using anti-CDKN2A agents,

along with the activation of major histocompatibility complex (MHC) class-II response

might sensitize this refractory mCRC subgroup. The dysfunction of MEIS1 might be the

reason for the dysregulation of IPM genes.

Conclusions: The IPM could identify subgroups of mCRC with a distinct risk of

recurrence and stratify the patients sensitive to immuno-/chemotherapy. Further, for the

first time, our study highlights the importance of MHC class-II molecules in the treatment

of mCRCs using immunotherapy.

Keywords: immune prognostic model, immunotherapy, disease recurrence, metastatic colorectal cancer,

bioinformatics, real-world cohort

INTRODUCTION

Colorectal cancer is among the most commonly diagnosed
cancers and a leading cause of cancer-related deaths globally.
Further, during the development of CRC, 40–50% cases show
metastasis (mCRC) (Reissfelder et al., 2009), especially to the
liver, which accounts for the highest morbidity and mortality in
colorectal cancer (Amano et al., 2014; Leung et al., 2016).

Resection of metastatic lesions is considered the only curative
treatment for mCRC and increases the 5-year survival rate to
30–50% (Fong, 1999; Reissfelder et al., 2009), although only
in selected cases. Despite the advances in treatment modalities,
such as neoadjuvant or adjuvant chemotherapy (Sadot et al.,
2015; Kim et al., 2019), the recurrence rate of mCRC within
2 years is almost 50% (Ryuk et al., 2014; Xiong et al., 2018).
Thus, the recurrence of mCRC is heterogeneous. Therefore,
several criteria, such as the Fong’s clinical risk score (CRS),
have been constructed to select mCRC cases with a better
prognosis after surgery. These criteria, which are mainly based
on radiological and clinicopathological parameters, such as size,
number of tumors, and response to neoadjuvant chemotherapy,
can predict prognosis after resection (Fong, 1999; Wang et al.,
2017). However, the prognostic factors landscape for predicting
the outcome of mCRC is changing (Spolverato et al., 2013).
During the past few decades, biological, and genomic alterations
have been studied in cancer cells to identify subgroups with
specific prognoses and distinct treatment responses and to find
potential drug targets (Volinia and Croce, 2013; Xiong et al.,
2018). Further, numerous prognosis-predicting models are now
relying on combining the clinicopathological factors with tumor-
specific molecular markers to aid in the clinical decision-making
process by the cumulative assessment of multiple tumor factors
within a single scoring system. Although it is known that
the understanding that malignant phenotype of cancer cells
is determined by their intrinsic activities, surroundings, and
the recruitment and activation of immune cells in the tumor-
related microenvironment has increased (Ben-Baruch, 2003;
Zhang et al., 2016; Xiong et al., 2018), existing prediction models
consider the role of intrinsic factors only. Thus, it is unclear
whether these models would comprehensively represent the

malignancy of mCRC from the perspective of extrinsic factors.
Moreover, most of the existing models have been unable to
explain the biology of cancers accurately and have failed to be
translated into useful therapeutic approaches.

Further, immune diseases could promote the development
and progression of cancer. The cancer cells can stimulate
a specific immune response, thus enriching an appropriate
microenvironment for their growth (Long et al., 2019).Moreover,
the host’s immune status can alter the function and composition
of the tumor-infiltrating cells (TIC) and determine the clinical
outcome. For instance, it has reported that immune-related
TIC could predict the overall survival of cancer (Long et al.,
2019), and the immune microenvironment could determine
the clinical outcome in CRC patients (Xiong et al., 2018; Ye
et al., 2019). However, few studies have systematically focused
on mCRC, this progressive CRC subtype, so the relationship
of its immune phenotype with its recurrence after surgery
is still unclear. Here, we hypothesized that some recurrence-
related genes in mCRC might interact with immune-related
genes, which could elicit a significant immune response and
provide an adequate microenvironment for the development
and progression of mCRC. Further, such a microenvironment
could change the response to adjuvant therapy, to prompt the
post-operative recurrence of mCRC. Therefore, there might be
a gene signature to stratify the specific malignant phenotypes,
representing the altered intrinsic activities of the tumor cells
and the tumor-related microenvironment comprehensively, thus
predicting the recurrence risk of mCRC.

Therefore, we set to identify a gene model to elucidate and
predict recurrence in mCRC patients.

MATERIALS AND METHODS

Data Acquisition
The data in this manuscript was composed of two parts from
Gene ExpressionOmnibus (GEO) and The Cancer GenomeAtlas
(TCGA) and with 942 cases in GEO as reported in Acquisition
of the Microarray Data and 56 cases in TCGA as reported in
Acquisition of the RNA-Sequencing Data.
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Acquisition of the Microarray Data
The gene expression profile matrix files from GSE72968 and
GSE72969 based on GPL570 (22 M0 and 102 M1 samples),
GSE39582 based onGPL570-55999 (376M0 and 54M1 samples),
GSE41258 based on GPL96 (125 M0 and 88 M1 samples),
GSE81558 based on GPL15207 (5 M0 and 18 M1 samples),
and GSE71222 based on GPL570 platform (126 M0 and 26 M1
samples) were downloaded from theGEOdatabase (https://www.
ncbi.nlm.nih.gov/geo/) to analyze the different colorectal cancer
samples. The entire gene expression data were log2 transformed,
and average RNA expression values were considered in case
of duplicate data. Next, only genes with an average expression
value >1 was retained, while the low-abundance RNA reads
were discarded. Because The M1 colorectal cancer samples
from four datasets, viz. GSE72968 and GSE72969 (n = 102)
and GSE39582 (n = 54) and GSE41258 (n = 88), included
survival information, GSE72968 and GSE72969 (n = 102) were
integrated into the training cohort, while GSE39582 (n= 54) and
GSE41258 (n = 88) were integrated into the MEM validation
cohort. The sva package (version: 3.30.1; http://bioconductor.
org/packages/release/bioc/html/sva.html) was used to eliminate
batch effects, and the scale method of the limma R package
(Version 3.38.3; http://www.bioconductor.org/packages/release/
bioc/html/limma.html) helped in normalizing the data.

Acquisition of the RNA-Sequencing Data
Gene expression data and the corresponding clinical datasheets
for 56 mCRC samples were obtained from The Cancer
Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/
repository) (up to May 1, 2019) as the TCGA mCRC cohort. The
sequencing data were obtained using the Illumina HiSeq_RNA-
Seq and Illumina HiSeq_miRNA-Seq platforms. The analysis
reported herein completely satisfies the TCGA publication
requirements (http://cancergenome.nih.gov/publications/
publicationguidelines). The gene symbols were annotated
based on the Homo_sapiens.GRCh38.91.chr.gtf file (http://asia.
ensembl.org/index.html). Log2 transformation was performed
for all gene expression data. The function of the trimmed mean
of M values (TMM) normalization method of the edgeR package
(Version 3.24.3; http://www.bioconductor.org/packages/release/
bioc/html/edgeR.html/) of the R software (Version 3.5.2; https://
www.r-project.org/) was applied to normalize the data.

