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The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression.
It is overexpressed or deregulated in human cancers of diverse origins and plays a key
role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator
for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated
in many human cancers. HIF mediates the primary transcriptional response of a wide
range of genes in response to hypoxia. Earlier studies focused on the inhibition of
MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help
cells survive under low oxygen conditions. Emerging evidence suggests that MYC and
HIF also cooperate to promote cancer cell growth and progression. This review will
summarize the current understanding of the complex molecular interplay between MYC
and HIF,
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INTRODUCTION

Cancer cells undergo significant metabolic changes to sustain the rapid cell proliferation, adapt
to environmental challenges such as hypoxia, and promote invasion and metastasis. While HIF
signaling is essential for normal cell adaptation to oxygen homeostasis, it also plays a key role
in the growth of solid tumors, which inevitably contain poorly vascularized regions due to rapid
tumor cell proliferation (Brahimi-Horn and Pouyssegur, 2009; Rankin and Giaccia, 2016; Lee et al.,
2020). Tumor hypoxia is typically correlated with more aggressive phenotype and poor prognosis
partly due to its contribution to therapeutic resistance and tumor cell invasion and metastasis
via activating various cell survival pathways. MYC signaling also plays pivotal roles in regulating
cancer cell metabolism and vasculogenesis (Baudino et al., 2002; Dang, 2012b; Stine et al., 2015).
In this review, we focus on the current understanding of the molecular interplay between MYC
and HIF in cancer cell metabolism, growth and progression as well as its potential implication in
cancer therapy.

The MYC oncoprotein is a master regulator of transcription that activates or represses gene
expression to coordinate diverse cellular processes, including cellular division, differentiation,
apoptosis, angiogenesis, DNA replication, RNA processing, metabolism, and ribosome biogenesis
(Bretones et al., 2015; Kress et al., 2015; Baluapuri et al., 2020). MYC heterodimerizes with the
MAX protein, via its C-terminal basic helix-loop-helix-leucine zipper () HLH-LZ) domain, to bind
to the consensus CACGTG (E-box) elements on chromatin. At the N-terminus of MYC lies its
transactivation domain (TAD) that contains the conserved Myc box I (MBI) and MBII essential for
both transcriptional activation and repression (Farrell and Sears, 2014; Tu et al., 2015; Baluapuri
etal., 2020). Two important phosphorylation sites, Threonine 58 (T58) and Serine 62 (S62), within
MBI are critical for the regulation of MYC stability and activity in response to cell growth signals
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(Farrell and Sears, 2014; Chen Y. et al., 2019). The central
region of MYC contains the MBIIla, MBIIIb, and MBIV
which are important for transcriptional activity and pro-
apoptotic activity (Cowling et al.,, 2006; Kurland and Tansey,
2008; Thomas et al, 2015, 2016). For example, MBIIIa
interacts with the histone deacetylase HDAC3 to suppress
transcription and MBIIIb associates with WDR5 to facilitate
H3K4 methylation and MYC recruitment to chromatin (Thomas
et al, 2015), whereas MBIV association with transcriptional
coregulator host cell factor-1 (HCF-1) is critical for MYC-
driven tumorigenesis (Thomas et al., 2016; Figure 1A). Recent
genome-wide and gene specific studies have revealed several
emerging models for MYC function, including specific-gene
regulation, global gene activation, and gene-specific affinity
models (Kress et al., 2015; Baluapuri et al., 2020). Together, MYC
controls the expression of genes involved in almost all aspects
of tumor hallmarks. Consistent with its roles in oncogenesis,
MYC is frequently overexpressed in human cancers via
various mechanisms, including gene amplification, chromosomal
translocation, increased MYC translation, deregulated MYC
protein stabilization, or constitutive activation of upstream
pathways such as Wnt, Notch, Hedgehog signaling (Nesbit
et al, 1999; Dang, 2012b; Kress et al, 2015). High levels
of MYC expression is associated with poor patient outcomes.
Transgenic overexpression of MYC induces tumorigenesis in
mice and inactivation of MYC in MYC-driven tumors causes
tumor regression in multiple tumor models (Gabay et al., 2014),
further demonstrating the key role for MYC in tumorigenesis.
The hypoxia-inducible factors (HIFs) are transcription factors
that regulate the transcription of a large array of genes involved
in metabolism, cell survival, proliferation, migration, invasion,
angiogenesis, immune evasion and resistance to therapies in
response to hypoxia (Brahimi-Horn and Pouyssegur, 2009;
Rankin and Giaccia, 2016; Lee et al., 2020) and are recognized
as the master regulators of oxygen homeostasis (Semenza, 2014).
HIFs are heterodimers consisting of an oxygen-regulated o-
subunit and a non-oxygen-regulated stable § subunit. HIFa
consists of three isoforms: HIF1a, HIF2a, and HIF3a (Brahimi-
Horn and Pouyssegur, 2009; Semenza, 2014). Both HIF o and
B subunits contain a basic helix-loop-helix (bHLH) domain
and the Per-Arnt-Sim homology (PAS) domain, which accounts
for the dimerization between the o and f subunits (Wang
et al., 1995). HIFla and HIF2a dimerizes with HIFIf to
bind to the 5-RCGTG-3 (R = A or G) core sequence of
the hypoxia-response elements (HREs) on DNA to regulate
gene expression (Semenza et al., 1996). The C-terminal half
of HIFa contains the TAD that is critical for the recruitment
of the p300/CREB-binding protein (CBP) coactivators (Arany
et al,, 1996). In the middle region of HIFa lies the oxygen-
dependent degradation domain (ODDD), which regulates HIFa
protein stability (Figure 1B). Under normoxic conditions, two
proline residues at the ODDD undergo hydroxylation by prolyl-
hydroxylase domain enzymes (PHD1-3) encoded by the EGLN1-
3 genes (Semenza, 2014; Ivan and Kaelin, 2017; Semenza,
2020). Hydroxylation of proline residues enables recognition
of HIFa by the E3 ligase, von Hippel-Lindau protein (pVHL),
thereby promoting ubiquitination and proteasome-mediated

