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Cellular phenotypes on bioactive compound treatment are a result of the downstream

targets of the respective treatment. Here, a computational approach is taken

for downstream subcellular target identification to understand the basis of the

cellular response. This response is a readout of cellular phenotypes captured from

cell-painting-based light microscopy images. The readouts are morphological profiles

measured simultaneously from multiple cellular organelles. Cellular profiles generated

from roughly 270 diverse treatments on bone cancer cell line form the high content

screen used in this study. Phenotypic diversity across these treatments is demonstrated,

depending on the image-based phenotypic profiles. Furthermore, the impact of the

treatments on specific organelles and associated organelle sensitivities are determined.

This revealed that endoplasmic reticulum has a higher likelihood of being targeted.

Employing multivariate regression overall cellular response is predicted based on fewer

organelle responses. This prediction model is validated against 1,000 new candidate

compounds. Different compounds despite driving specific modulation outcomes elicit a

varying effect on cellular integrity. Strikingly, this confirms that phenotypic responses are

not conserved that enables quantification of signaling heterogeneity. Agonist-antagonist

signaling pairs demonstrate switch of the targets in the cascades hinting toward evidence

of signaling plasticity. Quantitative analysis of the screen has enabled the identification

of these underlying signatures. Together, these image-based profiling approaches can

be employed for target identification in drug and diseased states and understand the

hallmark of cellular response.

Keywords: phenotypic similarity, signaling modulation, cellular and organelle behavior, predictive modeling,

heterogeneity in responses, mechanism of action, high content imaging screen

1. INTRODUCTION

Measurement of biological activity upon small molecule-based treatment has the potential to
illustrate the mechanisms of action by comparing it with profiles of known compounds (Hughes
et al., 2000; Lamb et al., 2006; Feng et al., 2009). These measurements from high-throughput
target-directed screens have been widely used for their potential application in drug discovery
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through unbiased testing of several million compounds per
screen (Macarron et al., 2011). Phenotypic screening has also
been proposed for efficient assessment of drug candidate testing
in biological systems (Lee et al., 2012; Futamura et al., 2013).
These approaches are facilitated by quantitative microscopy,
widely used in pharmaceutical and academic labs, since it
provides a versatile and powerful readout for precise cellular
measurements and identifying cellular states (Carpenter, 2007;
Futamura et al., 2013). The principle of phenotypic profiling is
based on summarizingmultiparametric, feature-based analysis of
cellular phenotypes of each sample so that sample similarities are
reflected on similarities between profiles (Wagner and Clemons,
2009). Transcript expression and proteomics profiling serve as
established biological readouts (Hughes et al., 2016; Szalai et al.,
2019). In comparison, image-based profiling is cost effective and
flexible for scaling between medium and high throughput with
relative ease, alongside providing phenotypic details at single-
cell resolution (Ljosa et al., 2013). Although image-based screens
aim to score samples with respect to one or a few known
phenotypes, profiling experiments aim to capture phenotypes not
known in advance, using a variety of subtle cellular responses and
widely used as predictive models (Ljosa et al., 2013; Kandaswamy
et al., 2016; Steigele et al., 2020). A mechanism of action (MoA)
usually refers to biochemical interaction through which the drug
acts to induce pharmacological effect and phenotypic changes
(Kandaswamy et al., 2016), which can be studied based on
the phenotype.

This potent research paradigm has been employed over the
past few decades by the pharmaceutical and biotechnology
sectors (Moffat et al., 2014, 2017). Drug discovery through
cell systems biology could significantly reduce the time and
cost of new drug development (Butcher, 2007). Automated
high-content microscopy imaging and image analysis methods
offer an efficient alternative to the traditional target-directed
screening approach (Lang et al., 2006; Simm et al., 2018;
Nyffeler et al., 2020). This allows researchers to study the cellular
phenotype response on molecular perturbations irrespective
of putative target activity (Tanaka et al., 2005; Low et al.,
2008). Computational application of such methods to study
cellular response relies heavily on active measurements that
can capture a spectrum of phenotype. Assays with multiple
fluorescent markers enable to capture quantitative profiles in
high throughput. These methods provide an unbiased approach
to study cell states associated with chemical perturbation and
disease state to support future probe discovery. Such cellular
assays show the value of phenotypic profiling to assist not
only in the identification of cellular activity and but also to
develop an understanding to elucidate the MoA for drugs
whose mode of action or primary targets are unknown (Loo
et al., 2007; Young et al., 2008; Caie et al., 2010; Breinig
et al., 2015). The ability to identify the targets of candidate
molecules in a screen can help overcome one of the bottlenecks
to establish it as a drug. Although experimental approaches for
target identification in a screen could be labor, resource, and
time intensive; computational approaches substantially reduce
the work and resource requirement for favorable application
(Perlman et al., 2011; Chen et al., 2016; Madhukar et al., 2019).