Patients in the CICAMS CRLM Cohort and
Sample Collection
From January to August 2016, a total of 60 frozen, surgically
resected tumor tissues were obtained from patients with
pathological diagnosis of colorectal cancer liver metastasis at
the National Cancer Center/National Clinical Research Center
for Cancer/Cancer Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College. Total RNA was
extracted from these frozen samples using TRIzol reagent
(Thermo, #15596-018) according to the standard protocols.
Then, total RNA samples were reverse transcribed to single-
stranded complementary DNA (cDNA) using a Prime Script
RT reagent kit (Promega, # A5001). The cDNA samples were
prepared for quantitative real-time polymerase chain reaction

(qRT-PCR). This project was approved by the Institutional
Review Boards of the National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy
of Medical Sciences and Peking Union Medical College, and
the requirement for informed consent was waived due to the
study’s retrospective nature. qRT-PCR was used to detect the
expression of the IPM genes in frozen tissue samples from
patients with mCRC. qRT-PCR was performed using Bestar
qPCR MasterMix (DBI Bioscience, #DBI-2043) and was assessed
by Agilent Mx3000. The relative abundance of mRNA for each
of the three genes was normalized to glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and z-score transformed. The primer
sequences used to amplify the three genes are shown below.

Gene primer Sequences

GAPDH-F TCAAGAAGGTGGTGAAGCAGG

GAPDH-R GCGTCAAAGGTGGAGGAGTG

CDKN2A1-F GGTTTTCGTGGTTCACATCCC

CDKN2A1-R AGACGCTGGCTCCTCAGTA

SLIT2-F CTGGGGAGCGGGTAGATAGG

SLIT2-R ATCGCAAGGTGACTCCGTTT

CLU-F TGCACGTCACCAAGTAACCA

CLU-R GAGCAGCAGAGTCGAGTGTT

Analysis of Differentially Expressed Genes
to Identify Genes Involved in Metastasis
We comprehensively compared theM1 andM0 colorectal cancer
samples to identify differentially expressed genes (DEGs) using
the robust rank aggregation (RobustRankAggreg) R package, and
the thresholds were set as |log2-fold change (FC)| > 1.0 and false
discovery rate (FDR) <0.05.

Development and Validation of MEM
The expression profiles of the DEG obtained from the
training cohort were analyzed to build a MEM using the
following methods. Univariate, least absolute shrinkage and
selection operator (LASSO), and multivariate Cox regression
analyzes were employed to investigate the correlation between
progression-free survival (PFS) of patients and the expression
levels of each DEG. The expression of genes was considered
statistically significant when the P < 0.05 in the univariate Cox
regression analysis. For highly correlated genes, the traditional
Cox regression model could not be used directly; thus, LASSO
with L1-penalty, a popular method for determining interpretable
prediction rules that handle the collinearity problem, was used.
For the LASSO-penalized Cox regression selection operator,
we subsampled the dataset with 1,000 times replacement and
selected the markers with repeat occurrence frequencies above
900. The tuning parameters were determined based on the
expected generalization error estimated from 10-fold cross-
validation and information-based criteria, Akaike Information
Criterion/Bayesian Information Criterion (AIC/BIC), and the
largest value of lambda was adopted such that the error
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FIGURE 1 | Development and validation of the metastasis evaluation model (MEM). (A) American Joint Committee on Cancer (AJCC) M1 stage colorectal cancer

samples and AJCC M0 stage colorectal cancer samples comprehensively compared to identify differentially expressed genes (DEGs) using robust rank aggregation

(RobustRankAggreg) R package, and the thresholds were |log2-fold change (FC)| >1.0 and false discovery rate (FDR) <0.05. (B–D) Univariate Cox, least absolute

(Continued)
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FIGURE 1 | shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were employed to investigate the correlation between the patient’s

progression-free survival (PFS) and DEGs of M1 colorectal cancer. (E) The optimal cutoff value (−0.2) of the MEM level found using X-tile 3.6.1 software (Yale

University, New Haven, CT, USA). (F) Time-dependent receiver operating characteristic curve (ROC) analysis conducted to evaluate the predictive power of the

prediction model. (G) The Kaplan–Meier (K–M) survival curves for cases with a low or high metastasis risk in training cohort produced to show MEM’s prediction ability

(P < 0.0001). (H). The K–M survival curves for cases with a low- or high-metastasis risk in the MEM validation cohort approve MEM’s prediction ability (P = 0.034).

was within one standard error of the minimum, called “1
– se” lambda. Finally, a multivariate Cox regression analysis
was conducted to assess the contribution of a gene as an
independent metastasis factor correlated with PFS. A stepwise
method was employed to further select the best model. A
three-gene-based metastasis risk score was established based
on a linear combination of the regression coefficient derived
from the multivariate Cox regression model (β), multiplied with
its expression level. The Metastatic Index (MI) was calculated
as, MI = (β1∗expression level of BAMBI) + (β2∗ expression
level of F13A1) + (β3∗expression level of LCN2). The optimal
cutoff value was determined using the X-tile 3.6.1 software (Yale
University, New Haven, CT, USA). The thresholds for the scores
obtained from the MEM applied to classify patients into low-
and high-recurrence risk clusters were defined as the scores
that yielded the largest χ2-value in the Mantel–Cox test. The
training patients with survival data were separated into low- and
high-recurrence risk clusters based on the optimal cutoff value.
The Kaplan–Meier (K–M) survival curves for cases with low or
highmetastasis risk were generated. The time-dependent receiver
operating characteristic (ROC) curve analyses were performed to
evaluate the predictive power, and the validation cohort was used
to confirm the outcome of MEM. Five representative supervised
machine learning (ML) algorithms, including decision tree (DT),
random forest (RF), supporting vector machine (SVM), neural
network (NN), and a conventional logistic regression (LR)
algorithm were used to test the potential of MEM to predict the
recurrence of mCRC.

Based on the MEM criteria, gene set enrichment analysis
(GSEA) was used to determine whether immune pathways in
different mCRC clusters differ from each other according to
corresponding immune-related genes. The additional details
have been provided in Supplementary Materials.

Development and Validation of
MEM-Related IPM
DEG analysis was used to find the differentially expressed
immune genes. In order to investigate the function of the MEM-
related immune genes, we constructed an IPM to reveal the
significance of the MEM in predicting the recurrence of mCRC.
The prognostic value of differentially expressed immune genes
for predicting PFS was defined using univariate Cox regression
analysis, where P < 0.05 was considered a significant association.
Next, LASSO was used to identify the key immune prognostic
genes. Finally, an IPM was constructed utilizing the regression
coefficients derived from the multivariate Cox regression analysis
to multiply the expression level of each immune gene. The X-
tile 3.6.1 software was recruited to determine the optimal cutoff
for mCRC patients classified into low- and high-recurrence risk
groups. The log-rank test and K–M survival analyzes were used

to assess the predictive ability of MEM-related IPM, which were
validated in the TCGA mCRC cohort.

