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A complex tissue contains a variety of cells with distinct molecular signatures. Single-cell

RNA sequencing has characterized the transcriptomes of different cell types and

enables researchers to discover the underlying mechanisms of cellular heterogeneity.

A critical task in single-cell transcriptome studies is to uncover transcriptional differences

among specific cell types. However, the intercellular transcriptional variation is usually

confounded with high level of technical noise, which masks the important biological

signals. Here, we propose a new computational method DiffGE for differential analysis,

adopting network entropy to measure the expression dynamics of gene groups among

different cell types and to identify the highly differential gene groups. To evaluate

the effectiveness of our proposed method, DiffGE is applied to three independent

single-cell RNA-seq datasets and to identify the highly dynamic gene groups that exhibit

distinctive expression patterns in different cell types. We compare the results of our

method with those of three widely applied algorithms. Further, the gene function analysis

indicates that these detected differential gene groups are significantly related to cellular

regulation processes. The results demonstrate the power of our method in evaluating the

transcriptional dynamics and identifying highly differential gene groups among different

cell types.

Keywords: network entropy, differential genes, protein interaction network, single-cell transcriptome, gene

expression

1. INTRODUCTION

A complex tissue contains a variety of heterogeneous cell types, each with its own distinct features
and function (Guo et al., 2017). Single-cell RNA sequencing (scRNA-seq) has allowed researchers
to quantify gene expression at a cellular resolution (Jaitin et al., 2014; Wu et al., 2014). Given
the scRNA-seq data of a population of cells, one of the fundamental data analysis tasks involves
characterizing cellular heterogeneity and quantifying such substantial variability via differential
analysis (Stegle et al., 2015). Gene expression is inherently stochastic, and some intercellular
variation arises from transcriptional bursting of individual genes or coordinated fluctuations of
multi-gene networks (Soltani et al., 2016). Generally, the objective of differential analysis is to
searching for those genes exhibiting significant differences in abundance associated with different
cell types (Jaakkola et al., 2017). This is a key step for downstream analysis, such as identifying
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developmentally regulated genes, understanding the
functionality and cell fate (Trapnell et al., 2014).

There are a plethora of approaches that have been proposed
to detect differential genes (Wang et al., 2019). Some methods
are originally developed for differential expression analysis of
bulk RNA-seq data. The widely applied method DESeq adopts a
negative binomial distribution model count data, with mean and
variance linked by local regression (Anders and Huber, 2010).
An overdispersed Poisson model is used in the method edgeR to
account for both biological and technical variability (Robinson
et al., 2010). Limma is based on linear modeling and has shown
good performance in previous comparison studies (Ritchie et al.,
2015). As these methods target the detection of differentially
expressed genes of overall expression between the populations,
they are hard to take full advantage of the rich information
provided by single-cell RNA-seq data. Recently, researchers have
designed several new methods to detect differential genes from
single-cell transcriptomes. SCDE detects differentially expressed
genes based a two-part joint model, which can respectively
accommodate multi-model expression values and drop-out
events (Kharchenko et al., 2014). MAST represents the zero
counts and positive expression values by a hurdle model, and
further adopts logistic regression and linear regression to identify
differential genes for each part (Finak et al., 2015). Monocle2
applies generalized additive models to identify differential genes
(Qiu et al., 2017). DEsingle also exploits zero-inflated negative
binomial model to estimate the proportion of real and dropout
zeros, and to detect three types of differential genes in scRNA-
seq data (Miao et al., 2018). As most of the available methods
perform a pairwise comparison of single gene, they might neglect
the dependencies and information among genes. As previous
research show that genes in the same pathway tend to correlate in
expression, the network structure of genes can boost differential
analysis (Dona et al., 2017). Therefore, to reduce the impact of
the noises existed in the scRNA-seq data and increase predictive
power, it would be necessary to exploit both the expression levels
and the interaction information of these genes.

