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Histone deacetylases (HDACs) are enzymes that play a key role in regulating gene
expression by remodeling chromatin structure. An imbalance of histone acetylation
caused by deregulated HDAC expression and activity is known to promote tumor
progression in a number of tumor types, including neuroblastoma, the most common
solid tumor in children. Consequently, the inhibition of HDACs has emerged as a
potential strategy to reverse these aberrant epigenetic changes, and several classes
of HDAC inhibitors (HDACi) have been shown to inhibit tumor proliferation, or induce
differentiation, apoptosis and cell cycle arrest in neuroblastoma. Further, the combined
use of HDACi with other chemotherapy agents, or radiotherapy, has shown promising
pre-clinical results and various HDACi have progressed to different stages in clinical
trials. Despite this, the effects of HDACi are multifaceted and more work needs to be
done to unravel their specific mechanisms of actions. In this review, we discuss the
functional role of HDACs in neuroblastoma and the potential of HDACi to be optimized
for development and use in the clinic for treatment of patients with neuroblastoma.

Keywords: neuroblastoma, histone deacetylases, histone deacetylase inhibitor, acetylation, differentiation,
apoptosis, cell cycle arrest

INTRODUCTION

Neuroblastoma is a highly malignant pediatric tumor that arises within the sympathetic nervous
system. It is the most common extracranial solid tumor in children, accounting for 7–10%
of all pediatric cancers and 15% of pediatric cancer-related deaths (Maris et al., 2007). While
neuroblastoma patients are classified into low, intermediate and high-risk groups, according to
disease stage, patient age and specific genetic mutations (Papaioannou and McHugh, 2005), the
majority of patients present with advanced stage, high-risk disease. Despite the use of high-intensity
treatment regimens incorporating multi-agent chemotherapy, radiotherapy and immunotherapy,
these high-risk patients continue to have poor clinical outcomes, with therapy-resistant relapse
occurring in up to 60% of cases (Maris et al., 2007; Ora and Eggert, 2011; Tonini et al., 2012).

Although the overall mutational burden in neuroblastoma is very low compared to other
cancer types (Schramm et al., 2015), high-risk disease is often characterized by amplification
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of the oncogenic driverMYCN (Schwab et al., 1983). The encoded
protein, N-Myc, promotes neuroblastoma tumorigenesis by
driving the expression of genes involved in cell proliferation,
and suppressing those required for differentiation and apoptosis
(Domingo-Fernandez et al., 2013; Fey et al., 2015). While there
are currently no therapeutic options available to directly target
N-Myc activity, alternative strategies have emerged to indirectly
regulate N-Myc-mediated transcription, including epigenetic
modulation via HDAC inhibition (Fletcher et al., 2018; Jubierre
et al., 2018). Along with the emergence of HDACs as drivers
of drug resistance in neuroblastoma (Keshelava et al., 2007;
Oehme et al., 2009, 2013; Lodrini et al., 2013), there has been a
considerable effort to investigate the use of HDACi as treatment
strategies for high-risk neuroblastoma (Jubierre et al., 2018).
Therefore, this review focuses on the role of HDACs and
HDACi in neuroblastoma and advances the understanding of
how HDACi can disrupt multiple cancer pathways, resulting in
single-agent activity, as well as synergistic combinations with
other anti-cancer agents.

Histone Modifications
As central DNA scaffolding proteins, the post-translational
modification of histones plays a key role in regulating chromatin
conformation, which ultimately modulates the accessibility
of DNA to the transcriptional machinery (Bannister and
Kouzarides, 2011; Waldmann and Schneider, 2013; Audia and
Campbell, 2016; Lawrence et al., 2016). These post-translational
modifications include acetylation, methylation, phosphorylation
and sumoylation; each of which is regulated by enzymes that
facilitate either the addition or removal of these chromatin marks
(Bolden et al., 2006; Zhao and Shilatifard, 2019). A key example
of this is the opposing activity of histone acetyltransferases
(HATs) and HDACs, which is known to tightly regulate gene
expression by altering chromatin structure between relatively
“open” and “closed” states (Tang et al., 2013). HATs transfer
acetyl groups to a number of lysine residues in histones
H2A, H2B, H3, and H4, resulting in the local expansion of
chromatin and increased accessibility of regulatory proteins to
DNA, whereas HDACs catalyze the removal of acetyl groups,
which in turn drives chromatin condensation and transcriptional
repression (Thiagalingam et al., 2003; Wapenaar and Dekker,
2016; Figure 1). Both enzymes are important in normal
cellular physiology, although an imbalance in the equilibrium
of histone acetylation has been associated with tumorigenesis
and cancer progression in a number of tumor types, including
neuroblastoma (Gronbaek et al., 2007; Iacobuzio-Donahue, 2009;
Pfister and Ashworth, 2017).

HDACs

Deemed master regulators of gene expression, HDACs are
involved in regulating a number of biological processes including
apoptosis, cell cycle progression and differentiation (Xu et al.,
2007). Aside from primarily targeting histone proteins, more
than 50 non-histone targets of HDACs have also been discovered
(Glozak et al., 2005). The human HDAC family consists of

18 enzymes that are subdivided into four classes based on
their homology to yeast HDACs, subcellular localization and
enzymatic activities (Bolden et al., 2006). Class I HDACs (1, 2,
3, and 8) contain a deacetylase domain and show homology to
the yeast protein RPD3. They are expressed in the nuclei of most
cell types and are involved in the transcriptional repression of a
number of genes. Class II HDAC members are subdivided into
two classes—class IIa HDACs (4, 5, 6, 7, and 9) and class IIb
HDACs (6 and 10). These HDACs are homologous to yeast Hda1
and unlike class I HDACs, are not limited to the nucleus. Class
IIa HDACs are distinguished by the presence of an N-terminal
extension, whilst class IIb HDACs comprise two deacetylase
domains. In the case of HDAC6, this second deacetylase domain
is reportedly responsible for the deacetylation of non-histone
targets, including the cytoskeletal protein a-tubulin (Yang and
Gregoire, 2005). Class III HDACs, also known as Sirtuins
(SIRT 1-7), rely on NAD+ cofactors and are homologs of the
yeast protein Sir2. HDAC11, the latest and lone member of
class IV is the smallest isoform of the HDAC family, sharing
features of both Class I and II HDACs (Bolden et al., 2006;
Clocchiatti et al., 2011).