GO Terms Semantic Analysis to Identify
Hub Gene
We used a GOSemSim R package (http://www.bioconductor.
org/packages/release/bioc/html/GOSemSim.html) to perform a
semantic similarity measure and predict the function, position,
interaction, and correlation of the hub gene from the MEM and
IPM genes identified in our analysis.

Estimation of the Immune Environment
Cell-Type Identification by Estimating Relative Subsets of Known
RNA Transcripts (CIBERSORT) deconvolution analysis was
performed to estimate and elucidate the fractions of 22 human
hematopoietic cell phenotypes in IPM subtypes. Further, the
Estimation of Stromal and Immune cells in Malignant Tumor
tissues Using Expression Data (ESTIMATE) algorithm was used
to quantitate the infiltration of stroma and immune cells in IPM
low- and high-risk groups.

Expression of HLA Subtype Genes
Between the IPM Groups
Before recognition by T cells, the tumor antigen must be
processed and combined with major histocompatibility complex
(MHC) class I molecules. Thus, the expression of the human
leukocyte antigen (HLA) can affect T-cell recognition of tumor
antigen (Rooney et al., 2015) and influence the local immune
status. Therefore, we analyzed the expression of all HLA
subtype genes between low- and high-risk IPM groups using the
Wilcoxon test.

Immuno- and Chemotherapeutic Response
The TIDE algorithm and subclass mapping analysis were
utilized to predict the response of IPM risk groups to immune
checkpoint blockades, as described previously (Hoshida et al.,
2007; Jiang et al., 2018). Further, we analyzed the largest
publicly available pharmacogenomics database to predict the
chemotherapeutic response for each sample [the Genomics of
Drug Sensitivity in Cancer (GDSC), https://www.cancerrxgene.
org/]. Our prediction process was realized by “pRRophetic”
package (Geeleher et al., 2014).

Independence and Importance of the IPM
From Traditional Clinical Features
All samples with complete clinical information, including age,
gender, tumor location, tumor, node, andmetastasis (TNM) stage
system, regimen, PFS, and OS, were subjected to subsequent
analyzes. Further, univariate and multivariate Cox regression
analyzes were conducted to validate whether the predictions of
the prognostic model were independent of traditional clinical
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FIGURE 2 | (A) Five machine learning variable evaluators to test metastasis evaluation model’s (MEM’s) predictive importance for 1-year recurrence. MEM ranked

above the other common clinicopathological characteristics such as the American Joint Committee on Cancer (AJCC) stage. (B) MEM-high-risk metastatic colorectal

cancers (mCRCs) suppressed in immune-related biological processes.
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FIGURE 3 | Development and validation of immune prognostic model (IPM). (A) Immune-related genes in the immune biological process of gene set enrichment

analysis (GSEA) results compared between metastasis evaluation model (MEM)-low and MEM-high risk clusters. (B,C) Least absolute shrinkage and selection

operator (LASSO) and multivariate Cox regression analyses were employed to investigate the correlation between the patient progression-free survival (PFS) and

(Continued)
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FIGURE 3 | immune-related differentially expressed genes (DEGs). (D) A heat map shows the expression of SLIT2, CDKN2A, and CLU in the IPM level. (E) The

optimal cutoff value (0.4) of the IPM score found using X-tile 3.6.1 software (Yale University, New Haven, CT, USA). (F) Time-dependent receiver operating

characteristic (ROC) curve analysis was conducted to evaluate the predictive power of the prediction model. (G) The K–M survival curves for cases with a low or high

metastasis risk in training cohort produced to show IPM’s prediction ability (P < 0.0001). (H) The K–M survival curves for cases with a low- or high-recurrence risk in

the Cancer Genome Atlas (TCGA) validation cohort approve IPM’s prediction ability (P = 0.047).

features for patients with mCRC. A decision curve analysis
(DCA) was used to compare the prediction performance of IPM
with traditional clinical features.

The Clinical Value of IPM in a Real-World
Cohort (CICAMS CRLM Cohort)
IPM risk score of each patient was calculated with the expression
ofCDKN2A, SLIT2, andCLU based on IPM formula. By using the
X-tile program, the optimal cutoff of risk score was determined
to stratify patients at low or high risk for IPM. Continuous
variables were transformed into categorical ones based on their
cutoff value for recurrence within 6 months in ROC. All
variables were presented as frequency (%). The association of
clinicopathological factors with IPM risk levels was assessed by
means of logistic regression analysis. Variables significant on
bivariate analysis were subsequently included in themultivariable
logistic regression model, and a stepwise selection method was
used (input selection method). The prognostic value of IPM was
tested by K–M analysis in CICAMS colorectal liver metastasis
(CRLM) cohort.

Investigate the Upstream Potential Reason
for the Dysregulation of Three IPM Genes
Transcription factor (https://amp.pharm.mssm.edu/chea3/#
top) enrichment analyses was performed to identify putative
transcription factors involved in regulating three IPM immune
genes in core pathway analysis using interactions experimentally
verified in human tissues. The putative transcription factor was
investigated preliminarily by bioinformatics.

Statistical Analysis
All statistical tests were executed in RStudio software (running
environment R 3.5.2), GraphPad Prism 8.0, SPSS 25, and Xtile
3.6.1. The R packages used in this study were survival, forestplot,
glmnet, rms, foreign, survminer, regplot, stdca, timeROC,
caret, mice, randomForest, ROCR, e1071, kernlab, rpart,
pec, party, doMC, randomForestSRC, sva, edgR, GOSemsim,
RobustRankAggreg, pRRophetic, ggplot2, cowplot, pheatmap,
ggDCA, and so on. For all statistical analyzes, a P < 0.05 was
considered statistically significant.

RESULTS

Differentially Expressed Genes to Identify
Genes Involved in Metastasis
There were 53 (32 upregulated, 21 downregulated) differentially
expressed genes between American Joint Committee on
Cancer (AJCC) M1 stage colorectal cancers vs. AJCC M0
stage colorectal cancers from a comprehensive analysis of

the microarray datasets with RobustRankAggreg methods
(Figure 1A, Supplementary Table 1).