degradation of HIFa (Ivan et al., 2001; Jaakkola et al., 2001;
Yu et al,, 2001). In addition, factor inhibiting HIF1 (FIHI)
inhibits HIFa activity by hydroxylating an asparaginyl residue
at the C-terminal TAD of the HIFla and HIF2a to block
the binding of p300/CBP coactivators (Lando et al., 2002a,b).
PHD utilizes O,, ferrous iron, and a-ketoglutarate (2-OG) as
substrates (Markolovic et al.,, 2015). In response to hypoxia,
the activity of PHD is first inhibited due to lack of sufficient
oxygen, resulting in HIFa escaping the hydroxylation and
consequent stabilization. The enzymatic activity of FIHI is
also dependent on substrates oxygen and 2-OG and ferrous
iron, and thus its activity is also inhibited in response to
hypoxia. Consequently, the stabilized HIFa translocates into the
nucleus, dimerizes with HIFf and activates the transcription
of hundred genes involved in cellular adaptation and survival
under hypoxic conditions, including genes involved in glycolysis,
erythropoietin (Epo) and VEGE, etc. While HIFla and HIF2a
cooperatively regulate genes involved in angiogenesis and
metastasis (Gao et al, 2009), HIFla preferentially induces
genes involved in glycolysis (Hu et al, 2003; Wang et al,
2005) and HIF2a stimulates genes important for tumor growth
and metastasis, amino acid and lipid metabolism, cell cycle
progression and maintaining stem cell pluripotency (Hu et al.,
2003; Covello et al., 2006; Gruber et al, 2007; Xia et al,
2009). Consistent with their role in metabolic reprogramming,
angiogenesis, metastasis, therapeutic resistance (Rankin and
Giaccia, 2016; Lv et al., 2017), HIFs are frequently overexpressed
in various cancer cells (Zhong et al., 1999; Semenza, 2003;
Soni and Padwad, 2017).

THE REGULATION OF MYC BY HIF

In physiological normoxic conditions, MYC and HIF are
expressed at low levels due to rapid protein degradation. Yet,
both are essential for normal cell homeostasis and animal
development. Homozygous deletion of c-MYC is embryonic
lethal at E10.5 as it is essential for normal cell growth and
proliferation (Davis et al., 1993). Homozygous deletion of HIF1a
is also embryonic lethal at E10.5 due to defects in circulatory
system and hematopoiesis (Iyer et al., 1998; Compernolle et al.,
2003; Yoon et al., 2006). HIF2a null mice mostly die by E13.5
but sometimes survive only until birth due to impaired lung
maturation, bradycardia, vascular defects and mitochondrial
dysfunction (Tian et al., 1998; Peng et al., 2000; Compernolle
et al., 2002). It is not clear whether MYC functionally interacts
with HIFs in these development events.

Under hypoxia, MYC activity is inhibited by HIFla as an
adaptive response that promotes cell survival under low oxygen
conditions. Evidence suggests several mechanisms underlying
this inhibition (Figure 2A). First, HIFla can antagonize MYC
transcriptional activity at MYC target genes by interfering with
MYC binding to protein partners. HIFla binds to MAX and
disrupts MYC/MAX complexes, leading to reduced cyclin D2
expression, induction of p2l, and Gl-phase arrest (Gordan
et al., 2007). The MAD family of proteins MAD and MXI1
compete with MYC for binding to MAX, thus inhibiting

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2020 | Volume 8 | Article 590576


