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Excessive oxidative stress responses can threaten our health, and thus it is essential
to produce antioxidant proteins to regulate the body’s oxidative responses. The low
number of antioxidant proteins makes it difficult to extract their representative features.
Our experimental method did not use structural information but instead studied
antioxidant proteins from a sequenced perspective while focusing on the impact of data
imbalance on sensitivity, thus greatly improving the model’s sensitivity for antioxidant
protein recognition. We developed a method based on the Composition of k-spaced
Amino Acid Pairs (CKSAAP) and the Conjoint Triad (CT) features derived from the amino
acid composition and protein-protein interactions. SMOTE and the Max-Relevance-
Max-Distance algorithm (MRMD) were utilized to unbalance the training data and select
the optimal feature subset, respectively. The test set used 10-fold crossing validation and
a random forest algorithm for classification according to the selected feature subset. The
sensitivity was 0.792, the specificity was 0.808, and the average accuracy was 0.8.

Keywords: antioxidant protein, unbalanced dataset, random forest, machine learning, sequence feature

INTRODUCTION

Reactive oxygen species (ROS) are products of metabolic processes (Birben et al., 2012) and
include singlet oxygen, hydrogen peroxide, nitric oxide, superoxide anion radicals, and hydroxyl
radicals. Excessive concentrations of ROS produce excessive oxygen radicals, and the antioxidant
system in the organism cannot eliminate the ROS quickly enough, which causes oxidative stress
(OS) (Schieber and Chandel, 2014). An excessive OS response can affect the destruction of the
macromolecular structure, such as the DNA, proteins and other carbohydrates, and even give
rise to cell death, which can lead to aging (Liguori et al., 2018) and initiate genetic diseases. At
present, people have realized that the OS response has a role in the pathogenesis of many diseases,
including cancer, acute and chronic kidney diseases, neurodegenerative diseases, cardiovascular
disease, diabetes, and atherosclerosis (Pisoschi and Pop, 2015; Liguori et al., 2018).

In order to prevent excessively high concentrations of ROS from causing cell damage, the
antioxidant proteins must be employed to strike a good balance between the oxidation process
and the antioxidant process, which is essential. Given that antioxidant proteins have such powerful
functions, accurate identification of antioxidant proteins is absolutely critical for revealing the
deterioration of tissue function caused by certain diseases and aging, and for developing new types
of antioxidant drugs that can treat or mitigate these types of diseases. However, traditional methods
for identifying antioxidant proteins have the problems of being time-consuming and costly, such
as western blots (Mahmood and Yang, 2012).
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With the continuous improvement of genomic data (Xu
et al., 2017; Wang et al., 2018; Zhou et al., 2018; Guo
and Zou, 2019; Wang J. et al., 2020), sequencing technology
and computer technology, data mining and machine learning
methods (Quan et al., 2017; Zou et al., 2017) are being exploited
to identify antioxidant proteins, and many researchers have
already done so. In Feng et al. (2013) proposed an idea using
Naive Bayes, based on sequence information, and after 3 years,
they changed the method of data processing and proposed a
model called AodPred (Feng et al., 2016). It was based on a
support vector machine with 3-spaced residue pairs and its
accuracy was significantly better than the former model. In
2016, an integration method was proposed by Zhang et al.
(2016), which was applied for predicting antioxidant proteins
with mixed features, indicating that protein secondary structure
information facilitates the discrimination of target proteins.
Then, a method called SeqSVM was presented by Xu et al.
(2018) employing a 188D feature extraction method. Last year,
Meng et al. (2019) also utilized a support vector machine
with structural features to establish a model to discriminate
target proteins.

Despite the strengths of the existing methods, there are still
some shortcomings that have not been fully addressed. (1)
Most methods did not consider the impact of data unbalances
on classification when training samples. The feature subset
after feature selection was more representative of the larger
number of type (non-antioxidant proteins), and what we require
to find is a feature subset that is more representative of
antioxidant proteins. For example, in Meng’s experiment, the
sensitivity and specificity of the test set results were 0.68
and 0.985, which meant that the sorted features were more
conducive to the selection of non-antioxidant proteins. These
problems also existed in Xu’s research, even if she did use
an unbalanced treatment. (2) Features of protein secondary
structure information are extracted based on the secondary
structure predicted by sequence information using tools such
as PSI-PRED (McGuffin et al., 2000). The whole process is
complicated and time-consuming. In addition, there are errors
in the predicted protein secondary structures, which also affect
the accuracy of the features.