The Role HDACs in Neuroblastoma
In several cancers, the aberrant expression of HDACs largely
correlates with tumor onset, progression and global histone
hypo-acetylation (Fraga et al., 2005; Bolden et al., 2006).
In fact, a clear association between HDAC activity, tumor
growth and cell survival has been well established in a broad
spectrum of hematologic and solid tumors (Richon et al., 1998;
Marks and Xu, 2009). As outlined below, in the setting of
neuroblastoma a number of Class I and Class II HDACs have
been implicated in promoting tumor progression, cell motility or
drug resistance (Figure 1).

Class I HDACs
A comparison of gene expression profiles between two drug
sensitive and three multidrug-resistant neuroblastoma cell lines
by Keshelava et al. (2007) previously identified HDAC1 as
a candidate gene for conferring multidrug resistance. RNA
expression analysis across a large panel of neuroblastoma cell
lines further demonstrated that significantly higher HDAC1
mRNA levels were present in multi-drug resistant lines compared
to drug-sensitive lines. Functionally, selective knockdown of
HDAC1 sensitized the multi-drug resistant CHLA-136 cell line
to etoposide, a topoisomerase II inhibitor commonly used for the
treatment of high-risk neuroblastoma (Keshelava et al., 2007).

Investigations of the expression levels of classical HDACs
across a large cohort of primary neuroblastoma samples also
identified HDAC8 as a prognostic indicator of advanced
disease stage and poor survival (Oehme et al., 2009). Here,
upregulated expression of HDAC8 in advanced, metastatic
disease was associated with poor prognostic markers such as
1p and 11q deletions, age (>18 months) and an unfavorable
Shimada histopathology score. Interestingly, HDAC8 was
downregulated in stage 4S neuroblastoma cases, which are
known to undergo spontaneous regression (Oehme et al., 2009).
These clinical findings were further supported by in vitro
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FIGURE 1 | Schematic representation of the role of HATs and HDACs in the dynamic modification of lysine acetylation within histone tails, which mediates the
switching between “open” (relaxed) and “closed” (condensed) chromatin structures. Details of the specific HDACs implicated in neuroblastoma tumorigenesis are
also shown, along with the relevant HDAC inhibitors that have been utilized in neuroblastoma clinical trials.

assays demonstrating that HDAC8 knockdown inhibited the
proliferation of BE(2)-C, SK-N-BE, Kelly, and SH-SY5Y cells, as
well as inhibiting clonogenic growth and promoting cell cycle
arrest and differentiation in BE(2)-C cells (Oehme et al., 2009).

Amplification of the proto-oncogene MYCN is well
established as an adverse prognostic marker in neuroblastoma
(Domingo-Fernandez et al., 2013; Lodrini et al., 2013).
Functionally, its oncogenic potential is in part facilitated
through the recruitment of HDAC2 in a forward loop to
transcriptionally repress the tumor suppressive miR-183
in neuroblastoma cells (Lodrini et al., 2013). Lodrini et al.
(2013) conducted an RNAi-mediated screen of 11 class I,
IIa, IIb, and IV HDACs and found that specific HDAC2
depletion caused an increased in miR-183 expression, whilst
HDAC2 overexpression conversely reduced miR-183 levels.
Furthermore, HDAC2 depletion also enhanced histone H4
pan-acetylation, indicating increased transcriptional activation.

These results suggest a novel way to target MYCN-amplified
tumors may be through HDAC2 inhibition (Lodrini et al.,
2013), which is further supported by other studies revealing
that HDAC2 knockdown promoted apoptosis in BE(2)-C cells
(Oehme et al., 2009).

Class II HDACs
HDAC5, a member of the class IIa HDAC family, has previously
been implicated in promoting the invasion and metastasis of
neuroblastoma (Fabian et al., 2016). This effect was thought
to be mediated through the transcriptional repression of the
tetraspanin CD9, mediated by the binding of both HDAC5 and
N-Myc to the CD9 promoter. In line with evidence from ovarian
(Furuya et al., 2005) and bladder carcinoma cell lines (Mitsuzuka
et al., 2005), elevated CD9 expression was found to suppress
neuroblastoma cell migration and invasion, whilst low CD9
tetraspanin expression within primary neuroblastomas correlated
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with MYCN amplification, high-risk disease and poor patient
survival. Although CD9 expression could be elevated by either
HDAC5 siRNA, or treatment with the HDACi panobinostat,
across a number of neuroblastoma cell lines, siRNA mediated
knockdown of HDACs 2, 3, and 10 elicited opposing effects on
CD9 expression. Whilst these data demonstrate the potential
for indirect therapeutic targeting of CD9 via the inhibition of
HDAC5, the development of a more specific HDAC5 inhibitor
may be of benefit in this context.

Members of the class IIb HDAC sub-family, HDAC6 and
HDAC10 contain two deacetylase domains and can shuttle
between the nucleus and the cytoplasm (Yang and Gregoire,
2005). In addition to histones, HDACs have been shown
to deacetylate various non-histone substrates. For instance,
α-tubulin, heat shock protein 90 (HSP90), and cortactin are
several non-histone substrates of HDAC6 that are critical in
regulating cell proliferation, metastasis, invasion, and mitosis
in tumors (Li et al., 2018). In neuroblastoma, inhibition
of HDAC6 can enhance cell adhesion and impair both
polarization and efficient migration, which correlates with
findings that HDAC6 expression is upregulated at metastatic
sites, such as the mediastinum, abdominal cavity, and pelvic
cavity (Zhang et al., 2014). Additionally, HDAC6 is also
thought to contribute to neuroblastoma tumorigenesis through
regulating Bax-dependent apoptosis via deacetylation of Ku70
and regulation of the interaction between Ku70 and Bax
(Subramanian et al., 2011). These results suggest that HDAC6
upregulation results in enhanced cell motility and invasiveness,
while also improving tumor survival by suppressing apoptosis
through Ku70 deacetylation.