The MEM Predicts the PFS of mCRC
Patients After Surgery
In the training cohort (N = 102), with three prognostic
metastasis-related genes, BAMBI, F13A1, and LCN2
(Figures 1B–D), MEM was used for stratifying the mCRC
into high- and low-recurrence risk clusters with a forum, MEM
level = (0.2613∗ normalized expression level of BAMBI) +

(−0.3311∗ normalized expression level of F13A1) + (0.2836
∗ normalized expression level of LCN2). The X-tile diagrams
produced the optimal cutoff value (=0.2) for the MEM level
(Figure 1E). Thirty-seven patients with mCRC (MEM level
> 0.2) were classified as MEM-high risk cluster, while the other
65 (MEM level ≤ 0.2) were assigned to the low-risk cluster. The
AUCs for MEM were 0.68, 0.646, and 0.71 for 0.5, 1, and 2-year
PFS rates, respectively, indicating high sensitivity and specificity
for MEM (Figure 1F). The K–M PFS curves of these clusters
were significantly different (P < 0.0001; Figure 1G). Further, in
the validation cohort, MEM could stratify different risk clusters
with the same cutoff value (Figure 1H). Moreover, the five
machine learning variable evaluators suggested MEM as the
top-ranked among common clinicopathological characteristics,
such as the T/N stage in the AJCC stage system (Figure 2A),
indicating high predictive performance and good clinical value
of MEM.

GSEA Predicts a Positive Association
Between Immune Phenotype and MEM
Subgroups
While the pathogenic role of the three MEM genes in cancer
prognosis has been demonstrated previously, their combined
effect on the immune profile of mCRC has not been studied. The
GSEA analysis of mCRC samples indicated that the MEM low-
recurrence risk cluster (MEM-low) was significantly enriched
with 292 biological processes, including 33 immune-related
biological processes, of which 4 classic immune processes
were ACTIVATION OF IMMUNE RESPONSE, HUMORAL
IMMUNE RESPONSE MEDIATED BY CIRCULATING
IMMUNOGLOBULIN, IMMUNE RESPONSE REGULATING
CELL SURFACE RECEPTOR SIGNALING PATHWAY, and
REGULATION OF T HELPER 1 TYPE IMMUNE RESPONSE
(Figure 2B, Supplementary Table 2). However, the MEM high-
recurrence risk cluster (MEM-high) was enriched only in four
immune-related biological processes. Thus, MEM-low mCRC
could be considered to have a more activated immune phenotype
(Supplementary Table 2).
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IPM Predicts the PFS of mCRC Based on
Immune Status
Considering that the recurrence risk might be related to the
immune status, with immune genes in the above differentially
enriched GSEA processes, we identified three prognostic
immune-related genes, viz. CDKN2A, SLIT2, and CLU
(Figures 3A–D). Further, we developed an IPM to predict
PFS of mCRC patients (IPM risk score = normalized expression
level of CDKN2A ∗ 2.544 + normalized expression level of
SLIT2 ∗ (−1.327) + normalized expression level of CLU ∗

(−1.5929). The Xtile software derived a cutoff point (0.4)
in the training cohort to classify patients into IPM-low-
and high-recurrence risk groups across all mCRC cases
(Figure 3E). The AUCs for PFS were 0.68, 0.646, 0.71, 0.70,
and 0.692 at 6 months, 1, 2, 3, and 5 years, respectively
(Figure 3F). The IPM high-risk group had a shorter PFS
than the low-risk group (Figure 3G). Moreover, in the TCGA
mCRC validation cohort, the IPM risk score could also
stratify different risk groups with its best cutoff value (−0.3)
(Figure 3H).

Further, the GSEA between the 83 IPM low-risk and
19 IPM high-risk mCRC in the training cohort revealed
that the low-risk group was associated with 35 immune-
related biological processes, such as (the top 5): GO_HUMO
RAL_IMMUNE_RESPONSE (NES = 2.54, size = 144), GO_
ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATIC
_RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILT_
FROM_IMMUNOGLOBULIN_SUPERFAMILY_DOMAINS
(NES = 2.51, size = 123), GO_HUMORAL_IMM
UNE_RESPONSE_MEDIATED_BY_CIRCULATING_IMMUN
OGLOBULIN (NES = 2.49, size = 38), GO_ADAPTIVE_IMM
UNE_RESPONSE (NES = 2.48, size = 246), GO_ACTIVA
TION_OF_IMMUNE_RESPONSE (NES = 2.42, size = 380) (P
< 0.05; Figure 4A, Supplementary Table 3). On the contrary,
the IPM high-risk mCRC did not associate with any immune-
related processes. Hence, IPM could indicate the local immune
status of mCRC, where an intense immune phenotype associated
with low-risk mCRC and a weakened immune phenotype with
high-risk mCRC.

In the GO and KEGG enrichment analysis, the immune
genes related to IPM in the training cohort were mainly
enriched in the immune response biological process and immune
system disease pathway (Figures 4E, 5A). Additionally, the
human leukocyte antigen DR isotype (HLA-DR) was found
to be downregulated in the IPM-low group (Figure 5B).
According to HLA-DRA’s alteration and considering it belongs
to HLA family, the expression of the HLA can affect T-
cell recognition of tumor antigen (Rooney et al., 2015) and
influence the local immune status. Therefore, we analyzed
the expression of all HLA subtype genes between low- and
high-risk IPM groups and found that the expression of MHC
class I molecules (HLA-A, HLA-B, and HLA-C) were not
significantly different, whereas the MHC class II molecules,
HLA-DR, HLA-DP, and HLA-DQ were all downregulated
in the IPM high-risk group (Figure 5C), indicating the
ignored function of MHC class II molecules in mCRC’s
immune status.

Immune Landscape of IPM Groups
Our analysis suggested that the proportion of immune cells in
mCRC varies within and between the groups (Figure 4B), and
the proportions of some subpopulations of tumor-infiltrating
immune cells are correlated (Figure 4C), indicating that changes
in the proportion of TICs may represent intrinsic characteristics
that can describe the individual differences. Moreover, the
IPM high-risk mCRC showed significantly higher infiltrating
proportions of Tregs, T follicular helper cells, and resting
dendritic cells, and lower proportions of CD4+ memory T
cells and resting macrophages (M0), than the low-risk mCRC
patients (P < 0.05; Figure 4G). Additionally, the ESTIMATE
algorithm showed lesser infiltration of stroma and immune
cells in the IPM high-risk group than in the IPM low-risk
group (P = 0.000167 and P = 0.001, respectively), attributing
the immunosuppressive microenvironment to poor outcomes in
high-risk patients (Figure 4F). Furthermore, the samples of IPM
groups could be divided into two discrete spot groups based
on the principal component analysis (Figure 4D). Therefore,
these results indicate that an abnormal immune infiltration and
its heterogeneity in mCRC samples can be used as prognostic
indicators and immunotherapy targets and have important
clinical significance. Furthermore, the risk of mCRC recurrence
was related to the immune phenotype.