To address the above limitations and to enhance the
predictive performance of the antioxidant proteins, the protein
was described based on its hybrid features without structural
information, including the Composition of k-spaced Amino Acid
Pairs (CSKAAP) and the Conjoint Triad (CT) features. At the
same time, taking into account the unbalanced state of the data
volume of antioxidant proteins and non-antioxidant proteins,
oversampling, under-sampling, and combined methods were
used to process the dataset. The Max-Relevance-Max-Distance
algorithm (MRMD) (Zou et al., 2016) could be exploited to
single out the best feature subset for reducing the computational
complexity and noise. On the contrary, we chose a 10-fold
crossing test and random forest as the classifier, which has the
characteristics of a fast running speed and less overfitting, rather
than the very popular support vector machine. Figure 1 shows
the complete data processing approach.

MATERIALS AND METHODS

Benchmark Dataset
The dataset we used has been previously used by Feng et al.
(2016), Xu et al. (2018), and Meng et al. (2019). We first collected
proteins with antioxidant activities from the UniProt database
(release 2014_02) according to the following steps: (1) only
proteins with experimentally proven antioxidant activities were
selected; and (2) ambiguous proteins were excluded, such as
those containing non-standard letters like “B,” “X,” and “Z.” After
this rigorous screening, we obtained 710 protein sequences as
the original positive samples for the experiment. The negative
samples were 1567 PDB proteins with identification values <20%,
which were picked by PISCES-culled. To reduce redundancy and
to avoid homology bias (Zou et al., 2020), peptides with more
than 60% sequence similarity to each other were removed from
the benchmark dataset by the CD-HIT program. Finally, the new
dataset, including 1805 proteins sequences, was obtained, and
253 were antioxidant proteins and 1552 were non-antioxidant
proteins. This can be expressed as follows:

Dataset = Dataset+ ∪ Dataset− (1)

Where Dataset+ indicates the positive dataset, which contains
253 antioxidant proteins; Dataset− indicates 1552 non-
antioxidant proteins as the negative dataset; and the “∪ ”
represents the symbol of “union” in the set theory, which means
the benchmark dataset consisted of Dataset+ and Dataset−. The
proportion of antioxidant to non-antioxidant samples is ∼1:6,
which shows this is an unbalanced dataset.

As we all know, an unbalanced number of positive and
negative samples will affect the accuracy. In order to prevent this
from happening and to enhance the precision, 200 antioxidant
and 1500 non-antioxidant proteins from the final benchmark
dataset were selected as the training dataset and the rest with 53
antioxidant proteins and 52 non-antioxidant proteins was set as
an independent testing dataset. The next section will detail how
we deal with unbalanced training sets.

Feature Extraction
The secondary structure information of the protein takes a long
time to extract and process, and the calculation is complicated.
In order to simplify the process, and at the same time,
considering the diversity and complexity of the function of
the antioxidant protein itself, mixture features were adopted
to represent antioxidant proteins, including CKSAAP and CT.
The CKSAAP describes the composition of amino acids. The
other is a feature that describes protein-protein interaction (PPI)
information (Yu et al., 2010, 2020; Liu et al., 2019b; Zhao et al.,
2020). Three adjacent amino acids are regarded as a linker to
judge the charge properties and hydrophobicity of the target
protein. The iFeature was employed to extract features, which is
a python toolkit. Assuming that a protein sequence consists of N
amino acids, where Ai is the ith amino acid in the sequence, it can
be defined as:

P = A1A2A3, · · · ,AN (2)
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FIGURE 1 | The method flowchart. The original dataset (training and test dataset) is processed in four phases. (1) Using CKSAAP and CT to extract 743D features.
(2) In the unbalanced data processing phase, eight methods are adopted to balance the training dataset. (3) In the feature selection phase, the 743D features by
MRMD score are ranked and the optimal feature set is selected by Random Forest classifier. (4) Use the selected feature subset to classify the test set to get the final
result.