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Lietal

MYC and HIF Crosstalk

A | Il lla Ilb \Y;
L[] Tap [ [] L [l [ bHLH-LZ || MYC
1 PN 143 355 439
T58 S62
[T bHLHLZ [ | MAX
1 151
P402 P564 N803
B 1 1 [
1| | bHLH [ PAS [[__obbD__]] TAD | HIF1a
826
P405  P531 N?47
1 1
1| [ bHLH _ [[__PAS |[__opbD ]| TAD | HIF2a
870
JLLbHH [ PAS | [ TAD | ,5 HIF1B
FIGURE 1 | Diagrams of MYC and MAX (A) and HIF proteins (B). MYC and Max dimerize via their bHLH-LZ domains, whereas HIF1a and HIF2a dimerize with HIF18
via their N-terminal bHLH domains. TAD, transactivation domain; bHLH, basic helix-loop-helix; LZ, leucine zipper; PAS, Per-Arnt-Sim homology; ODDD,
oxygen-dependent degradation domain.

MYC activity (Conacci-Sorrell et al., 2014). HIF1-dependent
induction of MXI1 under hypoxia directly represses MYC
target genes that are involved in mitochondrial biogenesis,
such as PGCI1f (Zhang et al, 2007), or apoptosis, for
example, ornithine decarboxylase (ODC) (Corn et al., 2005).
Second, HIFla was also shown to directly inhibit MYC
transcriptional activity by DNA-binding site competition. It
was shown that HIFla displaces MYC binding from the
p21 promoter and upregulates the expression of p21 (Koshiji
et al,, 2004). HIFla also competes against MYC for binding
to SP1, a known coactivator of MYC, at the promoters of
MYC target genes, such as MSH2, MSH6, and NBS1, which
encode DNA repair proteins (Koshiji et al., 2005; To et al,
2006), and the recently reported E—type prostanoid (EP4)
receptors (Seira et al, 2018). Third, several studies showed
that HIF promotes proteasomal degradation of MYC under
chronic hypoxia condition (Zhang et al., 2007; Wong et al,,
2013). HIF is required for the hypoxia induced degradation
of MYC depending on the cell type and system used (Zhang
et al., 2007; Li et al, 2009; Wong et al., 2013; Zarrabi
et al, 2017). In addition, an early study also showed that
HIFla physically interacts with MYC through its N-terminus
containing bHLA/PAS domains, which is sufficient to induce p21
expression and Gl1 arrest (Koshiji et al., 2004). It remains to be
determined whether such physical interaction directly inhibits
MYC activity.

In contrast to HIFla, HIF2a has been shown to promote
MYC activity. Phosphorylation of HIF2a at T324 by protein
kinase D1 prevents HIF2a from competing with MYC for SP1
binding (To et al, 2006). Instead, overexpression of HIF2a
enhances SP1 activity and promote MYC-driven IL-8 expression
in human microvascular endothelial cells (Florczyk et al., 2011).
HIF2a also enhances MYC activity in VHL-deficient clear cell
renal carcinoma cells (ccRCCs) and primary mouse embryo

fibroblasts (Gordan et al., 2007, 2008). Consistently, HIF2a
deletion reduced MYC target transcriptome in mouse ccRCC
models (Hoefflin et al, 2020). It was shown that HIF2a
promotes MYC activity by stabilizing the MYC/MAX complex
(Zhang et al., 2007; Xue et al,, 2015; Figure 2B). Interestingly,
HIF2a-induced stabilization of MYC/MAX heterodimer is
much stronger than HIFla-induced degradation of MYC
in cancer cells, leading to MYC activation under hypoxia
(Xue et al., 2015).

THE REGULATION OF HIF BY MYC

Emerging evidence has indicated that MYC regulates the levels
and activity of HIFla (Figure 2C). Transient knockdown
of MYC down-regulates HIFla protein levels in multiple
myeloma (MM) cells (Zhang et al., 2009). Overexpression of
MYC in colon cancer and esophageal cancer cells promoted
the expression of HIFla at post-transcriptional level (Chen
et al., 2013; Weili et al, 2019). Overexpression of MYC
significantly stabilizes HIF1a and enhances HIF1a accumulation
under both normoxic and hypoxic conditions in normal
immortalized mammary epithelial cells and breast cancer cells
(Doe et al, 2012). Accumulation of HIFla by MYC leads
to the induction of HIFla targets and is required for MYC-
induced anchorage-independent cell growth and proliferation
(Doe et al,, 2012). Mechanistically, It was shown that MYC
prevents HIF1a degradation via reducing HIFla binding to the
pVHL complex, although it increases the level of pVHL complex
components (Doe et al., 2012). Further, a recent study showed
that MYC promotes pVHL SUMOylation while repressing its
ubiquitination, thereby inhibiting HIFla ubiquitination and
proteasomal degradation (Fu et al, 2016). Besides hypoxia,
HIFla expression can be increased via oxygen-independent
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are high, MYC collaborates with HIFs to induce metabolic rewiring, tumor angiogenesis and CSC renewal, thereby promoting tumor cell growth and progression.
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mechanisms under certain normoxic conditions such as reactive
oxygen and nitrogen species. MYC increases mitochondrial
oxidative phosphorylation (mtOXPHOS) and the generation
of reactive oxygen species (ROS) (Lee et al., 2017). Increased
levels of mitochondrial-generated ROS lead to the stabilization
and accumulation of HIFla by inhibiting PHDs in non-
hypoxic conditions (Patten et al., 2010; Lee et al, 2017).
Supporting this notion, MYC inhibits brusatol-induced HIFla
degradation by increasing mitochondrial ROS production and
subsequent ROS-mediated transition of ferrous iron to ferric iron
(Oh et al., 2017).