Sensitivity of the IPM Subtypes to
Immuno-/Chemotherapy
The TIDE algorithm was employed to predict the likelihood
of response to anti-PD-1 and anti-CTLA-4 immunotherapy,
although the results demonstrated no difference in response to
immunotherapy between the IPM-low (39/83) and IPM-high
(7/19) samples (P = 0.456). Considering the lower accuracy of
predicting the response in colorectal cancers than in melanomas
(as described in the TIDE introduction), we utilized a subclass
mapping algorithm to compare the RNA profiles of the IPM-
risk groups with another published dataset containing 47 cases
of melanoma that responded to anti-PD-1 and anti-CTLA-4
immunotherapies (Roh et al., 2017). The results revealed that
the IPM-low group was more likely to respond to anti-CTLA-
4 immunotherapy (Bonferroni-corrected P = 0.005), but the
IPM-high group was not sensitive to these immune checkpoint
inhibitors (Figure 6A). Further, the IC50 values of the IPM-
low and IPM-high groups were predicted with the GDSC data,
and our analysis indicated no targeted drugs with a significant
response sensitivity against the IPM-high group (Figure 6B).

The Correlation Between Immune
Checkpoint Modulators and IPM
Recurrence Risk Groups
Immune checkpoint proteins play a vital role in cancer
immunotherapy. The difference in immune checkpoint
modulators between IPM low- and high-risk groups with mCRC
was estimated. Modulators B7H3, LAG3, TIM-3, CTLA-4, PD-1,
and IDO were not significantly different between the two IPM
recurrence risk groups (P > 0.05; Figures 7A–G), but PD-L1
was different significantly (P = 0.02; Figure 7H), indicating that
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FIGURE 4 | (A) The local immune status may confer an intense immune phenotype in the IPM-low-risk group and a weakened immune phenotype in the

IPM-high-risk group. (B) Within and between groups, the proportion of immune cells in metastatic colorectal cancers (mCRCs) varies. Therefore, variations in the

(Continued)
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FIGURE 4 | proportions of tumor-infiltrating immune cells might represent an intrinsic feature that could characterize individual differences. (C) Proportions of some

subpopulations of tumor-infiltrating immune cells are correlated. (D) The samples of IPM low- and high-risk mCRCs patients clearly separated into two discrete groups

based on principal component analysis, indicating that two groups are distinctly different in immune infiltrating cells. (E) IPM high-recurrence risk mCRCs are at

immunosuppression status. (F) The Estimation of Stromal and Immune cells in Malignant Tumor tissues Using Expression Data (ESTIMATE) algorithm showing that the

stroma and immune cells infiltration in IPM high-risk groups are less than those in the low-risk group. (G) The IPM high-risk mCRCs have significantly higher

proportions of Tregs and lower proportions of resting memory CD4+ T cells.

the suppressed immune status might not be mainly influenced to
immune checkpoint modulators.

The IPM Is Independent of Conventional
Clinical Characteristics With Better Net
Benefits in Clinical Practice
The univariate and multivariate Cox regression analyzes
were conducted to explore whether the prognostic value of
the IPM was independent of other clinical factors in the
training cohort. After adjusting for clinical characteristics,
the IPM continued to be an independent prognostic factor,
thus confirming its robustness for predicting the recurrence
of mCRC (Figure 8A). Additionally, the multivariate Cox
regression analysis indicated that the IPM was significantly
correlated with the survival information (P < 0.001) and the
highest median risk score (HR = 8.45, 95% CI = 3.987–
17.90) (Figure 8A). Furthermore, the DCA compared the net
benefits of the IPM and conventional clinical characteristics
(Figure 8B). Collectively, these results indicated that the IPM
was independent of conventional clinical characteristics and
performed better than conventional clinical characteristics to
predict survival.

IPM Stratifies a Refractory CRLM Subtype
in a Real-World Cohort
To evaluate the robustness of IPM in predicting the risk
of tumor recurrence for patients with mCRCs in clinical
practice, we used qRT-PCR to further validate the specific
signature in an independent cohort consisting of frozen
tissue samples from 60 patients with CRLMs. The detail of
clinical characteristics of this independent cohort are shown
in Table 1. Using the same formula, the risk score of each
patient was calculated. Patients were also divided into high-
and low-risk groups (N = 32 and 28, respectively) by the
given risk score, and the cutoff point was chosen through
optimized risk value (−0.5). A difference trend in PFS
was found between the high- and low-risk group although
without significance (P = 0.216; Figure 9A). The Kaplan-
Meier curve shows the prognostic relation with expression
of CLU (HR = 0.5, P = 0.039), SLIT2 (HR = 1.46, P =

0.24) and CDKN2A (HR = 1.35, P = 0.397) (Figure 9B).
Further, when applied for subcategories of patients with
commonly known high-recurrence risk [liver metastasis number
>3, high preoperative carcinoembryonic antigen (CEA), and
non-R0 resection] at the time of diagnosis, the risk score
was predictive of significantly different PFS (P < 0.05;
Figures 9C–H). Subsequently, we explored its relationship with
clinicopathological variables. IPM risk score was significantly

higher in patients with more than 2 liver segments suffered
(P = 0.024, Figure 9I). We found that high-risk patients had
a significant non-response to chemotherapy than the low-risk
group in CICAMS CRLM cohort (P= 0.056, Figure 9J; P= 0.03,
Table 1).

SLIT2 Functions as the Hub Gene in
Immune-Related Recurrence of mCRC
We constructed a correlation web with these six genes based on
the information from published papers (Figure 10A), where they
communicate with three genes (TGFβR1, UBC, and MDM2),
revealing the possible recurrence mechanism of mCRC after
integrated treatment using surgery and adjuvant chemotherapy.
Further, the GOSemSim analysis identified SLIT2 to interact
with the other five key genes frequently, indicating it to
be strongly associated with recurrence in mCRC and to
communicate via multiple interactions and function as the
hub gene (Figure 10B). We finally constructed a Bayesian
network (BN) graph to show MEM and IPM, using two
related gene signatures for the recurrence prediction of mCRCs
(Figure 10C).

Homeobox Gene MEIS1 Identified as
Transcription Factors of IPM Genes in
mCRC
To investigate upstream regulation of the three IPM genes
(CDKN2A, SLIT2, and CLU) showing prognostic efficacy,
we performed bioinformatics enrichment analysis to identify
putative transcription factors involved in regulating IPM genes
expression. A total of 19 transcription factors (ZNF503, KLF4,
PLAGL1, PAX6, TP63, HOXB6, MEIS1, GATA2, SIX1, EPAS1,
CTCF, NR0B1, SOX2, ESR1, HEY1, HOXC6, FOXC1, WT1,
and LHX2) were identified to be shared by three genes,
with all but CTCF used for further analysis because there
is no CTCF probe in the available data. We found that
MEIS1 showed a stronger correlation with IPM risk score
relative to the other transcription factors (Rho value =

−0.55). Moreover, MEIS1 showed a positive correlation with
SLIT2 and CLU expression and a negative correlation with
CDKN2A (Figure 11A). Additionally, expression profiles and
survival analyses revealed that MEIS1 level was significantly
downregulated in tumor tissue relative to solid tissue normal
(P < 0.001; Figure 11C), with decreased MEIS1 level associated
with worse PFS (HR < 0.55, P = 0.005; Figure 11B)
in mCRC. Furthermore, we preliminarily used methylation
data in TCGA to investigate the downregulation cause of
MEIS1 in colon cancer and found that the expression of
MEIS1 has a negative association with MEIS1 methylation
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FIGURE 5 | (A) Immune differentially expressed genes (DEGs) in the immune prognostic model (IPM) criterion. The immune genes are differentially expressed between

the groups at IPM low risk and high risk for metastatic colorectal cancers (mCRCs) (P < 0.05) and 12 genes identified and subjected to KEGG analyses to find that the

immune genes related to the IPM in the training dataset are mainly enriched in the immune response and immune system diseases pathway. (B) HLA-DRA is

downregulated in IPM-high group mCRCs. (C) Major histocompatibility complex (MHC) class-II molecules are all downregulated in IPM-high group mCRCs.