To address this issue, we propose DiffGE, a new
computational method for differential analysis from single-
cell transcriptome. As genes in the same pathway tend to
exhibit strong co-relationship and have consistent changes
in the direction of expression levels, DiffGE adopts network
entropy to evaluate the variation of gene groups, which takes
the dependencies and interactions of genes into account, and
further identifies highly dynamic gene groups across different
cell types. We apply DiffGE to three real scRNA-seq datasets
from developmental and disease studies. The experimental
results demonstrate that DiffGE is effective in evaluating the
transcriptional dynamics and identifying highly differential gene
groups. It facilitates general comparisons of scRNA-seq data sets,
potentially deepening our understanding of how distinct cell
states respond to perturbation, disease, and evolution.

2. MATERIALS AND METHODS

2.1. Overview of the Proposed DiffGE
As the intercellular variation arises from transcriptional bursting
of individual genes or coordinated fluctuations of multi-gene

networks, we propose a new computational method DiffGE,
using network entropy to evaluate the expression variation of
gene groups and identifying the significant differential gene
groups from scRNA-seq data. As illustrated in Figure 1, the
proposed method consists of three main steps. First, clustering
genes based on gene expression similarity. Second, matching the
identified genes cluster with PPI network. Third, calculating the
network entropy of gene clusters across different cell types and
identifying the highly differential gene groups. In the following,
we describe each step in detail.

2.1.1. Step 1. Clustering Genes Based on Gene

Expression Matrix
Let S denote a collection of single cells from an scRNA-seq
experiment, and G denote a set of annotated genes measured in
the experiment. E represents the gene expression matrix, where
esi ≥ 0 be the expression level of the ith gene in the sth cell
(i ∈ G, s ∈ S). Based on the gene expression matrix, we utilize
EM clustering method to partition these genes into K clusters,
which are represented as a collection of K subsets of genes, C =

{ck, k = 1, 2, ...,K}.

2.1.2. Step 2. Matching the Identified Genes Cluster

With PPI Network
For these identified gene clusters, the calculation of their network
entropies requires estimating the interaction probabilities among
genes. Based on the assumption that two genes will have a

greater interaction probability when they are known to interact
at the protein level (Banerji et al., 2013), we integrate a
comprehensive protein-protein interaction (PPI) network with
the gene expression profile of given cell types. We retrieve the
protein interaction network from the STRING database, which
brings together protein interactions from several distinct sources,
including experimental data, computational prediction methods
and public literature collections. Then the genes in each gene
cluster are matched with the downloaded PPI network. If any two
genes have an edge in the corresponding PPI network, the edge
is recorded. According to the gene expression profiles of different
cells, we can obtain the corresponding PPI-expression networks
for each gene cluster.

2.1.3. Step 3. Calculating the Entropy of Gene

Clusters on Different Cells
In the PPI-expression network of any gene cluster k, if gene i is
connected to gene j, where esi and esj represent the expression
levels of gene i and gene j in the cell s, respectively. Similar with
previous publications (Guo et al., 2017; Teschendorff and Enver,
2017), the network entropy is calculated as below:

First, the normalized gene expression values of a single cell (or
a cell type) are used to assign weights to the edges of the PPI-
expression network. Specifically, for a given gene neighbor j of
gene i in the network, we define the edge weight by the product:

Ws
ij = esi ∗ esj

We interpret these weights as interaction probabilities between
neighboring genes. In a cell with high expression of gene i and
gene j, two genes are more likely to interact than those with low
expression of i and/or j (Teschendorff and Enver, 2017). Based
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FIGURE 1 | The schematic flowchart of DiffGE. (A) Clustering gene based on gene expression matrix. (B) Matching gene clusters with PPI network. (C) Calculating

the entropy of gene clusters on different cells and identifying highly dynamic gene groups.

on the weights, the activity value of gene cluster k on cell s is
calculated by:

Ws
k =

∑
i,j∈Ck

Ws
ij

nk

Where Ck is the gene cluster k, and nk is the number of genes
in gene cluster k. The resulted Ws

k
represents the activation

probability of the gene group k in cell s. The more genes of group
k expressed in cell s, the higher the probability that the gene group
is activated by the gene expression in s.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 October 2020 | Volume 8 | Article 588041

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Gan et al. Identification of Differential Gene Groups

Then the network entropy for gene cluster k among different
cells, denoted by Ek, is computed according to

Psk =
Ws

k∑
k∈C W

s
k

Ek = −

S∑

s=1

Pks ln Pks

Where Ps
k
is the ratio of gene cluster k to the sum of the activity

values of all gene clusters in cell s, and C represents the set of
gene clusters.