However, a key challenge in the field is the identification of the
sub-cellular effects caused by the treatment and also understand
the basis of the cellular responses.

In this report, it is aimed to identify the downstream organelle
targets by using computation approaches on the “cell-painting”
assay screen. A quantitative understanding of the heterogeneous
cellular responses in the treatment screen based on the subtle
changes in cellular phenotype profiles is demonstrated. This
approach fosters the possibility for a quantitative examination
of the responses induced by selective pharmacologic agents
across cancerous cells. Subsequent analysis demonstrated the
role of conserved and differential signatures in the diverse
organelle behavior in the multifaceted cellular response. This
interconnected dependence is exploited for developing models
to predict the overall cellular response based on specific
organelle response. Further advancement is achieved through
fine quantification, which elucidated the varying cellular response
even when the treatment outcome is conserved hinting toward
signaling heterogeneity.

2. METHODS

2.1. Dataset
Here the “Cell-Painting” (Bray et al., 2016) assay as documented
in BBBC022v1 (Gustafsdottir et al., 2013) has been used. This
is publicly available from the Broad Bioimage Benchmark
Collection (Ljosa et al., 2012) and is one of the widely used
dataset in the field. The raw data have been downloaded as
documented in an earlier published report (Gustafsdottir et al.,
2013) (from http://www.broadinstitute.org/pubs/gustafsdottir_
plosone_2013/). In this dataset, bone carcinoma U2OS cells
are imaged on treatment with multiple bioactive compounds.
The cells are fluorescently labeled to follow the components:
Golgi, endoplasmic reticulum (ER), nuclei (Hoechst), nucleoli
(Syto), and mitochondria (Mito). The bio-active compounds
are chemical perturbations and are referred to have specific
BroadID. To specifically annotate the treatment compounds with
the relevance of the induced phenotype or the respective MoA,
the “ground truth” of the image data (Corsello et al., 2017) made
available as part of the BBBC036 (Bray et al., 2017) from the
Broad Bioimage Benchmark Collection (Ljosa et al., 2012) has
been used. This allowed∼270 MoAs to be successfully annotated
(Supplementary Table 1), which forms the working dataset for
this study. There were roughly 1,000 compounds (or BroadIDs)
(Supplementary Table 2) in the dataset for which MoA could
not located based on BBBC036 file. These compounds have been
used as test compounds for the prediction model developed as
described in Figure 3C.

Cell Profiler (Carpenter et al., 2006) pipeline has been
engineered (Gustafsdottir et al., 2013) to extract rich quantitative
features (Supplementary Table 3) at single-cell resolution from
the light microscopy images. For locating the origin of features,
the occurrences of acronym Golgi, ER, Hoechst, Syto, and Mito
in feature labels are used for feature originating from Golgi,
endoplasmic reticulum, nucleus, nucleoli, and mitochondria,
respectively (Supplementary Table 3). These features are used
to report the dynamics associated with the specific organelle.
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FIGURE 1 | Quantifying the cellular response upon mechanism of action inducing treatment with respect to DMSO. (A) A schematic outlining the method of Similarity

Index calculation between DMSO (with n cells) and kth MoA (with m cells). Note that 824 single cell features (represented as columns) form the phenotypic profiles. (B)

Cumulative histogram of the MoAs in the annotated dataset based on (i) SimIdx and (ii) Mahalanobis distance, demonstrating the varied response among the different

signaling modulation treatment. (C) Quantification of the dynamic range (maxima by minima) calculated for each of the metric.

An example of the dataset with 100 cells is illustrated in
Supplementary Table 5.

2.2. Analysis
The script developed for the analysis presented in this study is
done using MatLab. Required details of the parameters have been
enlisted in the respective section 3.