MYC may also increase HIFla activity at the chromatin
levels. HIF1a preferentially binds to transcriptionally active loci
marked by the presence of histone H3 lysine 4 methylation
and RNA polymerase II (Xia and Kung, 2009). MYC may
promote chromatin opening by recruiting histone acetyl-
transferase (HAT) and chromatin remodeling complexes (Tu
et al, 2015) and facilitate RNA polymerase II pausing release
(Rahl etal., 2010). MYC binding may be required for recruitment
of transcriptional activators or repressor to the promoter
of HIF1 target genes (Mongiardi et al, 2016). It will be
interesting to examine whether MYC dynamically interplays
with HIFlo at the promoter of genes that are both MYC
and HIF targets, via physical interaction or sequential events
at the promoters.

Recently, MYC has been shown to regulate the HIF2a
expression (Figure 2D). MYC binds to HIF2a gene promoter
preferentially in Scal™ cancer stem cells (CSCs) in a MYC-
driven mouse T-cell leukemia model and the equivalent
ABCG2+ CSC population in human acute lymphoblastic

lymphomas and activates HIF2a expression (Das et al,
2019). HIF2a is known to regulate stem cell function by
inducing the expression of Oct4 (Covello et al, 2006)
and ALKBH5, an m6A demethylase that demethylates
Nanog mRNA and increases Nanog expression (Soleymani
Abyaneh et al, 2018). Indeed, the stem cell factors Nanog
and Sox2 facilitate MYC regulation of HIF2a, playing
a critical role in stem cell renewal and tumor stemness
(Das et al., 2019).

MYC AND HIF COOPERATE TO
REPROGRAM CANCER CELL
METABOLISM AND PROMOTE TUMOR
CELL GROWTH AND PROGRESSION

Cancer cells undergo metabolic switch from oxidative
phosphorylation to aerobic glycolysis even under aerobic
conditions, called Warburg effect (Vander Heiden et al,
2009). This metabolic rewiring is under direct management
by various oncogenes, such as MYC and HIF1 (Cantor and
Sabatini, 2012; Dang, 2012a,b). MYC regulates multiple
stages of cell metabolism and plays a key role in cancer cell
metabolic reprogramming. MYC promotes glucose flux by
inducing the expression of glucose transporterl (GLUT1)
and lactate dehydrogenase A (LDHA) (Shim et al, 1997
Osthus et al., 2000); It also upregulates almost all glycolytic
enzymes, including hexokinase II (HK II), phosphofructokinase
(PFKM), enolase 1 (ENO1), pyruvate dehydrogenase kinasel
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(PDK1), and pyruvate kinase (PKM2) (Shim et al, 1997
Osthus et al., 2000; Li et al, 2003; Kim et al., 2004; Stine
et al, 2015). MYC upregulates hnRNP proteins to regulate
the pyruvate kinase alternative splicing that favors aerobic
glycolysis (David et al., 2010). Furthermore, MYC promotes
mitochondrial biogenesis by stimulating the expression
of mitochondrial transcription factor A (TFAM), a key
mitochondria transcription and DNA replication factor,
and many genes involved in mitochondrial structure and
function (Li et al, 2005). Overall, mitochondrial function
is promoted by MYC, allowing cancer cells to proliferate in
oxygen and nutrient sufficient conditions. Moreover, MYC also
regulates glutaminolysis (Dang et al., 2009; Stine et al., 2015),
which converts glutamine to glutamate by glutaminase and
then to a-ketoglutarate (a-KG) by glutamate dehydrogenase.
a-KG can enter TCA cycle for producing ATP and precursors
for lipid, nucleotide and amino acid biosynthesis. MYC
enhances glutamine uptake and metabolism by directly
stimulating the transcription of glutamine metabolism genes,
such as the glutamine transporter SLC1A5/ASCT2 (Wise
et al., 2008) and glutaminase 2 (GLS2) (Xiao et al, 2015).
MYC also increases the expression of glutaminase 1 (GLS1)
indirectly by transcriptionally repressing miR-23a/b, which
targets the gene 5'-UTR (Gao et al., 2009). Consequently,
deregulated MYC makes cancer cells addicted to glutamine and
deprivation of glutamine causes cell death (Wise et al., 2008;
Cairns et al., 2011).