Further studies also suggest that the class IIb HDAC
sub-family member, HDAC10 may exert specific roles in
neuroblastoma progression, as elevated HDAC10 expression has
previously been associated with poor clinical outcomes in high
risk neuroblastoma patients (Oehme et al., 2013). Functionally,
HDAC10 promoted autophagy-mediated cell survival through
deacetylation of autophagy related 4D cysteine peptidase
(ATG4D), which in turn regulates autophagosome formation
and increases autophagy flux (Oehme et al., 2013). In line with
this, elevated HDAC10 promoted resistance to doxorubicin,
while its depletion restored sensitivity of drug resistant cells to
doxorubicin treatment (Oehme et al., 2013).

HDAC INHIBITORS IN
NEUROBLASTOMA

Given the critical role of HDACs in various cancers, including
neuroblastoma, there has been a considerable effort to pursue
the use of small molecule HDACi in a therapeutic setting.
A number of different HDACi have been developed over the
last couple of decades, which can be classified into six groups
based on their chemical structure (Table 1). This includes
a number of class-specific HDAC inhibitors, although some
are considered “pan-HDAC” inhibitors, which are structurally
diverse and display inhibitory activity across all isoforms of
the zinc-dependent HDAC classes with little discrimination.

A number of pre-clinical studies have assessed the anti-tumor
effects of these HDACi in neuroblastoma, in general highlighting
their ability to inhibit cell proliferation, while promoting
cell cycle arrest, differentiation and apoptosis (Table 1).
Consequently, the safety and efficacy of a small number of
HDACi have also been evaluated within neuroblastoma clinical
trials (Table 2).

One of the most extensively assessed HDACi in neuroblastoma
is Valproic acid (VPA). With a higher affinity for Class I HDACs,
VPA has been shown to strongly inhibit tumor cell proliferation,
apoptosis and induce morphological differentiation, as indicated
by an increase in neurite extensions and upregulation of neuronal
markers (Rocchi et al., 2005; Stockhausen et al., 2005). Despite
showing promise as a single-agent treatment, several studies have
also highlighted the therapeutic benefits of combining VPA with
other structurally diverse compounds. For instance, VPA was
found to exert synergistic cytotoxic effects in combination with
celecoxib, an FDA-approved COX-2 inhibitor that has shown
chemotherapeutic potential in various cancer settings (Chen
et al., 2011). Further, combinations of VPA with the angiogenic
inhibitor, ABT-510, and the clusterin inhibitor, OGX-011, have
also been shown to impair tumor growth in neuroblastoma
xenograft models (Yang et al., 2007; Liu et al., 2009). In 2009, a
phase 1 trial was initiated to evaluate the efficacy of combination
therapy with VPA and the mTOR inhibitor temsirolimus, in
young patients with multiple relapsed solid tumors, including
neuroblastoma. However, this trial was terminated due to
a lack of funding without reaching the original estimated
enrolment numbers.

Another well studied HDACi in neuroblastoma is vorinostat
(Suberanilohydroxamic Acid -SAHA), a broad spectrum HDACi
that targets both class I and II HDACs and has been successful
in phase II trials with FDA approval for use in patients
with cutaneous T-cell lymphoma (Duvic et al., 2007; Bubna,
2015). In the neuroblastoma SH-SY5Y cell line, vorinostat
treatment increased histone H3 acetylation at Lys9 and Lys14,
and induced extensive apoptotic cell death (De los Santos et al.,
2007). Moreover, vorinostat strongly impaired the hypoxia-
induced secretion of VEGF, potentiating its anti-angiogenic effect
(Muhlethaler-Mottet et al., 2008). In drug resistant MYCN-
amplified cells, vorinostat treatment also increased sensitivity to
chemotherapy, reduced in vitro invasion and downregulation
of genes associated with stem-cell behavior (Zheng et al.,
2013). Furthermore, vorinostat has been shown to sensitize
neuroblastoma cells to various therapeutic modalities, including
the pan-Cdk inhibitor flavopiridol (Huang et al., 2010), retinoic
acid (De los Santos et al., 2007; Hahn et al., 2008) and radiation
(Mueller et al., 2011). Together, these findings demonstrate the
clinical potential of vorinostat as a combination therapy for
the treatment of neuroblastoma, and underline the rationale for
many of the clinical trials evaluating vorinostat in this disease
context (Table 2).

4-phenylbutyrate (4-PB), another class I and II HDACi,
has also been tested in clinical trials for the treatment of
recurrent malignant gliomas (Phuphanich et al., 2005) and
neuroblastoma (Table 2). Experimentally, 4-PB suppressed the
growth of subcutaneous neuroblastoma xenografts in mice,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2020 | Volume 8 | Article 578770

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-578770 October 5, 2020 Time: 13:44 # 5

Phimmachanh et al. Histone Deacetylase Inhibitors in Neuroblastoma

TABLE 1 | HDAC inhibitors used in Neuroblastoma focused pre-clinical studies.