Based on this model, the network entropy gives an average
measure of expression variation in these single cells. Highly
differential and plastic gene groups would be characterized by
a state of high network entropy. For those gene groups, we sort
the calculated network entropies in a descending order and select
the gene clusters with significantly higher network entropies as
highly differential gene groups. To obtain a proper number of
gene clusters, we choose the top 10% of the gene clusters for
further analysis.

2.2. Evaluation Metrics
To evaluate the performance of our proposed method, we adopt
two different metrics. The first measurement is to evaluate the
accuracy using receiver operating characteristic (ROC) curves.
The area under ROC curve (AUC) is calculated by the R package
ROCR. The second metric is to measure the precision and the
recall rate of detecting differential genes, which are calculated as
the previous study (Jaakkola et al., 2017). Let DEfull be the set
of detected differential genes in the full data set, and DEsubset be
the set of detected differential genes in a subset of the data. The
precision and the recall are respectively defined as:

Precision =
DEfull ∩ DEsubset

DEsubset

Recall =
DEfull ∩ DEsubset

DEfull

where ∩ denotes in the intersection between two sets. If the
number of differential genes detected in the subset is 0, the
precision is considered as missing.

2.3. Datasets
To evaluate the performance of the proposed DiffGE for
differential expression analysis in scRNA-seq data, we apply
it to three independent real scRNA-seq datasets from both
Homo sapiens and Mus musculus. In detail, the first scRNA-
seq data set is from the study by Itay Tirosh et al. The
single-cell transcriptome that was sequenced in this study
is available at GEO under the accession number GSE72056
(Tirosh et al., 2016). The data set includes gene expression
profiles from both malignant and benign cells of melanoma.
Specifically, the benign cells consist of six different subtypes of
cells. The second scRNA-seq dataset, originated from a study

by Islam et al. (2011), contains 48 mouse embryonic stem cells
and 44 mouse embryonic fibroblasts. It is available in GEO
database under accession number GSE29087. The third scRNA-
seq dataset (GSE59114) is from a study by Kowalcyk et al.,
which consists of long term hematopoietic stem cells (LTHSC)
(Kowalczyk et al., 2015).

The expression data transformed by logTPM are used as
inputs of different methods. Since the number of genes in the
data set is much larger than the number of cells, we utilize two
types of gene filters for these scRNA-seq datasets (Jaakkola et al.,
2017). First, in order to alleviate the effect of drop-out events
on the following analyses, the genes with zero read count in all
cells are firstly filtered out (Ji and Ji, 2016). Meanwhile, as the
ubiquitous and rare genes are not informative, they are filtered
out for further analysis. In detail, if the genes are expressed in less
than v% of cells, they are regarded as rare gene. Ubiquitous genes
are defined as those that are expressed in at least (100-v)% of cells.
Here, as the previous study (Kiselev et al., 2017), we set v as 10.

3. RESULTS

3.1. Performance Comparison
To validate the utility of DiffGE, we compare it with three
widely used methods, including Limma, MAST and Monocle2.
Specifically, Limma is based on linear modeling and has shown
good performance on bulk RNA-seq data (Ritchie et al., 2015).
MAST and Monocle2 are proposed for the analysis of scRNA-
seq data. MAST adopts logistic regression and linear regression
to identify differential genes for each part (Finak et al., 2015).
Monocle2 utilizes reversed graph embedding to sort cells and
analyze differential gene expression (Qiu et al., 2017). These
methods are applied to two different scRNA-seq data sets, to test
their ability of detecting differential genes among different cells.
These differential expression methods are tested following the
instructions and recommendations of their respective software
packages. At the same time, for a fair comparison, we vary
different values of parameters for these compared methods and
reported the best results.