Similar to MYC, HIFI is also a driver for metabolic
switch from oxidative to glycolysis by upregulating glucose
transporters and most glycolytic enzymes such as HK II,
phosphofructokinase 1 (PFK1), fructose-bisphosphate aldolase
A (ALDOA), ENOI1, PKM2, and LDHA, as well as pentose
phosphate pathway (PPP) enzymes (Iyer et al., 1998; Mathupala
et al., 2001; Kim et al, 2006; Papandreou et al., 2006;
Moldogazieva et al, 2020). In contrast to MYC, both HIF1
and HIF2 inhibit mitochondrial biogenesis in response to
hypoxia. Under hypoxia, HIF1 promotes the transcription and
activity of FOXO3a (Bakker et al, 2007), which represses
a group of nuclear-encoded mitochondrial genes by directly
antagonizing MYC on gene promoters (Jensen et al, 2011).
Transcription of TFAM is facilitated by nuclear respiratory
factor (NRF) interactions with peroxisome proliferator-activated
receptor y coactivator family members (PGCla, PGCIf, and
PRC1) in mitochondria biogenesis (Li et al, 2017). HIF1
also inhibits the transcription of PGCI1f by antagonizing
MYC (Zhang et al., 2007). A recent study shows that both
HIFla and HIF2a contribute to hypoxia-mediated inhibition
of PGCIB and TFAM in human pulmonary endothelial cells
(Zarrabi et al., 2017).

HIF1 directly transcriptionally activates PDK1 which
inactivates pyruvate dehydrogenase (PDH), an enzyme
converting mitochondrial pyruvate into acetyl coenzyme
A, thus blocking pyruvate metabolism via the Krebs cycle
(Kim et al,, 2006; Papandreou et al., 2006). PDKI not only
reduces the mitochondrial oxygen consumption rate but
also suppresses reactive oxygen species (ROS) production
(Papandreou et al., 2006). HIF1 also fine-tunes hypoxic cell

respiration by mediating switches in the subunit composition of
cytochrome ¢ oxidase from COX4-1 to COX4-2 (Fukuda et al.,
2007). Furthermore, HIF1 reduces the overall mitochondrial
mass by inducing mitochondrial autophagy. When cells are
subjected to prolonged hypoxia, HIF1-dependent expression
of BNIP3 protein triggers mitochondrial degradation through
autophagy and stops the excessive production of mitochondrial
ROS (Zhang et al, 2008). Such adaptive metabolic response
may reduce energy consuming anabolic synthesis and prevent
increased levels of ROS and cell death to increase cell survival
during hypoxia.

Although HIFla and MYC have opposing effects on
mitochondrial function and biogenesis, they share common
target genes on regulating glycolysis (Figure 2E) such as HK-
II, PFK1, ENO1, LDHA. Most genes of glycolytic enzymes
have MYC and HIF-la DNA binding consensus sequences
(Marbaniang and Kma, 2018). The relative expression levels of
MYC and HIFla proteins determine how they will interplay
with each other during this process. It appears that when
MYC is overexpressed, it overrides the inhibitory effects by
HIFla. HIFla effects on MYC via binding to Max may be
stoichiometrically diminished by increased MYC-Max complex
formation. In Burkitt lymphoma, in which both MYC and
HIFla are highly expressed, HIFla can actually collaborate
with MYC to induce the expression of specific target genes,
such as HK2, PDKI, and vascular endothelial growth factor
(VEGF) (Kim et al., 2007) under hypoxia and confer resistance
to cisplatin treatment (Nakajima et al., 2019). Similarly, high
levels of N-MYC in N-MYC amplified neuroblastoma cells
override HIF1a inhibition of cell cycle progression under hypoxia
and cooperates with HIFla to promote the expression of
phosphoglycerate kinase 1 (PGK1), HK2, and LDHA (Qing et al.,
2010). Ectopic expression of a stable form of HIF1 increases
MYC-mediated tumorigenesis, while knockdown of HIFla in
B-cell lymphoma P493 cells suppresses its tumorigenesis (Gao
et al., 2007). MYC overexpression can override the need
for HIF1 for cell survival and propagation in response to
hypoxia by inducing glutaminolysis and de novo lipogenesis
(Munksgaard Thoren et al., 2017). For example, MYC and
L-MYC amplified small cell lung carcinoma (SCLC) cells are
dependent on glutamine, but not on glucose, for growth and
survival (Munksgaard Thoren et al, 2017). Knockdown of
HIFla in these cells does not affect cell growth and cell
survival at hypoxic conditions (Munksgaard Thoren et al.,
2017). In addition to common targets regulated by both HIF-
la and HIF-20, HIF-2a also stimulates the expression of
specific genes involved in cell cycle progression, amino acid
and lipid metabolism, angiogenesis and vasculature remodeling,
tumor growth, metastasis, stemness as well as regulating
tumor microenvironment (Covello et al., 2006; Keith et al.,
2011; Elorza et al.,, 2012; Rankin and Giaccia, 2016; Hoefllin
et al, 2020). Both MYC (Yue et al, 2017) and HIF-2a
(Elorza et al., 2012) activate the expression of the amino acid
transporter SLC7A5 to promote essential amino acid (EAA)
uptake. Both MYC (Gouw et al., 2019; Casciano et al., 2020)
and HIF-2a (Rankin et al., 2009; Qiu et al., 2015) regulate
lipid metabolism.
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MYC and HIFs also cooperate to promote tumor angiogenesis
(Figure 2E). Under hypoxic conditions, HIF-1a can stimulate the
expression of various pro-angiogenic factors, including VEGE,
VEGF receptors FLT-1 and FLK-1, placental growth factor
(PIGF), platelet-derived growth factor B (PDGF-B), plasminogen
activator inhibitor-1 (PAI-1), the TIE-2 receptor, matrix
metalloproteinases (MMP-2 and MMP-9) and angiopoietins
(ANG-1 and ANG -2) (Hickey and Simon, 2006; Zimna and
Kurpisz, 2015). Among all of these pro-angiogenic factors,
VEGF is one of the most potent mediators of physiologic
and pathological angiogenesis. Tumor angiogenesis can also
be stimulated by MYC (Baudino et al., 2002). It was shown
that oncogenic MYC cooperates with HIFla to trigger VEGF
production and secretion (Kim et al, 2007; Zhang et al,
2009). Although no conserved canonical MYC binding E
box exists on VEGF promoter, MYC binds to the same
genomic region where HIF1 binds (Kim et al., 2007). MYC
also cooperates with HIF2a to promote tumor angiogenesis
and hematogenous metastasis by transcriptional repression
of miR-15-16 in hypoxia (Xue et al, 2015). miR-15-16 is
an important negative regulator of fibroblast growth factor-
2 (FGF2) which was proved to promote angiogenesis and
metastasis (Cao et al., 2011).