Drug name HDAC Class specificity Observed functional effects References

Short-chain fatty acids

Valproic Acid (VPA) Class I and IIa Growth Inhibition in vitro and in vivo
Differentiation
Apoptosis
Synergistic in combination with celecoxib, ABT-510 and
OGX-011

Cinatl et al., 2002; Rocchi et al., 2005;
Stockhausen et al., 2005; Yang et al.,
2007; Hrebackova et al., 2009; Liu
et al., 2009; Chen et al., 2011

Sodium Butyrate Class I and IIa Growth Inhibition in vitro
Differentiation
Apoptosis

Rocchi et al., 1992; De los Santos
et al., 2007; Muhlethaler-Mottet et al.,
2008; Lorenz et al., 2011

Tributyrin Class I and IIa Growth Inhibition in vitro
Differentiation

Rocchi et al., 1998

Sodium Phenylbutyrate (4-PB) Class I and IIa Growth Inhibition in vitro and in vivo
Apoptosis
Inhibition of DNA synthesis
Synergistic in combination with vincristine

Pelidis et al., 1998; Tang et al., 2004

Hydroxamic acids

m-carboxycinnamic acid
bis-hydroxamide (CBHA)

Class I Growth Inhibition in vivo
Apoptosis
Effective in combination with retinoids

Coffey et al., 2001

Vorinostat (SAHA) Class I, II, and IV Growth Inhibition in vitro
Differentiation
Apoptosis
Cell cycle arrest
Sensitize resistant cells
Downregulation of stemness genes
Effective in combination with retinoids

De los Santos et al., 2007;
Muhlethaler-Mottet et al., 2008; Lautz
et al., 2012; Zheng et al., 2013

Panobinostat (LBH-589) Class I, II, and IV Growth Inhibition in vitro and in vivo
Differentiation
Apoptosis
Synergistic in combination with cisplatin, doxorubicin or
etoposide

Wang et al., 2013; Waldeck et al., 2016

Abexinostat (PCI-24781) Class I and II Growth Inhibition in vitro and in vivo
Apoptosis
Effective in combination with bortezomib

Sholler et al., 2013

Trichostatin A (TSA) Class I, II, and IV Growth Inhibition in vitro
Apoptosis
Cell cycle arrest
Autophagy

De los Santos et al., 2007; Hrebackova
et al., 2009; Francisco et al., 2012

BL1521 Class I and II Growth Inhibition in vitro
Differentiation
Apoptosis

de Ruijter et al., 2004, 2005;
Ouwehand et al., 2005

Tubacin Class IIb (HDAC6) Impairs polarized morphology and impedes migration Zhang et al., 2014

1-naphthohydroxamic acid
(Cpd2)

Class I
(HDAC 8)

Growth Inhibition in vitro and in vivo
Differentiation
Apoptosis
Effective in combination with retinoic acid

Rettig et al., 2015

PCI-34051 Class I
(HDAC 8)

Growth Inhibition in vitro and in vivo
Differentiation
Apoptosis
Effective in combination with retinoic acid

Rettig et al., 2015

Benzamides

Entinostat (MS-275) Class I Growth Inhibition in vitro and in vivo
Apoptosis
Inhibition of DNA synthesis
Cell cycle arrest
Morphological Changes
Effective in combination with acetazolamide

Jaboin et al., 2002; Bayat Mokhtari
et al., 2017

M344 Class I and II Growth Inhibition in vitro Furchert et al., 2007

(Continued)
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TABLE 1 | Continued

Drug name HDAC Class specificity Observed functional effects References

Cyclic peptides

Romidepsin
(Depsipetide/FK228)

Class I Growth Inhibition in vitro and in vivo
Apoptosis
Sensitizes multi-drug resistant cells to cytotoxic agents

Keshelava et al., 2007; Panicker et al.,
2010

Helminthosporium carbonum
(HC)-toxin

Class I Growth Inhibition in vitro
Differentiation
Apoptosis
Cell cycle arrest
Represses colony formation
Inhibits invasive growth

Deubzer et al., 2008a,b

Trifluoromethyl ketone

HKI 46F08 Class I and II Growth Inhibition in vitro
Apoptosis
Differentiation
Represses colony formation

Wegener et al., 2008

Ortho-amino anilides

BRD840 Class I Differentiation
Effective in combination with retinoic acid

Frumm et al., 2013)

Sirtuin inhibitors

Cambinol Class III Growth Inhibition in vitro and in vivo
Anti-tumor activity
Cell cycle arrest

Marshall et al., 2011; Lautz et al., 2012

TABLE 2 | Overview of selected HDAC inhibitors in clinical investigations.

Drug name and dose Combination
agent

Rationale for combination Phase and clinical
trial identifier

Study dates

Valproic Acid
(VPA)–5 mg/kg

Temsirolimus
(mTOR Inhibitor)

Minimal, non-overlapping toxicities. VPA has also shown in vitro and
in vivo anti-tumor effects in wide range of pediatric cancers. In vitro additive
effects of both agents against neuroblastoma (Coulter et al., 2013)

Phase
I–NCT01204450

Nov 2009–Mar 2013

Vorinostat
(SAHA)–180 mg/m2

(maximum dose 400 mg)

Isotretinoin
(Retinoid)

Isotretinoin is a standard of care retinoid employed to treat high-risk
neuroblastoma. Several pre-clinical studies highlighting the benefits of
combination therapy (Table 1; Pinto et al., 2018).

Phase
I–NCT00217412
NCT01208454

Aug 2005–Sep 2009
Dec 2010–Sep 2014

Bortezomib
(Proteasome
Inhibitor)

Targeting the proteasome-dependent pathways with bortezomib and the
aggresome pathway with HDACi results in the accumulation of
poly-ubiquitinated proteins, which increases cell stress and apoptosis
(Muscal et al., 2013).

Phase
I–NCT01132911

May 2010–Apr 2011

Radiation:
131I-MIBG

Sensitizing effects of SAHA to ionizing radiation have been demonstrated
in a metastatic neuroblastoma xenograft model. SAHA also increases
uptake of the norepinephrine transporter (NET) allowing for increased MIBG
accumulation. Non-overlapping toxicity profiles have also been noted
(DuBois et al., 2015).