(Figure 11D); what is more, MEIS1 methylation was more
in tumor than normal tissue in colon cancer (P < 0.001;
Figure 11E). Therefore, we hypothesized that MEIS1 works
as a transcription factor that mediates IPM genes and that,
with methylated, MEIS1 was downregulated, which could not

thoroughly stimulate the expression of favored IPM genes
(SLIT2 and CLU), while that releases the expression of
unfavored IPM gene (CDKN2A), thereby contributing to the
initiation, development, and progression of colon cancer and
worse prognosis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 12 January 2021 | Volume 8 | Article 577125

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Luo et al. Immune Prognostic Model for mCRC

FIGURE 6 | Differential putative chemotherapeutic and immunotherapeutic response. (A) The immune prognostic model (IPM)-low group has a more promising

response to anti-CTLA-4 therapy (Bonferroni corrected P = 0.005). (B) IPM-low group is more sensitive to targeted drugs.

DISCUSSION

Accumulating evidence suggests that bioinformatics

analysis would be an effective method to find novel

molecular biomarkers in early diagnosis, therapeutic
process monitoring, and prognostic evaluation of cancer.
Recurrence of mCRC after surgery remains a challenge,
even with adjuvant chemotherapy. Moreover, the outcomes
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FIGURE 7 | Expression of immune inhibiting factors between two immune prognostic model (IPM) recurrence risk groups. The TMB (A), and the expression levels of

PD-1 (B), CTLA-4 (C), LAG3 (D), IDO (E), EZH2 (F), and B7H3 (G) were not significantly different between the two IPM recurrence risk groups (P > 0.05), but PD-L1

(H) was differently significant (P = 0.02).

FIGURE 8 | The immune prognostic model (IPM) is independent of conventional clinical characteristics with better net benefits in clinical practice. (A) The multivariate

Cox regression analysis indicated that the IPM was significantly correlated with the survival information (P < 0.001) and the highest median risk score (HR = 8.45,

95% CI = 3.987–17.90). (B) The net benefits of the IPM outperforms other conventional clinical characteristics.

of mCRC are heterogeneous, and predicting models have
failed to explain recurrence from the perspective of intrinsic
cell activities and extrinsic immune microenvironment.

Therefore, gene signatures with explainable recurrence
associations might be of considerable benefit to the
medical community.
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TABLE 1 | Comparison of baseline characteristics and operative variables

between patients with IPM low-risk and IPM high-risk in CICAMS CRLM cohort.

Clinicopathological

variable

IPM low-risk

(N = 28)

IPM high-risk

(N = 32)

Stat P-value

Gender 0.904 0.342

Male 15 21

Female 13 11

Age

≤48 4 10 2.402 0.121

>48 24 22

Recurrence within 1

year

0.866 0.352

No 12 10

Yes 16 22

Primary tumor location 0.336 0.562

Left colon cancer 23 28

Right colon cancer 5 4

Liver metastasis

segments suffered

Number

6.548 0.01

≤2 18 10

>2 10 22

T stage 2.2946 0.4

T1 0 2

T2 26 26

T3 2 3

T4 0 1

N stage 3.802 0.149

N0 9 5

N1 7 15

N2 12 12

Number of liver

metastasis

0.152 6.96E-01

≤3 18 19

>3 10 13

Double lobes suffered 0.693 0.405

No 17 16

Yes 11 16

Size of liver metastasis 0.152 0.696

≤3 cm 18 19

>3 cm 10 13

Differentiation 0.155 0.925

Well 17 21

Moderate 4 4

Low 7 7

Extrahepatic

metastasis

0.39 0.533

No 25 30

Yes 3 2

Pre-operative CEA 0.463 0.496

≤5.96 9 13

>5.96 19 19

Pre-operative CA19-9 0.067 0.796

≤79.7 22 26

>79.7 6 6

Post-operative CEA 0.106 0.744

(Continued)

TABLE 1 | Continued

Clinicopathological

variable

IPM low-risk

(N = 28)

IPM high-risk

(N = 32)

Stat P-value

≤38.84 22 24

>38.84 6 8

Post-operative CA19-9 0.021 0.885

≤92.1 24 27

>92.1 4 5

Chemotherapy 0.005 0.944

Without 12 14

With 16 18

With chemotherapy

Response 9 3 0.03*

Non-response 7 15

Total hospitalized day 1.071 0.301

≤24 d 24 24

>24 d 4 8

Post-operative

hospitalized day

1.837 0.175

≤12 d 22 20

>12 d 6 12

Surgical procedure 4.037 0.133

laparotomy 15 9

laparoscopy

assisted

3 5

laparoscopy 10 18

Sequence mode 1.558 0.212

Simultaneous 27 28

Non-simultaneous 1 4

Total number of

resected lymph nodes

0 1

≤22 21 24

>22 7 8

Positive lymph node

ratio

1.558 0.212

Negative 7 4

Positive 21 28

Surgery time 0.001 0.972

≤335 13 15

>335 15 17

Intraoperative blood

loss volume

0.805 0.37

≤100 8 6

>100 20 26

Intraoperative blood

transfusion

2.084 0.149

Without 23 21

With 5 11

Post-operative

complication

1.35 0.245

No 19 17

Yes 9 15

Post-operative

defecation time

1.408 0.235

≤4 d 17 24

>4 d 11 8

R0 resection 0.155 0.694

No 11 11

Yes 17 21
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Here, we identified two interactive gene signatures that
predicted mCRC recurrence values. Further, IPM could help
understand recurrence from intrinsic and extrinsic factors
perspectives and identify responders of immune checkpoint
inhibitors (ICIs) and chemotherapy. Moreover, it highlighted
the suppression of MHC class II as the main reason for
non-responsiveness. Further, in a real-world cohort, we validated
these findings in specimen experiment in vitro. With preliminary
bioinformatics investigation, we found a potential upstream
dysregulation cause of IPM genes. Finally, this study produced
preclinical evidence for inhibiting CDKN2A and activating MHC
class II in the immunotherapy of mCRC. In conclusion, our
study embraced many hints for futural researches on the field of
immune suppression inmCRCs.Moreover, this kind of study can
be used as a reference for understanding other cancers’ predicting
gene models to filter out the models with predicting performance
as well as biological mechanism meaning.