• Similarity index: Two-sample t-test has been performed at
a 5% significance level. Two tail test has been performed.
It is performed to see if a feature has changed significantly
in an MoA with respect to the same feature for DMSO
treatment (Figure 1A). Two sample test is performed to
compare between DMSO and the MoA for which hypothesis
testing is performed.

• Mahalanobis distance: This computes the distance in
multivariate space between a point and distribution. The
features of DMSO form the distribution and each cell at
MoA forms a point. This measure is often used for outlier
filtering in biomedical multivariate data (Laurikkala et al.,
2000). Similarly, in this case prior to plotting histogram
(Figure 1Bii), outlier detection has been performed.

• Multivariate regression: This has been performed using fitlm
(Holland andWelsch, 1977). All possible combinations of two
and three organelles have been used as predictor variables.

The output (response) variable is the overall cellular response.
The target is to regression model the organelle response (all
combinations of two and three variables) to predict overall
cellular response.

• Goodness of prediction: The multivariate regression models
are used to estimate the goodness of prediction. For the testing,
the test set contains data from 1,000 of new compounds. The
predictor values are derived from the test dataset and thereby
response value is estimated based on the regression model. To
check the goodness of prediction, the estimated response value
and actual response value are compared. This error is used to
determine sum of squares due to error (SSE) and the total sum
of squares (SST). R square value is calculated as 1−SSE/SST. A
good prediction would mean low error, which means a higher
R square value.

3. RESULTS

3.1. Quantification of the Cellular
Response to Signaling Modulation
Signaling modulation through chemical agent treatment causes
a spectrum of phenotypic responses (Kitano, 2002; Wawer
et al., 2014) in the cells. These responses or the cellular
integrity changes, as a result of the treatment, could be
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captured from the cellular morphology with the help of
quantitative microscopy. The publicly available dataset of “cell
painting” extracts these morphological phenotypic profiles from
various cellular compartments through microscopy and image
quantification at the single-cell resolution. Furthermore, the
outcome of the signaling modulation (or the MoA) that the
respective compound induces has also been annotated. Hence
to study the cellular responses and effect of the treatments, the
cell-painting assay dataset has been chosen. Phenotypic profiling
summarizes cellular phenotypes upon the treatment, allowing the
study of similarities between treatment by studying the profiles
(Wagner and Clemons, 2009). The DMSO-treated cells are also
profiled to extract the rich quantitative features. Here DMSO
serves as the control (Galvao et al., 2014) for the chemical
agent treatment. Therefore, to systematically address the cellular
response due to the treatment, the similarity in themorphological
features (Supplementary Table 3) between the treatment and
DMSO is assessed.

To quantify this, the significance is tested between respective
features ofMoAwith that of DMSO through p-value as illustrated
in Figure 1A. Here h is a binary array that contains 824 elements,
where xth element signifies whether xth feature is similar [0] or
not [1] between the MoA treatment and DMSO. The parameter
of similarity index (SimIdx) is then quantified for the MoA based
on the fraction of similar features (number of zeros in the “h”
array) between DMSO and the MoA. Thus, SimIdx is calculated
to depict the similarity between the MoA inducing treatment
and DMSO in terms of the phenotypic features, which can have
a value between 0 and 1 signifying minimum and maximum
similarity, respectively.

This process is then iterated across all the MoA treatments
in the working dataset. Thus, a cumulative histogram is plotted
to show the distribution of SimIdx calculated across all the
MoA inducing treatments as shown in Figure 1Bi. While a
fraction of MoAs has SimIdx close to 0, a significant fraction
has it close to 0.5, the highest end of the curve. Therefore, the
dynamic band of SimIdx helped to identify the spectrum of
responses different MoA poses with respect to DMSO in terms
of phenotypic similarity.

To compare this observation, the established method of
Mahalanobis distance is also used to determine the phenotypic
difference MoA exhibits with that of DMSO. Briefly, this metric
helps capture distances in a multivariate feature space. A lesser
value of Mahalanobis distance would signify lesser difference
between the phenotypes of MoA and DMSO and vice versa. As
mentioned earlier, a cumulative histogram is obtained for the
Mahalanobis distance metric calculated between the MoAs in
the working dataset and DMSO (Figure 1Bii). This affirms the
varying response the MoAs contained in the dataset exhibit.