Composition of k-Spaced Amino Acid Pairs
The Composition of k-spaced Amino Acid Pairs (CKSAAP)
feature delegates the component of amino acids (Tan et al.,
2019; Liu et al., 2020). It calculates on behalf of the frequency
of two amino acids separated by k residues (Chen et al.,
2007a,b, 2008, 2009). Feng et al. (2016) has confirmed that
a 3-spaced residue pairs feature is beneficial for classifying
antioxidant proteins, and thus we only chose k=3 in our
research, which picked up 400 dimensions. The 20 kinds of
amino acids are combined in pairs to get 400 amino acid
pairs. We can count the frequency of 400 amino acid pairs

TABLE 1 | Classification of amino acids.

No. Dipole scalea Volume scaleb Class

1 − − Ala, Gly, Val

2 − + Ile, Leu, Phe, Pro

3 + + Tyr, Met, Thr, Ser

4 ++ + His, Asn, Gln, Tpr

5 +++ + Arg, Lys

6 +
′
+
′
+
′

+ Asp, Glu

7 +
c

+ Cys

aDipole scale (Debye): −, Dipole < 1.0; +, 1.0 < Dipole <2.0; ++,
2.0 < Dipole < 3.0; +++, Dipole > 3.0; +′ + ′ + ′, Dipole > 3.0 with
opposite orientation. bVolume scale (Å3): −, Volume < 50; +, Volume > 50. cCys
is separated from class 3 because of its ability to form disulfide bonds.

in a protein sequence. Then, a 3-spaced feature vector can be
defined as:

CKSAAP =
[
f1, f2, f3, · · · , f400

]T (3)

where the T is the transpose of the CKSAAP vector and fi is the
frequency of the ith amino acid pair, which is defined as:

fi =
ni

N − 4
(4)

where ni is the number of times the ith amino acid pair appears in
a protein sequence and N is the length of the sequence. The value
of N − 4 represents the number of 3-spaced amino acid pairs in
the whole protein sequence.

Conjoint Triad
The Conjoint Triad descriptor (CT) describes the important
information of protein-protein interactions (PPI). It is based on
the triplet formed between amino acids and adjacent amino acids
as the basic unit, considering the connections among them (Shen
et al., 2007). First, by measuring the size and side chain volume of
each amino acid dipole, and the effect of synonymous mutations,
it classifies the 20 amino acids into seven categories. See Table 1
for the classification results of the 20 amino acids. According to
the classification results and the three adjacent amino acids as
a unit of this extraction method, we can use the CT algorithm
to extract 343 dimensional features. The detailed definitions and
descriptions for the structure of the 343 dimensional features are

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 October 2020 | Volume 8 | Article 591487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-591487 October 25, 2020 Time: 13:45 # 4

Zhai et al. Identify Antioxidant Proteins by Sequence

illustrated in Figure 2. Thus, the CT feature vector can be defined
as:

CT =
[
d1, d2, d3, · · · , d343

]T (5)

where the T is the transpose of CT vector and di is the normalized
frequency of the ith amino acid triad, which is defined as:

di =
vi −min {v1, v2, · · · , v343}

max {v1, v2, · · · , v343}
(6)

where vi is considered to be the frequency of these different
trimmers in the antioxidant protein sequence. Finally, the above
features follow the order of CKSAPP followed by CT, thus
forming a set FeatureSet of 743 features, which can be defined
as:

FeatureSet =
[
f1, f2, f3, · · · , f400, d1, d2, · · · , d343

]T (7)

Unbalanced Data Processing
The unbalanced sample size will cause over-fitting of the sample
with a large proportion (Wan et al., 2017; Fdez-Glez et al., 2018;
Chao et al., 2019; Cheng et al., 2019; Liu, 2019), that is to say, the
prediction is biased toward a classification with a larger number
of samples, which will reduce the applicability of the model. The
processing method at the data level is sampling. Under-sampling,
over-sampling, and combined methods are three common and
widely used approaches.

In this work, eight different methods from an unbalanced-
learning library (Lemaître et al., 2017) were adopted to deal
with the unbalanced data. These eight methods include SMOTE,
ADASYN, BorderlineSMOTE, SVMSMOTE, ClusterCentroids,
NearMiss, SMOTEENN, and SMOTETomek, which cover the
three standard methods described above.