Phase
I–NCT01019850
Phase
II–NCT02035137

Mar 2010–Feb 2015
Jul 2014–Jul 2020

Immunotherapy
+/− DFMO

Significant and sustained (5 years) survival benefits were seen in an
immunotherapy combination regimen with GM-CSF, IL-2 and isotretinoin
in a multinational, phase III study. Despite this, serious adverse reactions
have been reported with the immunotherapy-containing regimen and so
combinations with HDACi may provide a lower toxicity profile, lowering the
chance of risks or other complications (Hoy, 2016; Ozkaynak et al., 2018).

Phase
I–NCT02559778

Sep 2015–Sep 2026
(Estimated)

Sodium Phenylbutyrate
(4-PB)–410 mg/kg

Selective for HDAC class I and II, several pre-clinical trials have noted the
effectiveness of 4PB in neuroblastoma, reducing proliferation, inducing
differentiation and impairing tumor growth and metastasis in vitro and in vivo.
Cytotoxic in combination with vincristine in vitro (Pelidis et al., 1998) and
enhances the expression of favorable marker genes (Tang et al., 2004).

Phase
I–NCT00001565

Dec 1996–Oct 2000

which was accompanied by an increase in apoptosis and the
elevated expression of favorable prognostic markers including
EPHB6, EFNB2, EFNB3, NTRK1, and CD44 (Tang et al., 2004).
Combination studies have also shown that 4-PB has an additive
cytotoxic effect with vincristine in vitro (Pelidis et al., 1998).

Proposed Mechanisms of Action
The attractiveness of combination therapy with HDACi has
resulted in a number of clinical trials implemented to
evaluate the safety and efficacy of HDACi with standard
of care, targeted therapies, radiation and immunotherapies
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(Table 2). The rationale for these approaches usually involved
reported synergistic effects in pre-clinical studies, along with
minimal to low overlapping toxicity being observed between
combined agents, allowing for increased patient tolerability.
Unfortunately, the lack of reporting from these clinical trials
prevents a detailed evaluation of the benefit of these drug
combinations. Although an important aspect to consider for
this combinational approach would be the future design of
rational, data driven combination trials that take into account
a detailed mechanism of action of each agent. As outlined
above, HDACs can promote a number of different, and
potentially opposing cellular functions in neuroblastoma cells.
Therefore, a consideration of both the desired outcome of
HDAC inhibition, as well as an understanding of the specificity
required to achieve this outcome, will be required for the
development of effective combination therapies, which is a
standard therapeutic approach required for neuroblastoma
patients (Fletcher et al., 2018).

Differentiation
Neuroblastoma is known to arise from sympathetic neuronal
precursor cells that were unable to complete the process of
differentiation, and several clinical observations have noted a
remarkable spontaneous differentiation and regression of these
tumors (Hedborg et al., 2010; Brodeur, 2018). A wealth of
pre-clinical studies have demonstrated the ability of retinoids,
including all-trans-retinoic acid (ATRA, tretinoin) and 13-cis-
retinoic acid (isotretinoin), to promote the differentiation of
neuroblastoma cells, leading to the adoption of retinoid therapy
as a widely employed treatment strategy for neuroblastoma
patients (Reynolds et al., 2003; Ora and Eggert, 2011).

Retinoic acids bind to Retinoic Acid Receptors (RARs),
which are ligand-regulated nuclear hormone receptors. RARs
heterodimerise with Retinoid X Receptors (RXRs) and exert
wide ranging effects on transcription by binding to retinoic
acid response elements within promoter regions (Siddikuzzaman
et al., 2011). In the absence of ligand, RAR/RXR heterodimers
repress transcription through the recruitment of corepressors
and HDACs (Chen and Evans, 1995). Following retinoic acid
binding, a conformation change results in an exchange of this
multi-protein complex for either a HAT-containing coactivator
complex (Chen et al., 1997), or a ligand-dependent corepressor
complex containing alternative HDACs (Fernandes et al., 2003).

The administration of retinoic acid to neuroblastoma cells
can often result in distinct morphological changes typical of
differentiated neurons, including an increase in out-branched,
neurofilament positive neurites (Reynolds et al., 2003). This
altered morphology is the result of broad transcriptional changes
that promote the elevated expression of a suite of differentiation
related genes (Duffy et al., 2017), and is also associated with
activation of the PI3K, mitogen-activated protein kinase (MAPK)
and Wnt signaling pathways (Lopez-Carballo et al., 2002; Qiao
et al., 2012; Duffy et al., 2017). Despite the clinical benefit
of retinoid therapy, treatment has proved ineffective for many
high-risk patients due to MYCN-induced resistance (Reynolds
et al., 2003). Therefore, it has been proposed that this form
of differentiation therapy may play a complementary role

in combination therapies for neuroblastoma, rather than as
single agent therapy.

Given the involvement of HDACs in mediating the
transcriptional effects of RARs, it is perhaps unsurprising
that several HDACi have been shown to induce extensive
morphologic and metabolic changes in neuroblastoma cells
that are indicative of differentiation (Table 1). While it is
unclear whether HDACi can promote a fully committed,
irreversible differentiation of neuroblastoma cells, their use as
candidates for differentiation therapy either as single agents
or in combination with retinoids is of significant interest.
Studies that have provided a mechanistic insight into the process
of HDACi induced differentiation include those with Cpd2
and PCI-34051, selective inhibitors of HDAC8. Promisingly,
when used in combination with retinoic acid, these inhibitors
induced elongated, neurofilament-positive neurites in both
BE(2)-C cells and the otherwise retinoid-resistant IMR-32 line
(Rettig et al., 2015). This was accompanied by an increase in
the differentiation marker NTRK1, while N-Myc expression
was downregulated and tumor growth was markedly reduced
in vivo (Rettig et al., 2015). Moreover, gene expression analysis
confirmed greater neuroblastoma differentiating effects with the
combination of multiple HDACi (VPA and SAHA) with either
ATRA or isotretinoin versus either compound alone (Hahn
et al., 2008). VPA and ATRA combinations induced dramatic
morphological neurite extensions and extensive branching as
well as greater expression of neurofilament medium (NF-M). In
a xenograft model, SAHA-ATRA combination treated tumors
had statistically higher differentiation signatures compared to
single-agent treated tumors, suggesting that differentiation was
in part responsible for the improved survival in the combination
treated mice (Hahn et al., 2008).