We first test these algorithms on the LTHSC data set, which
is a real single-cell dataset from the study by Kowalczyk et al.
Cells with very low expression rates are filtered, and we focus
on a total of 89 cells from young mice and 120 cells from
old mice (Kowalczyk et al., 2015). As in the comparison study
(Jaakkola et al., 2017), to estimate the accuracy of these methods,
we consider the genetic data detected from the complete data
as the gold standard. We respectively extract 10, 30, 50, 70,
and 90% of the total cells to form a subset, and each subset
is randomly selected and repeated 10 times. We then compute
the precision and recall rate. Figure 2 show the performance
of the four methods on different subsets. Figure 2A illustrates
the numbers of the identified highly differential genes of
different methods. Overall, DiffGE detects the largest number
of differential genes. Limma and Monocle2 have similar smaller
numbers of detections. As the number of cells in the subgroup
increases, the number of detections increases. The reason might
be that the variation of gene expression patterns is higher when
there are more cells in the subgroup. The precision and recall
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rates of different methods are illustrated in Figures 2B,C. As
DiffGE detects more differentially expressed genes, the recall
rate is higher than those of the other three methods. When
there are more cells in the subgroup, these methods detect more
differential genes. Accordingly, the recall rates of these methods
gradually increases. At the same time, DiffGE shows a higher
precision. In detail, when the number of cells is >30% of the
total number, the precision of DiffGE is higher than those of other
methods. When the number of cells is 90% of the total set, these
tested methods all have relatively high precision.

Next, we validate the accuracy and robustness of DiffGE

using the dataset from Islam et al. (2011). For validation of the

detections, the results of Moliner et al. (2008) are used. The

detections of different methods are evaluated by the areas under

the receiver operating characteristic (ROC) curve (AUC). The
ROC curves together with the corresponding AUC values of

different methods are illustrated in Figure 3. For this dataset,

we assess the detection based on the difference in expression
of mouse ES and MEF cells. From the comparison result, we

observe that our proposed DiffGE perform better than the other

three methods. DiffGE produces a higher AUC value (0.631),

followed by limma and MAST, while Monocle2 shows the overall
lowest performance.

FIGURE 3 | ROC curves of the three differential expression methods on the

Islam dataset. Areas under the ROC curves (AUC) are shown in the

parentheses.

FIGURE 2 | Performance comparison among DiffGE, Limma, MAST, and Monocle2 on the LTHSC datasets. (A) Number of detected differential genes. (B) Precision.

(C) Recall rate.
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3.2. Identifying Highly Differential Gene
Groups
To evaluate the performance of DiffGE, we apply it to the
melanoma dataset. Based on the expression pattern, we first
divide these genes into different gene groups. To identify those

genes that are highly differentially expressed among different

subtypes, we compute the network entropies of these gene

groups among the six subtypes of melanoma. By ranking the

gene groups with the calculated entropy, we focus on the top

three gene groups, including 1,696 differential genes. For further

TABLE 1 | Functional enrichment of differential gene groups among different melanoma subtypes.

Term type Term name P-value Term type Term name P-value

GENE CLUSTER1

BP mRNA splicing 2.83E-10 MF Poly(A) RNA binding 1.60E-15

BP T cell receptor signaling pathway 5.01E-07 CC Nucleus 2.13E-07

BP Cell-cell adhesion 1.15E-06 CC Spliceosomal complex 2.80E-06

BP Adaptive immune response 2.76E-06 MF Protein N-terminus binding 9.87E-04

BP Termination of RNA polymerase II transcription 5.37E-05 KEGG Spliceosome 1.82E-05