Based on the histograms (Figure 1B), dynamic range is
derived by calculating (dividing maxima by minima) for each of
the metrics as indicated in Figure 1C. The same working dataset
of MoA treatments has been calibrated with both the metric but
the SimIdx resolves the innate differential response better than
Mahalanobis distance as indicated from the dynamic range. Put
together, these two quantitative measures reflect the differential
response various MoA exhibits with respect to DMSO.

3.2. Impact on the Organelle Induced by
the Treatment
Recognition of sub-cellular compartments affected by a
modulation treatment is critical to identify the respective
treatment’s downstream target. Therefore, the next aim is to
monitor the impact on specific organelles. For this, the metric
of SimIdx is utilized that enables to compare the phenotypic
changes caused by the signaling modulation treatments. The
cell painting assay facilitates to address this since it allows
simultaneous monitoring of multiple organelles—ER, nucleus
(Hoechst), nuclelous (Syto), mitochondria (Mito), and Golgi
(Golgi) through targeted fluorescent probes. Thereby the features
that originate from the specific organelle targeted fluorescent
labels are explicitly identified (Supplementary Table 3) among
all the features. By specifically comparing the organelle features,
the organelle SimIdx has been determined. This calculation
paved the understanding of how particular organelle integrity
changes upon a signaling modulation treatment. Thus for every
MoA treatment, it resulted in five values of organelle SimIdx, one
for each of the organelle. These organelle SimIdx values account
for changes in that specific organelle integrity due to the signaling
modulation treatment. The distribution of this parameter for all
the MoA inducing treatments available in the dataset is plotted as
a cumulative histogram in Figure 2A. The graph shows that this
parameter encompasses a diverse range, revealing the variation
in the organelle response as well. To investigate this response,
the existence of any coupling between the integrity changes in
the overall cell and those of specific organelle for respective
signaling modulations treatment is examined. Based on the
diverse MoA inducing treatments, the plot of specific organelle
SimIdx vs. all feature SimIdx is illustrated in Figure 2B. The
trend shows that changes in the cellular response are reflected
as conserved changes in the organelle response. The subtle
changes of organelle phenotype are conserved with respect to
overall cellular integrity changes, which elucidates an underlying
conserved signature in the cellular responses.

As mentioned earlier, each organelle phenotype is profiled
based on more than 100 features (Supplementary Table 3). It
is then assessed; each of these features is affected by how many
of the treatments? To extract this information, Impact Index
(ImpIdx) is quantified for each of the features. First, a binary
array SimVal is determined for each feature (in Equation 2 it
is represented for 1st feature or f 1), which is an array of 270
elements (number of MoAs in this study). The ith element of this
binary array signifies if f 1 has been affected [1] by the ith MoA
inducing treatment or not [0]. ImpIdx value for feature f 1 is then
calculated by adding all elements of SimValf 1 as per Equation (2).
For every feature, the ImpIdx value would be between zero and
the total number of MoA inducing element in the dataset where
the extremes would mean that the feature has been impacted
significantly for none or all of theMoA inducing treatment. Thus,
this parameter is directly proportional to the likelihood estimate
of the feature to be impacted upon a treatment.

SimValf 1 = [0, 1, 1, 0, ........, 1, 0](∼ 270Elements) (1)

ImpIdxf 1 =
∑

(SimValf 1) (2)
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FIGURE 2 | Specific organelle-based responses on the signaling modulation treatment. (A) Cumulative histogram of the similarity index calculated based on the

organelle features based on the mechanism of actions (MoAs) in the annotated dataset. (B) Co-relation curve showing overall SimIdx and organelle-specific SimIdx.

The graph is obtained using all the MoAs in the dataset. (C) Representation of impact index of the organelle features in the form of a histogram. (D) Bar plot showing

the fraction of organelle features that has impact index value of more than 240.

In this way, ImpIdx values are obtained for all the 824 features.
Using this metric, the aim is to assess which organelles have a
higher chance of being impacted downstream of the treatments.
To pursue this, ImpIdx from specific organelle features are
then collated. The distribution of organelle ImpIdx is shown
in Figure 2C. Based on this distribution, a finer quantification
is performed to identify the characteristic downstream target
organelle. This is identified based on the fraction of organelle
features that demonstrate ImpIdx of greater than 240 (roughly
90% of its maximum possible value, 0.9 × 270 = 243). These
organelle fractions are represented in Figure 2D, which shows
that 80% of ER features express quite high ImpIdx. These
revealed that ER is a downstream target for most of the drug
treatments performed in this study. In contrast, themitochondria
features express comparatively lesser impact, likely signifying
the less pronounced effect by these treatment molecules on
mitochondria. Put together, this analysis not only showed
coupling between the overall cellular and specific organelle
response but also established organelle signatures based on its
likelihood of being affected upon treatment.