Treatment with either VPA (Class I and IIa HDACi) or BL1521
(Class I and II HDACi) has also been shown to increase Notch
signaling and promote the differentiation of neuroblastoma cells
(de Ruijter et al., 2005; Stockhausen et al., 2005). The highly
conserved Notch signaling cascade is known to be important in
the development of several tissues, including the peripheral and
central nervous systems (Artavanis-Tsakonas et al., 1999), and
plays a pivotal role in cell fate decisions such as proliferation, stem
cell maintenance and differentiation (Bray, 2006).

Cell Cycle Arrest
The increase in histone acetylation induced by HDACi is also
known to lead to the transcriptional activation of genes associated
with either G1 or G2/M cell cycle arrest (Bolden et al., 2006).
Accordingly, a number of HDACi have been implicated in
promoting cell cycle arrest (Table 1), although it has not been
established in all cases whether this occurs in the context of
promoting differentiation. For instance, Ouwehand et al. (2005)
observed a G1 phase arrest in response to treatment with
BL1521, whilst VPA, sodium butyrate, tributyrin have also been
shown to induce G2-M arrest (Table 1), all of which have
also been shown to also induce differentiation in other studies
(Rocchi et al., 1992, 1998, 2005).

Each phase of cell division is promoted by the activity of
various cyclin/cyclin-dependent kinase (CDK) complexes, which
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in turn are tightly regulated by cell cycle inhibitors, such
as the Cip/Kip family of cyclin-dependent kinases inhibitors
(Abbas and Dutta, 2009). Following the treatment of MYCN
single-copy GIMEN and MYCN-amplified SJNB8 cell lines with
the HDACi BL1521, CDK4 downregulation, p21 (WAF1/CIP1)
upregulation and an increase in the hypo-phosphorylated
form retinoblastoma protein was observed (Ouwehand et al.,
2005). These findings are consistent with the upregulated gene
transcription and protein expression of p21 (WAF1/CIP1)
induced by VPA, sodium butyrate, tributyrin (Rocchi et al., 2005)
and helminthosporium carbonum (HC)-toxin (Deubzer et al.,
2008a,b). On this basis, these results suggest that p21 could be
involved in cell growth inhibition and potentially in the induction
of differentiation exerted by such HDACi in neuroblastoma
cells. This is supported by other reports highlighting the p21-
dependent differentiation of leukemic cells by the HDACi VPA
(Gurvich et al., 2004). Furthermore, combined treatments of
neuroblastoma cells with VPA and the COX-2 inhibitor celecoxib,
or either sodium butyrate/vorinostat with the differentiation
inducing agent, retinoic acid, also enhanced the induction of
p21 (WAF1/CIP1) in neuroblastoma cells when compared to the
single agent treatment arms alone (De los Santos et al., 2007;
Chen et al., 2011).

The ability of HDACi to promote p21 expression has been
observed across multiple cancer types, and also with various
different HDACi (Zhao et al., 2006; Vinodhkumar et al., 2008).
From a mechanistic viewpoint there may also be a number
of different pathways through which HDACi treatment results
in this increased expression of p21. This includes the elevated
acetylation of p53, which has been observed following treatment
with tributyrin (de Conti et al., 2013; Ortega et al., 2016), sodium
butyrate (Terui et al., 2003; Ortega et al., 2016), romidepsin (Zhao
et al., 2006), VPA (Thakur et al., 2011), vorinistat (Seo et al., 2011;
Nebbioso et al., 2017), and entinostat (Miller et al., 2011). As an
important tumor suppressor, and key transcriptional activator of
p21, the increased acetylation of p53 is quite likely to be involved
in the response to HDACi in neuroblastoma. This mechanism
may be especially relevant for neuroblastoma, given the low
frequency of TP53 mutations present in these tumors at diagnosis
(Schramm et al., 2015). However, the increased prevalency of
p53 pathway mutations within relapsed neuroblastoma tumors
(Carr-Wilkinson et al., 2010), suggests that HDACi acting via this
mechanism may not be as effective as second line treatments.

Apoptosis Induction
In addition to inducing cell cycle arrest, HDACi have also
been shown to directly activate apoptosis in neuroblastoma cells
(Table 1). PARP cleavage, an end stage marker of apoptosis, was
found to be induced following BL1521, TSA and romidepsin
treatment in a panel of neuroblastoma cell lines (de Ruijter et al.,
2004; Panicker et al., 2010; Francisco et al., 2012). One suggested
mechanism for the direct activation of apoptosis was the
inverse regulation of pro-apoptotic and anti-apoptotic proteins,
as combination treatments incorporating HDACi are known to
increase the expression of caspases and Bid, and promote the
inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and
survivin (Muhlethaler-Mottet et al., 2006). Similarly, the ability of

VPA to promote pro-apoptotic neutrophin receptor signaling by
upregulating p75NTR and sortilin expression has been identified
as an additional mechanism that leads to increased apoptosis
of neuroblastoma cells (Dedoni et al., 2020). Pro-nerve growth
factor (proNGF) induced activation of p75NTR plays a key role in
regulating the survival of neurons and process formation during
early development, neuronal death in the developing and aging
brain, as well as several neurodegenerative diseases (Dechant
and Barde, 2002; Schor, 2005). Prolonged exposure of SH-SY5Y
cells to VPA further predisposed the cells to proNGF-induced
cell death, triggering apoptosis through JNK-mediated caspase
and PARP cleavage (Dedoni et al., 2020). Additionally, studies
evaluating the radiosensitization effect of HDACi also observed
impairment of DNA repair mechanisms by downregulation of
the DNA repair enzyme Ku-86 upon combination with vorinostat
(Mueller et al., 2011).