The interplay of HIF family proteins with MYC plays
an important role in tumorigenesis and progression. It
has been shown that antioxidants such as N-acetylcycteine
and vitamin C inhibit MYC-driven lymphoma xenograft
growth in vivo by targeting HIF1, which can be rescued
by the expression of oxygen-independent HIF1 mutant
(Gao et al.,, 2007), supporting a key role of HIF1 in MYC-
driven tumors. MYC activation in combination with Vhl
and Ink4a/Arf deletion results in tumors in mice resembling
human ccRCCs (Bailey et al, 2017). Interestingly, HIF-la
expression is frequently lost in ccRCCs correlating with poor
patient survival (Monzon et al., 2011; Shen et al, 2011).
Knockdown of HIF-1a promotes ccRCC cell proliferation and
xenograft tumor growth (Shen et al,, 2011). In VHL deficient
ccRCCs with the expression of HIF-2a, but not HIF-1a,
MYC activity is elevated together with the stimulation of cell
cycle targets, cell proliferation and resistance to replication
stress (Gordan et al, 2008). VHL™/HIF2a" tumors that
show more aggressiveness and proliferative capacity than
VHL /HIFlat tumors (Gordan et al, 2008). These data
suggest that HIF-2a plays a major role in ccRCC initiation
while HIF1a seems to play a role in inhibiting aggressive tumor
behaviors. However, a recent study using Vhl/p53/RbI deletion
mouse model showed that HIF-la is actually essential for
ccRCC formation, whereas deletion of HIF-2a has moderate
effects on tumor onset and growth but leads to increased
intra-tumoral immune activation. Yet, deletion of HIF-
lo in immortalized Vhi/p53 null MEF cells increased cell
proliferation, highlighting the role of HIF-la in inhibiting
proliferation of mouse VAl deletion cells and tumor onset
in the autochthonous setting. These seemingly contradicted
findings by comparing the role of HIF-1a and HIF-2a in cell
culture to that in xenograft models highlights the oncogenic
role of HIF-1la in ccRCC initiation, the altered HIF-loo and

HIF-2a balance in tumor development, contextual genetic
background, and the role of HIF-2a in regulating tumor
microenvironment. It would be interesting to further study
the direct crosstalk of MYC with HIF-1a and HIF-2a in vivo
in MYC activation in combination with Vhl/Ink4a null
ccRCC model. Given the heterogeneity of tumor hypoxia,
the expression of HIF-lo and HIF-2a may differ in different
tumor areas. For example, compared to the cells in the
tumor core, cells in the edge of tumors may exhibit chronic
hypoxia, more stemness features, close interaction with tumor
microenvironment and thus higher expression of HIF-2a
(Mortezaee, 2020). HIF-1a can inhibit MYC to slow cell cycle
progression under severe hypoxia condition whereas in mild
hypoxia, HIF-2a may promote MYC activity by facilitating
MYC-MAX dimerization.