3.3. Sensitivity Detection and Prediction of
Overall Cellular Response
Sensitivity could be one of the hallmarks of biological response
and can be useful to extract a direct relationship between

the pharmacological agent treatment and resultant downstream
response. To address this, first, the correlation curves (Figure 2B)
are characterized by regression modeling. These regression
models are developed separately for each of the organelles and
depicted in Figure 3A (Supplementary Table 6). Next, the first-
order derivative is computed on these curves to extract the
sensitivity of the organelle response due to the treatment. The
resultant sensitivities are shown in Figure 3B, which shows there
is not any significant bias in terms of organelle sensitivity.

Furthermore, these regression models are also adapted to
develop more generalized predictive models. These models
shall allow researchers to determine the overall effect of test
compounds on the cellular integrity and range its application
into orphan compounds. Multivariate regression is performed
with the independent variable as the organelle SimIdx and
dependent variable as all-feature SimIdx. For multivariate
regression models (De’Ath, 2002), the independent variables are
more than one. For example, the two organelle regression models
contain all the possible combinations of two-organelle (as the
independent variable) which shall be correlated with the overall
cellular response (dependent variable). These models are iterated
with all possible combinations of two and three numbers of
independent variables. To evaluate the goodness of the novel
drug response identification, the model has been implemented
to predict data of a large (>1,000) number of new compounds
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FIGURE 3 | Characterizing the correlation and regression modeling. (A) Quadratic polynomial fitted with the organelle response as the independent variable and

cellular response as the dependent variable. (B) Sensitivity of the cellular response to the organelle response has been quantified through the first-order derivative of

the polynomial fitted earlier. (C) Multivariate regression analysis is performed with organelle response as independent variable, while the cellular response is the

dependent variable. Using this regression model, cellular response is predicted for over 1,000 new compounds. Based on the error between actual and estimated

values goodness of prediction is quantified by using R squared values. These calculations are performed for all possible combinations of (i) two and (ii) three organelles

as independent variable. Blue and green indicate the combinations that yielded the top 5 and bottom 5 goodness of prediction, respectively, in each case. (D) The

occurrence of each organelle in (i) top 5 and (ii) bottom 5 models as per goodness of prediction is plotted as pie chart.

(Supplementary Table 2). Based on the predictions performed
and the actual data, the error is computed by evaluating the
R squared values. Overall R squared values calculated from the
multivariate regressionmodels have been described in Figure 3C.
Although all possible combinations in the two and three variable
regression models are valuable in making predictions, this
accuracy ranking would benefit in understanding the salient
organelle that contains signatures to facilitate the predictions.
To address this, the organelle combinations that are present in
the top 5 accurate models from each of two- and three-variable

regression modeling (10 blue colored bars Figure 3C) were taken
into consideration. Then the repetitions of each organelle were
plotted in Figure 3Di. Out of the 10 cases (totaling 5 × 3 + 5 ×
2 = 25 instances of organelles), ER is featured in 8 (32% of 25
is 8) of those. A similar method is taken for the lower 5 models
(10 green colored bars in Figure 3C). Then the repetitions of
each organelle were plotted in Figure 3Dii. Out of these 10 cases
(totaling 25 instances of organelles), Mito is featured in 8 (32%
of 25 is 8) of those. Evaluated accuracies from the prediction
model affirm ER features are pertinent for the prediction while
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FIGURE 4 | Probing cellular response upon different compound treatment mediating conserved mechanism of action (MoA). (A) Schematic of the method to compute

the pairwise similarity index between the compounds for the same MoA. (B) Pairwise similarity index for antagonist–agonist pair. (C) Pairwise similarity index for the

MoA enlisted in the dataset, which contains more than three compounds. The colors are column scaled. (D) Pairwise similarity index of organelle features specifically

for antagonist–agonist pair. The colors are row scaled.

mitochondria features are lower aptness here. Earlier ER is shown
to be high ImpIdx or has more likelihood of being affected upon
treatments and Mito’s lower aptness (Figure 2D). Overall, along
with studying the sensitivity of organelle-specific response, an
efficient cellular response prediction model through multivariate
regression is developed.