Other Non-histone Targets
While originally identified as enzymes that catalyze histone
acetylation, a large number of non-histone substrates of HDACs
have also been discovered (Glozak et al., 2005), along with
observations that specific HDACi can regulate acetylation of these
target proteins (Table 1). A key example of this in neuroblastoma
comes from the observation that HDACi can alter the activity of
MAPK pathways, and thereby modulate cellular processes such
as growth, differentiation and apoptosis. In the neuroblastoma
cell line SK-N-SH, HDAC4 siRNA inhibition dose-dependently
suppressed expression of the MAP2K MKK7, causing a reduction
in JNK/c-Jun activity (Wu et al., 2019). Interestingly, MKK7
transcription critically depends on the deacetylation of the
transcription factors SP1 and Kruppel-like factor-5 (KLF5) by
HDAC4, the inhibition of which is paramount in suppressing
the oncogenic JNK/c-Jun cascade involved in glioma cells (Wang
et al., 2019). Decreased phosphorylation levels of c-Jun have
also been observed in glioblastoma cells following inhibition of
HDAC6 (Huang et al., 2020), which is additionally implicated
in neuroblastoma tumorigenesis and metastatic dissemination
(Subramanian et al., 2011; Zhang et al., 2014). These findings
suggest that suppression of MKK7 by the inhibition of class
II HDACs, HDAC4 and HDAC6, may represent a promising
strategy for preventing JNK/c-Jun cascade-mediated formation
of nervous system malignancies.

Another non-histone target, Ku70, was previously identified as
a specific HDAC6 substrate (Subramanian et al., 2011). In other
studies, HDAC inhibition with TSA was shown to promote the
acetylation of Ku70, which drives Bax translocation to the outer
mitochondria membrane and triggers the release of cytochrome
c and onset of caspase-dependent apoptosis in IMR-32 cells
(Subramanian et al., 2005).

MYCN is considered the most predominant oncogene in high-
risk neuroblastoma and growing evidence suggests that protein-
protein interactions between N-Myc and HDACs can cooperate
to repress the expression of specific subsets of genes, and thereby
enhance cancer cell proliferation and inhibit differentiation.
N-Myc has been shown to upregulate HDAC2 gene expression
in neuroblastoma cells, and further recruit HDAC2 to the
cyclic G2 (CCGN2) promoter, repressing CCGN2 expression and
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promoting cell proliferation (Marshall et al., 2010). Additionally,
HDAC5 has also been shown to block neuroblastoma cell
differentiation and induce proliferation through an interaction
with N-Myc (Sun et al., 2014). Taken together, these studies
identify HDACs as novel co-factors in N-Myc oncogenesis and
provide further support for the potential application of HDACi
in the treatment of high risk, N-Myc amplified neuroblastoma. In
fact, long term, continuous exposure to panobinostat has already
been shown to induce terminal differentiation, a reduction of
N-Myc expression and long term survival in tumor bearing
TH-MYCN transgenic mice (Waldeck et al., 2016).

In addition to N-Myc, the related c-Myc is also highly
upregulated or amplified in ∼10% of high-risk neuroblastoma
cases (Zimmerman et al., 2018). Furthermore, the acetylation
of c-Myc has been shown to increase upon vorinostat and
entinostat treatment of leukemic cells, leading to decreased
c-Myc expression and increased TRAIL-mediated apoptosis
(Nebbioso et al., 2017). Therefore, while the use of HDACi to
treat MYCN-amplified tumors has been previously proposed,
their use within this c-Myc amplified/upregulated cohort is also
of significant interest.

Microenvironmental Effects
The impact of HDACi treatment on the different cell populations
that constitute the tumor microenvironment has not been
extensively examined in the context of neuroblastoma. However,
sodium butyrate, vorinostat, TSA and 4-PB have been strongly
implicated in mediating the secretion of the pro-angiogenic
factor VEGF (Tang et al., 2004; Muhlethaler-Mottet et al., 2008).
Entinostat has also been shown to repress angiogenesis in vivo
by decreasing tumor vasculature in a neuroblastoma xenograft
model (Jaboin et al., 2002). Further to this, the efficacy of
antiangiogenic agents is known to be greatly improved when
combined with other anticancer drugs (Jain, 2005). Studies
evaluating the combination of the angiogenesis inhibitor ABT-
510 and the HDACi VPA noted significant reductions in the
microvascular density of neuroblastoma xenografts (Yang et al.,
2007). In addition, the number of structurally abnormal vessels
was reduced, suggesting that the combination of both agents
can promote the transient “normalization” of tumor vasculature
that has been reported with other antiangiogenic agents and
may allow for chemo-sensitization, efficient oxygen exchange and
drug delivery (Jain, 2005; Kerbel, 2006).

CHALLENGES AND RESISTANCE
MECHANISMS

Whilst HDACi safety and efficacy have been evaluated in
several pediatric clinical trials (Table 2), little reporting
eventuated from these trials, suggesting that a lot more
work still needs to be done to develop HDACi for the
treatment of neuroblastoma. In particular, pharmacokinetic
properties such as poor solubility and relatively short half-
life are recurring issues that require further optimization
(Konsoula et al., 2009). Strategies aimed at overcoming this
issue include the development of HDACi based prodrugs

which contain a quiescent compound that is converted to
an activated state in vivo by enzymatic or chemical reactions
(Fan et al., 2020). Considered a promising strategy for clinical
optimization, HDACi prodrugs have led to enhanced targeted
cancer tissue delivery of HDACi by improving bioavailability,
membrane permeability and regulating the half-life and release
profile to ensure effective uptake within the nucleus. Despite
this, extensive research in prodrug development is required
to further understand the physiochemical and biological
properties of active agents, as well as the enzymatic and/or
chemical mechanisms and observed toxicities that occur during
metabolism (Fan et al., 2020).