Given the importance of the MYC-HIF interplay in
cancer cells, it would be critical to further understand
how MYC interplays with HIF in jointly regulating the
expression of metabolic genes, mitochondria biogenesis,
and the production of mitochondria intermediates for
nucleotides, fatty acids, and bioamine biosynthesis. Does
MYC set up the basal mitochondria activity while HIF
shift the balance to glycolysis? The interplay may also
heavily rely on the degree of oxygen deprivation and
may differ at mild vs. severe hypoxia or acute vs. chronic
hypoxia. There may also be different interplay in chromatin
and mitochondria.

TARGETING MYC-HIF CROSSTALK FOR
CANCER THERAPY

Given the essential roles of MYC and HIF in tumor
progression and metastasis, there has been great clinical
value in developing inhibitors targeting MYC and HIF as
well as their regulators or downstream targets. Various
approaches have been explored for targeting the MYC
pathway (Whitfield et al, 2017). Although targeting MYC
itself has often proven very challenging because of its
nucleus localization and the absence of a deep surface-
binding pocket, recent studies have shown that Omomyc,
initially designed as a dominant-negative MYC peptide
(Soucek et al, 1998, 2002) that competitively binds to
E-box elements as heterodimer with MAX or homodimer
and suppresses the binding of MYC to E-box (Beaulieu
et al, 2019; Demma et al, 2019; Masso-Valles and Soucek,
2020), has cell-penetrating activity and the therapeutic
potential in vivo in various cancer models with only mild
and reversible side effects, demonstrating its potential in
drug development for directly targeting MYC in cancer
(Beaulieu et al., 2019; Wang et al, 2019; Masso-Valles and
Soucek, 2020). Interestingly, Omomyc strongly inhibited
the expression of a subset of genes directly regulated by
HIFla by reducing HIFla binding to target promoters, thus
inhibiting  hypoxia-dependent  glycolytic ~ reprogramming
and mitochondrial functionality in glioblastoma multiforme
cells (Mongiardi et al., 2016). BET bromodomain inhibitors

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2020 | Volume 8 | Article 590576


https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Lietal

MYC and HIF Crosstalk

such as JQ1 downregulate MYC transcription by disrupting
BRD4 binding at a distal MYC “super enhancer,” followed by
genome-wide downregulation of Myc-dependent target genes
(Delmore et al, 2011; Loven et al., 2013). Also, a number
of MYC synthetic lethal pathways have been explored for
targeting MYC-driven cancers (reviewed in Cermelli et al., 2014;
Hsieh and Dang, 2016).

HIFs is also recognized as an attractive target for anticancer
agents. But the complexity involved in the regulation of the
HIF pathway has made developing specific HIF inhibitors very
challenging too. Currently, there are no clinically approved
HIF specific inhibitors. Yet, there are a number of molecules
inhibiting HIF1 directly or indirectly, including targeting
HIF1 transcription, translation, and protein degradation as
well as targeting HIF-20 dimerization. Most of the reported
HIF1 inhibitors were originally used for targeting other
endogenous proteins and later they were found to inhibit
HIF1 activity (Masoud and Li, 2015; Wigerup et al, 2016;
Soni and Padwad, 2017). For example, EZN-2698, a synthetic
antisense oligonucleotide, and Aminoflavone directly inhibit
HIFla mRNA expression, the PI3K/Akt/mTOR pathway
inhibitors and topoisomerase I inhibitors suppress HIFla
translation, while HSP90 and HDAC inhibitors inhibit HIF1la
degradation (Masoud and Li, 2015; Wigerup et al., 2016; Soni
and Padwad, 2017). HIF1 inhibitor is thought to cooperate
with anti-angiogenesis agents to overcome hypoxia-mediated
therapy resistance. In addition, Acriflavine, a HIF1 inhibitor
targeting HIF dimerization (Lee et al., 2009), inhibits chronic
myelogenous leukemia cell growth in vitro and in vivo,
which is partially associated with the reduction of MYC
(Cheloni et al., 2017).