BP Apoptotic process 8.82E-04 KEGG Viral carcinogenesis 4.31E-04

GENE CLUSTER2

BP Termination of RNA polymerase II transcription 1.26E-04 MF Protein binding 3.74E-18

BP Positive regulation of transcription 2.46E-04 MF Poly(A) RNA binding 5.83E-12

BP Tumor necrosis factor-mediated signaling pathway 8.93E-04 CC Nucleoplasm 3.48E-15

BP MRNA processing 4.95E-04 KEGG Spliceosome 8.95E-10

GENE CLUSTER3

BP Oxidation-reduction process 4.13E-07 CC Extracellular exosome 4.63E-13

BP Negative regulation of apoptotic process 1.06E-04 MF Protein binding 3.73E-09

BP Translational initiation 4.27E-04 CC Cell-cell adherens junction 1.35E-06

BP Regulation of mRNA stability 6.09E-04 KEGG Antigen processing and presentation 3.98E-04

FIGURE 4 | Enrichment analysis of differential genes. (A) The annotation results are classified according to the type of KEGG pathway. (B) The top 20 pathways of

KEGG enrichments.
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analysis of the functional roles of the identified differential gene
groups, we perform gene ontology (GO) enrichment analysis
via DAVID bioinformatics resources (Huang et al., 2007), and
summarize the involved key biological processes and pathways
in Table 1. The significant enrichment lists are obtained with p-
value < 0.001. Overall, for the gene groups with high network
entropies, we observe that those genes exhibit enrichment for
transcription regulation and cell development functions. For
example, GO terms related to regulation, such as “Termination
of RNA polymerase II transcription” and “Positive regulation of
transcription” are enriched in the first and second differential
gene groups; GO terms related to tumor, such as “Tumor necrosis
factor-mediated signaling pathway” and “Apoptotic process”
are enriched in these differential gene groups. The enrichment
implys that the differential expression of cell-cycle and cell
proliferation genes might be a key factor in tumor development.
These results support previous findings that differential genes
play critical roles in cell type specific regulation function.

According to the KEGG database, the differential genes are
enriched in 304 Pathways. The annotation results are classified
according to the type of pathway (Figure 4A). The results
show that the pathways of differential genes are closely related
to metabolism, human disease, and organismal system. The
KEGG pathway enriched bubble map can clearly show the
significant enrichment pathway of differentially expressed genes.
The abscissa indicates the enrichment factor. The larger the value,
the more significant the differential genes are in the pathway.
The size of the bubble indicates the number of genes. The
larger the bubble, the more the number of genes are enriched
in the pathway. The depth of the bubble indicates the level
of significance, and the redder color indicates the higher the
significance of enrichment to the pathway. The figure shows
the top 20 pathways which the enrichment is most reliable
(Figure 4B).

4. DISCUSSION

Although the advent of single-cell RNA sequencing has provided
new insights into cell dynamics, it has also brought new
computational challenges. On one hand, the expression data
obtained by scRNA-seq is relatively noisy, and then relevant
models need to be considered. On the other hand, given a huge

cell population, it is challenge to take on the task of unraveling
cell heterogeneity. Analysis of differential gene expression is
essential for almost all single-cell transcriptional studies. As
previous studies show that genes in the same pathway tend to
correlate in expression, the network structure of genes can boost
differential expression analysis. In this study, we propose a new
computational method, DiffGE, for identifying differential genes
from scRNA-seq data. DiffGE extends the notion of local entropy
to network entropy, which incorporates protein interactions
to improve sensitivity and specificity of detecting differentially
expressed genes from scRNA-seq data. It first groups genes,
calculates the network entropy according to the PPI network
of each gene group, and then detects highly differential genes
groups by selecting gene clusters with higher network entropies.
We evaluate the detection accuracy of the proposedmethod using
three real scRNA-seq datasets and compare its performance with
three widely-used differential expression analysis methods. The
comparison results indicate that employing the gene interaction
network can make a significant contribution to the accuracy and
the proposed method has an powerful performance in detecting
highly differential genes.
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