3.4. Heterogeneous Cellular Response
Mediates Conserved MoA
The phenotypic response of cells has now been explored when
cells are treated with different signaling modulation treatments.
But it would also be interesting to examine the effect on
cellular integrity upon treatments with different compounds
that enact the same annotated MoA. Since single-cell resolved
features can elucidate the heterogeneous response, which can
also be used as a biological probe to identify the interactions

between cellular machinery. To address this, from the working
dataset MoAs were chosen, which were treated with more
than three different compounds (Supplementary Table 4) and
then pairwise similarity index (PSI) among the compounds is
determined as shown in Figure 4A. To generate PSI, SimIdx
is determined by checking fraction of similar features between
two compounds and then iterated over all possible combinations
of compounds (Figure 4A). PSI is similar to SimIdx but is
generated by comparing phenotypic profiles between compounds
instead of the compound with DMSO. This parameter captured
whether the features affected upon these compound treatments
are similar (High PSI) or not (Low PSI). If different compounds
elicit a similar response that would signify conserved response
pathways, which would be captured by higher PSI and vice
versa. Interestingly, 24 MoAs are identified for which PSI is <0.3
(Figure 4C). In spite of having conserved MoA, these different
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compounds exhibit heterogeneity regarding how each of these
compounds affects the cellular integrity leading to the low PSI as
reported. Thus, it is formulated that different compounds which
enacts same outcome (referred here as MoA) might mediate
through mechanistically different pathways which enables to
evaluate signaling heterogeneity of these MoA cascades.

To probe this furthermore and specifically study how
opposing signaling modulations affect the cellular response
in terms of the profiled features, the available antagonist
and agonist pairs—dopamine receptor (DpmR), acetylcholine
receptor (ActChR), serotonine receptor (SrtR), and adregenic
receptor (AdgR)—have been chosen. The PSI for these opposing
signaling modulations is specifically represented in Figure 4B.
The DpmR and SrtR agonist has significantly higher PSI, which
might mean the agonist pathways are likely to be more conserved
(as across compounds similar features are affected resulting in
higher PSI) than respective antagonist ones. But, ActChR and
AdgR antagonist–agonist pair shows similar PSI. The overall
results show that agonist treatments have at least the same or
higher PSI in comparison to their antagonist counterparts.

Subsequently, the effect on organelle integrity is determined
by computing the PSI particularly on the organelle features. This
indicates the similarity in organelle integrity downstream of the
compound treatment (Figure 4A). If an organelle resembles a
high PSI, then the compounds have induced similar changes
for that organelle. Based on this calculation of the organelle
PSI on the agonist–antagonist pair are shown in Figure 4D.
This allows inferring that the organelle depicting higher PSI
metric are more likely affected (since among the compound
treatment this organelle features behaves similarly) upon the
respective treatment. In the case of ActChR agonist–antagonist
pair, Mitochondria and Syto (nucleolus) features rank as these
organelles that get mostly affected through the compounds.
Similarly, for AdgR agonist–antagonist pair, Hoechst (Nucleus)
and Golgi features are mostly affected through these signaling
modulation treatments. Also for the SrtR agonist–antagonist pair,
Hoechst (nucleus) is most likely to be affected in both cases
followed by Syto (nucleolus) and mitochondria, respectively. In
contrast, for DpR the trend reverses. In the case of agonist,
Golgi and mitochondria are most likely to be targeted. However,
the antagonist treatment targets are different—Hoechst (nucleus)
and ER. This observation helps characterize the organelle targets
forMoA treatments. For ActChR, AdgR, SrtR agonist–antagonist
pair, there is a close resemblance in the most impacted organelle.
Since the dopamine receptor affects different targets downstream,
this establishes valuable insights regarding signaling plasticity in
cancer cells as activation or inactivation of cascades are mediated
through different targets. Overall, the quantification helped
identify the same MoA inducing treatment could have different
downstream targets which hint toward signaling heterogeneity.