First, our results indicate a feasible therapeutic strategy
to shape the immune microenvironment and improve the
post-operative prognosis of mCRC and may also allow the
selection of patients for surgery-based integrated therapy.
Three metastasis-related genes (BAMBI, F13A1, and LCN2)
and three immune-related genes (CDKN2A, SLIT2, and CLU)
serve as the two gene models, which together may provide
better performance than alone, depending on their prognostic
significance and immune properties. The BAMBI (Vanhara
and Souček, 2013), LCN2 (Wang and Zeng, 2014), F13A1
(Vairaktaris et al., 2007), CDKN2A (Exner et al., 2015), SLIT2
(Chen et al., 2013), and CLU (Shapiro et al., 2015) were
reported to individually play a role in cancer development and
progression. In our study, the high expression of CDKN2A
was associated with unfavorable immuno-phenotype in patients
with mCRC, which is in contrast to its known role as a
tumor suppressor gene. A plausible explanation is that from
an immune perspective, CDKN2A encodes several transcript
variants to regulate themacrophage apoptotic process (González-
Navarro et al., 2010) and downregulates B-cell proliferation
to influence the humoral immune response. In addition to
these, CDKN2A was confirmed in single-cell sequencing as
one of the characteristic markers of some immune infiltrating
cells, such as exhausted CD4+ T cell (Zheng et al., 2017),
regulatory T (Treg) cell (Zheng et al., 2017), and natural
killer T (NKT) cell (Young et al., 2018). Therefore, our study
also inferred that the high expression of CDKN2A influences
the immune microenvironment, downregulates the immune
activity, and thus promotes the recurrence in mCRC. Moreover,
this is possibly the first analysis to indicate an association
of high expression of F13A1 with a favorable prognosis
in mCRC.

Second, our results indicate a high-recurrence risk of mCRC
associated with its immunosuppression, which correlates with
the downregulation of MHC class II molecules, high infiltration
of Treg cells, and low levels of resting memory CD4+ T
cells reservation.

Next, the MEM indicated a suppressed local immune state
in high recurrence risk mCRC, and hence, we investigated a
MEM-related IPM immune gene signature to elucidate how

it might affect the expression of immune genes. Our IPM
analysis showed that the low-recurrence risk group had an
activated immune response, while the high-risk group was
associated with an exhausted immune state. Additionally, the
ESTIMATE algorithm validated this finding, suggesting that
the stroma and infiltration of immune cells in the IPM
high-risk group were less than those in the low-risk group.
In the Gene Ontology (GO) and KEGG analysis, the two
IPM groups differed at the immune pathway enrichment
level, confirming the downregulation of immune response
genes in high-recurrence risk mCRC. Furthermore, the IPM
high-risk group showed higher fractions of Tregs and lower
resting memory CD4+ T cells. Previous studies with metastatic
melanoma have shown that the infiltration of CD8+ T
cells in tumors and tumor margins positively correlates
with a good prognosis (Tumeh et al., 2014). However, the
CD8+ T cells contains multiple subpopulations, and even if
CD8+ T cells infiltrate the tumor tissue, the Tregs in the
tumor may lead to no response to treatment (Ngiow et al.,
2015). Previous studies have confirmed that CD4+ T cells,
upon differentiation, may acquire various functions, including
blocking cytotoxic NK cells and activating CD8+ T cells,
suppressing harmful immunological reactions to self- and foreign
antigens, and aiding CD8+ T cells in tumor rejection (Crouse
et al., 2015; Rosenberg and Huang, 2018; Long et al., 2019).
Moreover, the cancer immunoediting hypotheses suggest that
antitumor immune response during cancer development and
progression is evaded by selecting fewer immunogenic cancer
cells (immune selection) and establishing immunosuppressive
networks (immune escape) (Long et al., 2019). Cancer cells have
several immunosuppressive mechanisms, including increasing
the levels of various immunosuppressive cells, such as Treg cells
and macrophages, elevating levels of various immunosuppressive
molecules, and decreasing the expression of cancer antigens,
which together result in the dysfunctioning of CD8+ T cells
to recognize cancer cells (Pardoll, 2012; Long et al., 2019).
However, expression of PD-L1 was found to be decreased in
the high-recurrence risk group, although PD-1, CTLA-4, LAG3,
IDO1, EZH2, and B7H3, were not differentially expressed in
this subtype. Additionally, the tumor mutation burden in the
TCGA validation cohort was not altered in the two IPM groups.
Therefore, to a certain extent, altered infiltrations of Tregs
and resting memory CD4+ T cells could indicate a high-
risk recurrence of mCRC, although it might not be the most
important factor; meanwhile, such mCRC may belong to a
refractory subtype. Furthermore, as indicated in drug-sensitivity
data mining, the IPM-low group was more likely to have a
positive response to anti-CTLA-4 immunotherapy, while the
IPM-high group showed no sensitivity to these ICIs. Moreover,
we observed the IPM-high group to present more therapy
resistance than the IPM-low group. However, we do not know
the cause for the IPM-high risk group to be the refractory
mCRC subtype.

Further investigation into immune-related DEG in the IPM-
high risk group found HLA-DRA, a component of the MHC
class II, which plays a crucial role in regulating immune response
with CD4+ T cells, to be downregulated in the high-recurrence
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FIGURE 9 | Immune prognostic model (IPM) stratifies a refractory colorectal liver metastasis (CRLM) subtype in a real-world cohort (CICAMS CRLM cohort). (A) A

difference trend in PFS was found between the high- and low-risk group although without significance (P = 0.216). (B) K–M survival curves of three IPM genes. (C–H)

When applied for subcategories of patients with commonly known high-recurrence risk [liver metastasis number >3, high preoperative carcinoembryonic antigen

(CEA), and non-R0 resection] at the time of diagnosis, the IPM risk score was predictive of significantly different PFS (P < 0.05). (I) IPM risk score was significantly

higher in patients with more than 2 liver segments suffered (P = 0.024). (J) The relation between IPM risk score and Chemotherapy response, and non-response

group tends to have a higher IPM risk score (P = 0.056).

risk mCRC. Given the disorders of CD4+ T cells in the IPM
high-risk group, we speculated that its helper immune response
might be affected. Therefore, we assessed the expression of
HLA in the low- and high-risk IPM groups. Our analysis
implicated the expression of the MHC class-II molecules, viz.
HLA-DR, HLA-DP, and HLA-DQ, to be downregulated in the
IPM high-risk group compared to the low-risk group but with

no changes in MHC class-I molecules. These MHC class-II
molecules participate in the activation of CD4+ T cells as a
helper for CD8+ T cells in antitumor response. The MHC class-
II neoantigens may shape the tumor immunity and response
to immunotherapy, indicating the ignored MHC-II neoantigens
and CD4+ T cells as key factors that influence the response
to immunotherapy (Alspach et al., 2019). Moreover, while the
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FIGURE 10 | (A) A correlation web with these six genes based on the information from published papers is built, where they communicate with three genes (TGFβR1,