The data sets processed by the above methods were subjected
to the same subsequent experimental operations, so as to
compare the results obtained by different processing methods,
and to select a method that is more suitable for processing
antioxidant proteins.

Feature Selection
If the extracted features are directly input into the subsequent
classifier without any processing, it is difficult to obtain the
ideal results (Wang et al., 2010; Tang et al., 2016, 2018;
Basith et al., 2019; Liu and Li, 2019; Manavalan et al., 2019a).
Further screening of the features, which can better reflect the
characteristics of antioxidant proteins, is necessary. In this study,
the Max-Relevance-Max-Distance algorithm (MRMD) was used
for noise reduction. It mainly completes two steps, calculating the
contribution of each feature to the classification first, and then
selecting the best feature subset.

In order to rank all features of the sample, we calculated
the MRMD score of each feature, which consists of a relevant
value and a distance value. The relevant value is expressed as
the relationship between the features and sample categories,

calculated using the Pearson correlation coefficient as follows:

PCC
(
EX, EY

)
=

1
N−1

∑N
k=1 (xk − x̄)

(
yk − ȳ

)√
1

N−1
∑N

k=1 (xk − x̄)2
√

1
N−1

∑N
k=1

(
yk − ȳ

)2

(8)
xk and yk are the kth element of EX and EY , which are two vectors. x̄
and ȳ are, respectively, the mathematical expectations of EX and EY .
And the value of MR (Max-Relevance) for every feature is defined
as MRi. The

−→
Fi is a vector that is represented in the ith feature and

EC is a target class vector of each instance.

MRi =
∣∣∣PCC (−→Fi , EC)∣∣∣ (1 ≤ i ≤ M) (9)

The distance value measures the independence of every feature.
The higher the distance, the greater the independence. The
MRMD provides three methods for calculating distance. In
our research, the choice is Euclidean distance. We utilized the
Euclidean distance to calculate the distance between each feature
−→
Fi and the other features, which is defined as follows:

ED
(
−→
Fi ,
−→
Fk
)
=

√√√√ N∑
k=1

(xi − xk)2 (1 ≤ k ≤ M, k 6= i
)

(10)

Then, based on this formula, we can obtain the Euclidean
distance value of each feature MDi, which is the final value
of Max-Distance. The larger the MDi value, the lower the
redundancy.

MDi =
1

M − 1

∑
ED

(
−→
Fi ,
−→
Fk
)

(1 ≤ i ≤ M) (11)

According to MRi and MDi, the MRMD score is defined as:

MRMD = MRi +MDi (12)

The features in the set are sorted from high to low according to
the score of MRMD. Each time a feature with the highest MRMD
score is added, the classifier of the random forest is input for
sorting, and finally, the feature subset with the highest accuracy
and the least feature number is selected.

Random Forest
Random forest (Liaw and Wiener, 2002) is an integrated
algorithm that integrates multiple trees through the idea of
integrated learning. It has been widely used in bioinformatics
(Liu et al., 2019a; Manavalan et al., 2019b,c; Wang et al., 2019;
Lv H. et al., 2020; Lv Z. B. et al., 2020; Wang M. et al., 2020). It is
composed of N decision trees. After the sample is input into the
random forest, each decision tree will get a classification result,
then N trees will obtain N classification results. The voting results
of all classification results are counted, and the category with the
most votes is the final output.

In our study, we adopted the random forest as the classifier
because it has several advantages suitable for our data. The feature
dimension extracted by the combined method of CKSAAP and
CT is very high. Even after dimensionality reduction, it still
belongs to high-dimensional data. Random forest can handle

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 October 2020 | Volume 8 | Article 591487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-591487 October 25, 2020 Time: 13:45 # 5

Zhai et al. Identify Antioxidant Proteins by Sequence

FIGURE 2 | The 343-dimensional feature composition diagram. (1) Classify 20 amino acids into seven categories and obtain the g1∼g7, as shown in the amino acid
classification part. (2) In the 343D vector space composed of seven types of amino acids, the seven amino acids were arranged and combined, resulting in 343
trimmers. (3) Examples of sequence conversion into features. The figure was adapted from the Supplementary Figure in Shen et al. (2007).

high-dimensional data, and the accuracy rate is not affected. The
training set is unbalanced, and the amount of data becomes larger
after the oversampling method is used. Random forest processing
is adopted, and the running speed is fast. It is particularly useful
in estimating the inferred mapping, so that there is no need to
debug many parameters like SVM (Huo et al., 2020).