HIF-2a has recently emerged as a promising target in ccRCCs
as it plays a major role in ccRCC tumorigenesis and progression.
Following the discovery of the large internal cavity in the HIF-2a
PAS-B domain that allows for ligand binding (Key et al., 2009;
Scheuermann et al., 2009), several HIF-2a-specific antagonists
have been discovered that disrupt the HIF-2o dimerization
and show promising effects from pre-clinical to clinical trials,
including PT2385, PT2399 and PT2977 (MK-6482) developed by
Peloton Therapeutics. PT2399 was shown to effectively inhibit
tumor growth in HIF-2a-high ccRCC cell lines and xenograft
tumors (Chen et al, 2016; Cho et al, 2016). PT2385 also
inhibited HIF-2a-driven gene expression and induced ccRCC
tumor regression (Wallace et al., 2016). Recent result from a
phase I clinic trial showed response, partial response or stable
disease in ~66% of patients with favorable safety profile and
well tolerance for PT2385 (Courtney et al., 2018, 2020). Phase II
clinic trials for PT2385 are ongoing in ccRCC (NCT03108066)
and recurrent glioblastoma (NCT03216499). Preliminary results
for phase II clinic trial for MK-6482 (PT2399) showed reduced
size of target lesions in 86.9% (53/61) of pre-treated advanced
ccRCC patients with 27.9% partial response rate (Eric Jonasch
et al., 2020). A phase III clinic trial for MK-6482 in advanced
ccRCC (NCT04195750) is currently in progress. If these clinic
trials show promising efficacy, these HIF-2a inhibitors could be
extended to other high grade and late stage solid tumors with high
expression of HIF-2a.

As aerobic glycolysis and angiogenesis are common
downstream effectors of MYC and HIE, which cooperate to
drive the expression of many genes involved in both processes in
cancer cells, targeting Warburg effect and pro-angiogenic factors
have been of great interest. N-MYC amplified neuroblastoma
cells are addicted to LDHA, which converts pyruvate to lactate.
Knockdown of LDHA completely inhibits tumorigenesis in vivo
and targeting LDHA could be a promising approach in treating
neuroblastoma patients with N-MYC amplification (Qing
et al, 2010). HKII is another potential therapeutic target to
overcome cisplatin resistance in B-cell lymphoma (Nakajima
et al, 2019). Inhibitors targeting metabolism or angiogenesis
in combination with other chemotherapeutic drugs is an
attractive strategy. For example, combination of apigenin
and gefitinib, an epidermal growth factor receptor (EGFR)
inhibitor, to treat EGFR-resistant mutant non-small cell lung
cancers impairs energy utilization and suppresses cell growth
and malignant behavior. They inhibit the activity of several
oncogenic drivers such as MYC, HIFla, and EGFR, reduce
the protein expression of Gluts and MCTI, and inactivate
the 5 adenosine monophosphate-activated protein kinase
(AMPK) signaling (Chen Z. et al, 2019). Together, targeting
these downstream signaling pathways controlled by MYC-HIF
crosstalk (Figure 2E) or directly co-targeting MYC and HIFs
could emerge as effective therapeutics in advanced human
cancers such as advanced ccRCCs.

CONCLUSION AND PERSPECTIVES

High MYC level was significantly associated with stabilized
HIFla expression in various cancers, such as prostate cancer,
triple-negative breast cancer (TNBC) and animal model of
CNS primitive neuroectodermal tumors (Malchenko et al., 2017;
Boldrini et al., 2019; Cui and Jiang, 2019). Deregulated MYC
cooperates with HIFs to regulate cancer cell adaptation to
hypoxia, rewire metabolism, and promote angiogenesis. Also,
high MYC and HIF expression is associated with poor outcome
in various cancers such as prostate and breast cancers and
clear cell renal cell carcinomas (Maroto et al., 2017; Boldrini
et al,, 2019; Cui and Jiang, 2019). Therefore, MYC and HIFs
are potential biomarkers for targeting both pathways. The
HIF-MYC interplay also plays a critical role in adaptive and
innate immunity by regulating T cell development, activation,
differentiation, metabolism and thus anti-tumor immunity
(reviewed in Rankin and Giaccia, 2016; Gnanaprakasam et al.,
2017). While HIF-1a deletion results in CD81 T-cell infiltration,
HIF-2a deletion leads to both CD4" and CD8™ T-cell infiltration
and activation as well as increased antigen presentation and
interferon signaling in mouse ccRCC models, suggesting a
role for HIF-2a in suppressing T-cell inflammation and intra-
tumoral immune activation (Hoefflin et al., 2020). Therefore, it is
important to further understand the role of MYC-HIF interplay
in shaping tumor immune microenvironment and metastasis.
Also, the MYC-HIF crosstalk may be dynamic and divergent
in different type of tumors, various tumor stages, and hypoxia
heterogeneity. As in other targeted therapy, therapeutic resistance
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is of a concern. For example, a gatekeeper mutation G323E in
HIF-2a was identified to be responsible for PT2385 resistance
after prolonged treatment (Courtney et al., 2020). Thus, further
insights into the understanding of the MYC-HIF interplay are
warranted for developing novel targeted therapeutics. It is also
conceivable that the HIF-MYC axis further interplays with
other oncogenic pathways such as ERK/MAPK, Akt/mTOR,
WNT, and Notch signaling to alter cell metabolism, cell cycle,
ribosome biogenesis, and genomic stability in tumorigenesis.
Thus, the HIF-MYC targeted therapy may be in combination with
inhibitors targeting these pathways as well.
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