Our overall understanding of the role of HDACs in cancer and
the broad application of HDACi is also continuously evolving.
Commonly used broad-spectrum, pan-HDAC inhibitors have
been shown to be effective within both in vitro and in vivo
settings, but are not particularly useful for identifying or
specifically targeting the particular HDAC isoform that may
be responsible for promoting the tumorigenic behavior of
neuroblastoma cells. In response to this, considerable efforts are
being made to develop isoform-selective deacetylase inhibitors
such as tubacin (Lee et al., 2013), which selectively inhibits
HDAC6, and PC-34051, a selective HDAC8 inhibitor (Estiu et al.,
2010). The development of such isoform-specific HDACi will
provide further insights into the specific molecular mechanisms
of HDACs in neuroblastoma, and may also provide the specificity
required for future precision medicine approaches.

Further to this, rapid transcriptomic or proteomic
anlaysis following the over-expression of specific HDACs
and transcriptional complexes may provide further insight via
systems-level based approaches implemented to predict relevant
drug targets and monitor undesired off-target effects (Milazzo
et al., 2020). Understanding the structure and functional of
these multi-protein HDAC complexes may also allow for the
design of novel inhibitors that prevent interactions between
protein subunits. A pertinent example of this is the specific
targeting of the CoREST complex, which consists of HDAC1/2,
the scaffolding protein CoREST, and lysine specific demethylase
1 (LSD1) (Kalin et al., 2018). This was recently achieved
through the development of a hybrid agent, Corin, which
was derived from the class I HDACi entinostat and an LSD1
inhibitor, and exhibited superior anti-proliferative effects in
several melanoma and cutaneous squamous cell carcinoma lines
(Kalin et al., 2018). This direction of preferentially targeting
epigenetic regulatory complexes through hybrid functionality
offers novel and unique therapeutic opportunities over and above
mono-functional HDACi.

Resistance to treatment with HDACi is also a growing concern
that may impact the therapeutic application of this compound
class (Robey et al., 2011). To date, the exact mechanisms
underlying resistance to HDACi in neuroblastoma remains
largely unknown, although somatic heterozygous mutations in
the genes encoding histones H3.1 and H3.3 are observed in
pediatric high-grade gliomas (Liu et al., 2014), and truncating
mutations of HDAC2 have been attributed to resistance to
traditional HDACi in colorectal cancer (Ropero et al., 2006).
Findings such as these may prove useful as patient-specific
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biomarkers that can predict resistance or sensitivity to HDACi
(Marks, 2010), although more general mechanisms, such as drug
efflux, aberrant cellular antioxidant mechanisms and elevated
anti-apoptotic proteins have also been shown to circumvent
HDACi-induced cell death across a number of tumor types (Lee
et al., 2012). For example, P-glycoprotein (P-gp), which confers
resistance by mediating the ATP-dependent efflux of drugs, has
been observed at increased levels and implicated in resistance to
the HDACi romidepsin in T-cell lymphoma (Piekarz et al., 2004).
High levels of the redox-regulating protein thioredoxin are also
known to protect transformed cells from oxidative damage by
scavenging the reactive oxidative species generated by treatment
with HDACi (Marks, 2006; Karlenius and Tonissen, 2010).
Fittingly, reduced sensitivity to vorinostat has been correlated
with increased expression of thioredoxin in acute myeloid
leukemia patients (Garcia-Manero et al., 2008). Additionally,
overexpression of the anti-apoptotic survival protein BCL-2 has
also been associated with resistance to vorinostat, romidepsin,
and panobinostat in patients with cutaneous T-cell lymphoma
(Robey et al., 2011), further protecting transformed cells from
HDACi-induced cell death. The breadth of these potential
resistance mechanisms is possibly a reflection of the plethora of
different mechanisms of action for HDACi in neuroblastoma and
other tumor types. Therefore, these findings further highlight the
need for an increasingly detailed understanding of the specific
mechanisms that both emerging, and existing, HDACi utilize to
exert their therapeutic benefit in neuroblastoma.

CONCLUDING REMARKS

Whilst HDACi are an emerging class of effective targeted
anticancer agents, more work is required to determine how
these agents might best be deployed to improve treatment
outcomes for neuroblastoma patients. Pre-clinical studies have
already provided insight into the histone and non-histone
targets of some HDACs in neuroblastoma cells, which together
regulate cell proliferation, cell migration and cell death, as
well as playing a role in angiogenesis. Clinical analysis has
also highlighted the significant correlation between HDAC8
and HDAC10 expression and patient outcome, suggesting their
potential utility as predictive biomarkers of therapeutic response
to HDACi in neuroblastoma. Compelling evidence also suggests
that HDACi may sensitize tumors to current standard-of-care

chemotherapy, which could offer urgently needed, improved
treatment options for high-risk neuroblastoma patients. In
this regard, the timing of HDACi administration relative to
treatment with secondary agents should also be considered in
the development of effective combination treatments. Given
the ability of HDACi to alter the expression of both pro-
and anti-apoptotic proteins, priming tumors with HDACi and
allowing time for these changes to occur before treatment with
chemotherapy may represent an alternative approach that may
both maximize efficacy and reduce toxicity (Mohammad et al.,
2019). However, to aid the advancement and adoption of HDACi
in the clinic, additional work needs to be done to more widely and
systematically profile the function of HDACs in neuroblastoma in
order to determine the consequences of specific HDAC inhibition
in a manner that simultaneously accounts for patient-specific
expression profiles, potentially redundant or opposing roles of
HDACs and the overlapping specificity of HDACi. Clearly, until
both the functional and therapeutic complexities of this enzyme
family are fully mapped, their promising clinical utility may not
be fully realized.
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