Measurements
In statistical prediction, there are three commonly used
evaluation methods for checking the accuracy of the model
(Wang et al., 2008; Basith et al., 2018, 2020; Liu et al., 2019c; Yu
et al., 2019; Zhu et al., 2019; Hasan et al., 2020), including the
independent dataset sampling test, the k-fold cross validation and
the jack-knife test. The jack-knife test is a resampling technique
that is suitable for estimating the deviation over the entire sample

(Li et al., 2019; Yang et al., 2019). This method has also been
used in previous studies, i.e., Feng et al. (2016) and Meng et al.
(2019). However, in our study, the training dataset was balanced
by oversampling and under-sampling. The training set and test
set were mutually exclusive. In order to reduce the complexity of
the calculation, 10-fold cross validation is employed. For binary
classification problems, the commonly used evaluation indicators
are sensitivity (Sn), specificity (Sp), accuracy (Acc), F-score (F),
Matthew’s Correlation Coefficient (MCC), and the Area Under
the Curve (AUC).

Sn =
TP

TP + FN
(13)

Sp =
TN

TN + FP
(14)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 October 2020 | Volume 8 | Article 591487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-591487 October 25, 2020 Time: 13:45 # 6

Zhai et al. Identify Antioxidant Proteins by Sequence

FIGURE 3 | (A) The comparison chart of the results. It was obtained by different feature extraction methods and it shows that the results of the evaluation indicators
using the CKSAAP+CT method were higher than the other methods. (B) The average value of the final results obtained by using three types of unbalanced
processing methods. The result obtained by oversampling is much higher than the other methods. It can be seen that repeated sampling of a small number of
sample data to synthesize new data is more conducive to extracting features that make it easy to distinguish antioxidant proteins. (C) Comparison of classification
effects before and after dimensionality reduction with MRMD. Sn, Sp, and Acc are greatly improved, and the Sn and Sp results are very balanced. (D) Compared
with sequence characteristics of the antioxidant proteins and non-antioxidant proteins, the triplet of the first type amino acid and the second type amino acid
combination appears more frequently.

Acc =
TN + TP

TP + FN + TN + FP
(15)

F =
2× TP

2TP + FN + FP
(16)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

(17)

where TP, FP, FN, and TN indicate true positive, false positive,
false negative, and true negative, respectively. F is a weighted
harmonic average of precision and recall, which can avoid the
contradiction between both. MCC is suitable for measuring
imbalanced data sets, which is an index used in machine learning
to measure the classification performance of two categories. In
addition, the AUC is an evaluation index that measures the pros
and cons of the binary classification model, which can make
a reasonable evaluation of the classifier when the samples are
unbalanced (Zhao et al., 2015, 2017; Manavalan et al., 2018a,b;
Yu and Gao, 2019; Tang et al., 2020). The larger the AUC value,
the better the performance of the model. The value of AUC is
the area enclosed by the receiver operating characteristic curve
(ROC curve) and the x-axis and y-axis. The vertical axis and the
horizontal axis of the ROC curve are Sn and (1-Sp).

RESULTS

Comparison of the Different Feature
Extraction Methods
According to existing research, it has been confirmed that a
series of feature extraction methods are effective for classifying
antioxidant proteins, such as g-gap dipeptides feature, CTD,
SSI, RSA, PSSM, etc. Therefore, in the planning stage of the

TABLE 2 | The accuracy rate of eight data imbalance processing methods in
different classifiers.

RF LIbD3C LibSVM

Smote 0.8 0.571 0.533

ADASYN 0.705 0.686 0.533

BorderlineSMOTE 0.733 0.638 0.533

SVMSMOTE 0.733 0.705 0.533

ClusterCentroids RandomState = 0 0.667 0.648 0.6

NearMiss version = 1 0.733 0.686 0.6

NearMiss version = 2 0.638 0.648 0.6

NearMiss version = 3 0.686 0.638 0.6

SMOTEENN 0.59 0.571 0.562

SMOTETomek 0.724 0.648 0.543

TABLE 3 | Compared the best results in our research with the results of AodPred.