UBC, and MDM2). (B) The GOSemSim analysis identified SLIT2 to interact with the other five key genes frequently. (C) Bayesian network (BN) graph showing

metastasis evaluation model (MEM) and immune prognostic model (IPM), using two related gene signatures for the recurrence prediction of metastatic colorectal

cancers (mCRCs).

average objective response rate (ORR) of immune checkpoint
inhibitor therapy has been estimated as 30%, the IPM high-risk
group showed it as 70% (non-responsive mCRC) (Haslam

and Prasad, 2019). This indicates that the immune response
activated by effector T cells alone may not be enough to
eliminate tumors; else, the average ORR of ICI therapy would
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FIGURE 11 | MEIS1 identified as transcription factors of immune prognostic model (IPM) genes in metastatic colorectal cancer (mCRC). (A) Putative transcription

factors involved in regulating IPM genes expression; only MEIS1 showed a positive correlation with SLIT2 and CLU expression and a negative correlation with

CDKN2A simultaneously (P < 0.05). (B) Decreased MEIS1 level associated with worse progression-free survival (PFS) (HR < 0.55, P = 0.005). (C) MEIS1 level was

significantly downregulated in the tumor tissue relative to the solid tissue normal (P < 0.001). (D) Expression of MEIS1 has a negative association with MEIS1

methylation (P < 0.05). (E) MEIS1 methylation was more in tumor than the normal tissue in colon cancer (P < 0.001).

not have been 30% (Haslam and Prasad, 2019). Furthermore,
an experiment used algorithmic simulation prediction to find
newer MHC class-II restricted antigen named mITGB1, and
an MHC class-I neoantigen, mLAMA4, which can only be
recognized by helper T cells and effector T cells, respectively.
Their analysis indicated that cancer cells expressing mITGB1
or mLAMA4 alone could not induce an anticancer immune
response, whereas their combined expression could decline
tumor growth rates, probably via activating immune response
(Ott et al., 2017).

Therefore, the IPM-high risk group was attributed to the
disorders of MHC class-II molecules and CD4+ T cells
infiltration. Further, our IPM could help predict the recurrence
of mCRC, and the stratification of refractory mCRCmay provide
newer insights such as the activation of the MHC class-II
may support treatment with ICIs and lead to better prognosis
in mCRC.

Next, increasing evidence from clinical trials indicate that
combined immunotherapies may enhance the response of cancer
patients, as observed especially for gastrointestinal tumors
that are characterized by a complex matrix, and considerable
molecular and immunological differences (Wang et al., 2019).
Since CDKN2A with an HR >1 is a key contributor of
high-risk mCRC and CDKN2A was confirmed as one of the
characteristic markers of some immune infiltrating cells, such
as exhausted CD4+ T cell (Zheng et al., 2017), regulatory T
(Treg) cell (Zheng et al., 2017), and natural killer T (NKT) cell
(Young et al., 2018). CDKN2A is highly expressed in the IPM
high-risk group; we identified this kind of refractory CRLM.

Besides, IPM high-risk group has more regulatory T (Treg) cell
infiltration. In addition, our results indicate a high-recurrence
risk of mCRC associated with its immunosuppression, which
correlates with the downregulation of MHC class-II molecules,
high infiltration of Treg cells, and low levels of resting memory
CD4+ T cells reservation. Combined with the literature review,
we could infer that exhausted CD4+ T cells might also highly
infiltrate in IPM high-risk groups. Therefore, we hypotheses
that an anti-CDKN2A agent along with activation of MHC
class-II molecules might prevent immune status from regulatory
T (Treg) cell inhibiting as well as exhausted CD4+ T cell’s
incapability. Thus, it could reverse the unfavorable prognosis
of the IPM high-risk group, which meets an urgent clinical
need in therapy design, representing the transformation value
of our findings. However, this treatment modality should be
thoroughly investigated for all mCRC cases to avoid recurrence in
the future.

Finally, we observed the IPM be independent of conventional
clinical characteristics with better clinical decision value, which
enabled the construction of an interactive network using six
genes and led to the identification of SLIT2 as a hub gene.
Further, we also constructed a BN graph for clinical practice.
To widen the hints of this study, we found the potential
upstream regulators attributing to the alteration of IPM risk
score, and MEIS1’s methylation was identified. Former studies
(Zhu et al., 2017) have reported that MEIS1 overexpression could
induce non-apoptotic cell death of ccRCC cells via decreasing
the levels of prosurvival regulators Survivin and BCL-2, and
MEIS1 attenuates in vitro invasion and migration of ccRCC cells
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with downregulated epithelial–mesenchymal transition (EMT)
process. However, MEIS1’s function in colorectal cancer still
needs further research. Additionally, MEM and its related IPM
helped define malignant phenotypes of cancer cells from their
intrinsic activities and the immune stromal infiltrating cells
activated in the mCRC-related microenvironment.

However, our study has certain limitations. First, it is
retrospective in design, and thus, the results should be further
confirmed by prospective studies. Although our study had a
large number of mCRC samples, the training cohort of 102
samples and two validation cohorts (N1= 142, N2= 56) are still
a small-scale dataset. Additionally, detailed clinicopathological
characteristics of each sample were not available; thus, the Fong’s
CRS criteria could not be utilized to confirm the accuracy of
MEM and IPM in our study. In addition, the functional and
mechanistic hypothesis should be conducted to support the
clinical application of the IPM three genes individually and
in combination.

In summary, for the first time, we identified and validated an
IPM that is based on three immune genes and has independent
prognostic significance especially for refractory mCRC patients,
which improves the perspective of the current CRS system
and reflects the overall intensity of the immune response in
the mCRC microenvironment. This study is also the first to
investigate the mechanism difference in clinically difficultly
labeled metastasis risk level with developing MEM model.
Furthermore, it highlighted for the first time the suppression
of MHC class II as the main reason for non-responsiveness
to immunotherapy. In addition to these, this study tried to
find a potential upstream dysregulation cause of IPM genes for
a widened hint for future study. Finally, this study produced
preclinical evidence for inhibiting CDKN2A and activating
MHC class II in the immunotherapy of mCRC. Last but
not the least, this study can be used as a reference for
understanding other cancers’ predicting gene models to filter out
the models with predicting performance as well as biological
mechanism meaning.

CONCLUSIONS

In summary, for the first time, our study found the post-
operative recurrence of mCRC to be strongly correlated to
the immune microenvironment using a high-throughput
analysis. Moreover, IPM could identify subgroups of
mCRC with different recurrence risks and stratify the
mCRC samples sensitive to immuno-/chemotherapy with
biologically explainable evidence. Furthermore, our analysis
also highlights the importance of MHC class-II molecules in
immunotherapy of mCRC.
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