Sn Sp Acc

AodPred 0.751 0.745 0.748

Smote+RF 0.792 0.808 0.800

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 October 2020 | Volume 8 | Article 591487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-591487 October 25, 2020 Time: 13:45 # 7

Zhai et al. Identify Antioxidant Proteins by Sequence

TABLE 4 | The prediction result of the model established by different data imbalance processing methods.

Sn Sp Acc F MCC AUC

SMOTE 0.792 0.808 0.8 0.8 0.6 0.8

ADASYN 0.698 0.712 0.705 0.705 0.41 0.766

BorderlineSMOTE 0.736 0.731 0.733 0.733 0.467 0.807

SVMSMOTE 0.736 0.731 0.733 0.733 0.467 0.78

ClusterCentroids RandomState = 0 0.604 0.731 0.667 0.665 0.337 0.743

NearMiss version = 1 0.755 0.712 0.733 0.733 0.467 0.775

NearMiss version = 2 0.66 0.615 0.638 0.638 0.276 0.733

NearMiss version = 3 0.698 0.673 0.686 0.686 0.371 0.734

SMOTEENN 0.604 0.557 0.59 0.59 0.181 0.628

SMOTETomek 0.755 0.692 0.724 0.724 0.448 0.805

experiment, we chose CKSAAP and CTD, and CT combined
separately without structure information, and looked for the
most suitable feature combinations for the target protein.
Among them, CKSAAP was divided into only containing 3-
spaced residue pairs and containing g-spaced residue pairs (g=1,
2, 3, 4, 5).

In addition, we adopted the principle of a single variable,
controlling other factors unchanged, only changing the method
of feature extraction, and observed its impact on the experimental
results. After the feature extraction was completed, SMOTE and
MRMD were used to perform unbalanced processing and to
select the optimal feature subset. The final result was obtained
by using a random forest classifier and the 10-fold cross-
validation method.

The experimental results indicated that the groups only
containing 3-spaced residue pairs were superior than the others
for classification, which also confirmed the conclusion that the
3-gap dipeptides feature in Feng et al. (2016) was good for
classification. On the other hand, despite previous research
showing that CTD could be used to obtain good classification
results, such as the combined features of Zhang et al. (2016)
and Xu et al. (2018) with 188D, in fact, the experimental results
showed the classification accuracy of the CT groups was higher
than that of the CTD groups. Therefore, only containing 3-spaced
residue pairs and CT were selected as the methods of feature
extraction. The comparison of the experimental results is shown
in Figure 3A.

Comparison of the Different Classifier
and AodPred
In this experiment, three alternative classifiers were selected,
namely LibSVM (Chang and Lin, 2011; Jiang et al., 2013), LibD3C
(Lin et al., 2014), and Random Forest. LIBSVM is an SVM
pattern recognition and regression software package, which was
developed and designed by Prof. Lin Zhiren of Taiwan University.
It has the characteristics of a simple to use method, fast operation
speed and strong practicability. When using LibSVM, we input
the training data into the gird.py file, and entered the values
of the calculated parameters c and g into the LibSVM classifier
embedded in WEKA (Hall et al., 2009), and then classified the test
set. LibDC developed by Lin et al. (2014) is an integrated classifier,
which combines multiple basic classification algorithms. Both

LibD3C and Random Forest used the embedded WEKA version
and we used their default methods to classify the test set.

The classification results showed that the two classification
methods of LibSVM and LibD3C had the phenomenon of over-
fitting, and the generalization ability of the test set was weak,
while when using random forest, the generalization performance
of the classification was stronger and more stable. Compared
with the existing research AodPred, the method of random
forest was higher than AodPred for sensitivity, specificity and
accuracy. The comparisons of the experimental results are shown
in Tables 2, 3. Table 2 shows the accuracies of 8 data unbalanced
processing methods with different classifiers. Table 3 compares
the best results in our research with the results of the known
model AodPred. Our results were obtained after processing
using the Smote method, dimensionality reduction using MRMD,
and selected features using random forest classifiers applied
to the test set.

Comparison of the Different Unbalanced
Data Processing Methods
We employed over-sampling, under-sampling and combined
methods to deal with the unbalanced training data set. The
methods used for oversampling were SMOTE, ADASYN,
BorderlineSMOTE, and SVMSMOTE. The parameter settings
of each method were the default parameters in the unbalanced
library of python. The processed training set samples reached
equilibrium, with 1500 positive examples and 1500 negative
examples, respectively. ClusterCentroids and NearMiss were
the methods of under-sampling. The parameter setting of
ClusterCentroids was the default. The version parameters of the
NearMiss method take 1, 2, and 3 for unbalanced data processing.
Therefore, there were four actual undersampling methods.
The processed training data contained 200 positive examples
and 200 negative examples. SMOTEENN and SMOTETomek
adopted SMOTE to combine with ENN and Tomek, respectively,
which were combined methods. In our study, the parameter
settings of both were also the default. After SMOTEENN, the
processed dataset was also unbalanced, which including 1498
antioxidant proteins and 29 non-antioxidant proteins. Although
the processed data was still in an unbalanced state, most of
them were antioxidant proteins, which helped us screen out
the features with obvious signals. Unlike SMOTEENN, the
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data processed by SMOTETomek was balanced, including 1500
positive examples and 1500 negative examples.

After the unbalanced training data, the optimal feature
subset was selected by MRMD, and the test set was classified
according to the different feature subsets. The experimental
results showed that the model obtained by the data processed
by the oversampling method had a higher sensitivity (Sn),
specificity (Sp), accuracy (Acc), f score (F), Matthew’s Correlation
Coefficient (MCC), and the Area Under the Curve (AUC)
than the other two methods. The reason is that there are
fewer antioxidant proteins, and repeated sampling of samples
to strengthen their signal characteristics is more conducive
to screening out antioxidant proteins. The comparisons of
experimental results are shown in Table 4 and Figure 3B. Table 4
is the prediction results of the model established by different data
unbalanced processing methods in the test set. Figure 3B shows
the average of the prediction results of the models created by the
three basic data unbalanced processing methods in the test set.

Feature Contribution and Importance
Analysis
The dimension of the original feature was 743D. After the feature
selection of MRMD, the selected feature subset contained 545
features. Compared with the original features, the accuracy of the
test set classification was improved by 0.076. The experimental
results after dimensionality reduction were as follows: the
sensitivity was 0.792, the specificity was 0.808, and the average
accuracy was 0.8. Compared with the original method, the
sensitivity was greatly improved. The comparison chart is shown
in Figure 3C.

Not only that, by comparing the characteristic MRMD scores,
we recognized that CT scores were generally higher than
CKSAAP, and the characteristic scores composed of triplets
composed of the first and second amino acids in CT were
the highest. This means that there were differences in these
characteristics between the positive and negative examples.
Therefore, we counted the differences in the content of the triplet
composed of the first type (A, G, V) and second type (I, L, F, P)
of amino acids. There were a total of 343 triplets composed of
these amino acids. Among the 260 features, the average content
in antioxidant proteins was higher than that of non-antioxidant
proteins. The content difference chart is shown in Figure 3D. A,
V, I, L, F, and P were hydrophobic amino acids, and the tripeptide
group composed of them was also hydrophobic, and thus we can

infer that the hydrophobicity of proteins can be used to classify
antioxidant proteins.

DISCUSSION

In this paper, we proposed a method with CKSAAP and CT
features to identify antioxidant proteins. SMOTE was adopted
to deal with unbalanced data, and we selected the optional
feature set with MRMD. Using the 10-fold cross-validation and
random forest classifier on the test set, we obtained an average
accuracy of 0.8. The sensitivity and specificity were 0.792 and
0.808, respectively. We revealed that due to the small number of
antioxidant proteins, when dealing with an unbalanced problem,
oversampling to strengthen the antioxidant proteins makes it
easier to discover the signal characteristics that represent the
proteins. Therefore, oversampling is more suitable than under-
sampling and combination methods. From the experimental
results, the SMOTE method works the best. Additionally, after
analyzing the characteristics, we found that the sequence of the
antioxidant protein is more obvious in the triplets composed of
hydrophobic amino acids, so we infer that the hydrophobicity of
the protein can be used to classify the antioxidant proteins.
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