4. DISCUSSION

In biomedical applications, it is often important to understand
the signatures that chemical perturbation imprints on the
cell. Quantitative analysis of fluorescent microscopy enables

identification of nascent signatures of perturbation (Rohban
et al., 2017) as well as health phenotypes (Way et al., 2020).
This work is aimed to identify such underlying cellular response
signatures by using a publicly available dataset of high content
screen. The departure of phenotypic profiles as compared to
DMSO as a reference has provided insights regarding the cellular
changes induced. The derived metric of SimIdx (as presented
in Figures 1A,Bi) from a population of cells is based on the
phenotypic impact the signaling modulation treatment causes.
SimIdx accredits understanding of phenotypic relationships
present in the dataset. This simple yet powerful documentation
on diverse data can advance detection of the onset of diseases by
labeling the signatures in advance from know datasets.

The subtle changes induced upon treatment are tracked
in this study for monitoring phenotypic variations specifically
in terms of the organelle. Identification of specific organelle
targets could help to target drugs to organelles of maximum
relevance. Such a target-directed drug design is critical for
maximizing the therapeutic outcome of the drug (Torchilin,
2012). These profiles across various cells aid the identification
of novel underlying signatures of organelle-cellular response
coupling. Furthermore, the sensitivity analysis of the organelle
response (Figure 3B) has shown no particular organelle bias,
which could be a result of the transfer of impact from one
target to another. The overall cellular behavior is dictated by the
rich underlying interacting signaling network. However, hyper-
activation (Sever and Brugge, 2015) of signaling cascades is
also observed in cancer cells. Hence it is likely that the impact
of the treatment on some organelle targets might eventually
be relayed onto other organelles (Valm et al., 2017; Cohen
et al., 2018). This computational study convenes evidence for
signaling hyperactivation, which resonates with the literature
hence adds to the validation. These approaches on time-
lapse microscopy shall resolve these signatures of cellular
response in the temporal domain which enables to probe how
the underlying connections evolve with time and develop an
organelle interactome.

Based on the deterministic response curves, predictionmodels
have been developed to estimate the overall cellular response
by using only specific organelle response features. These models
were engineered based on multivariate regression, which is
extensively used in engineering analytics (Dumouchel and
O’Brien, 1989; Prats-Montalbán et al., 2011). The impact of the
treatment on the overall cell is then efficiently predicted based
on only fewer organelle stains. For validation, the prediction
accuracy is measured on a thousand new candidate compounds
(Figure 3C). This prediction ability open avenues to stain
cells with a lesser number of fluorescent labels, yet efficiently
determine the overall cellular response (Figure 3C) through
a simplistic and lesser resource-intensive method. This study
also characterizes how ER serves two very critical roles in
mediating the cellular response. First, a fraction (80%) of the
ER features are affected in at least 240 (out of 270) MoA,
making it the most pertinent target organelle (Figure 2D)
among the ones tested here. Second, ER also acts as a key
organelle (Figure 3Di) in the cell response prediction models.
It is known in the literature that ER is also pivotal for cellular
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homeostasis and extracellular response (Xu et al., 2005; Cao and
Kaufman, 2014). Additionally, recent studies have also shown
that in cancer ER organelle is stressed and associated signaling
pathways are often dysregulated (Yadav et al., 2014; Kato and
Nishitoh, 2015; Han and Wan, 2018; Lin et al., 2019). This
hints that the ER response is likely to be strongly coupled
to the cellular response. Hence, the computational findings in
this study align with the earlier reported evidence. Overall,
such analysis has paved the way to trace rudimentary trends
among organelles.

The PSI, another metric characterized in this study, analysis
is applied to examine the differential effect on cellular
integrity for the same annotated MoA. Here, the response
variability itself has directly been used as a biological probe
to access information regarding the functional specificity of
these molecular mechanisms. If different compounds elicit
a similar response that would signify conserved response
pathways, which would be captured by higher PSI and vice
versa. This calculation has suitably equipped the study to show
that different compound treatments cause differential cellular
response yet enacts the conserved final MoA (Figure 4C).
Interestingly, this analysis shows how signaling heterogeneity
arises by assessing differential impact on the cell caused
by similar treatment. For further comparison of cellular
response, selective studying of the agonist–antagonist pair
has been performed (Figure 4B). This metric has also helped
calibrate the trend of organelle (Figure 4D) being affected
and gain signaling insights. An understanding regarding the
organelle targets for the treatments, which can be beneficial for
studying drug targets and their effect. The role of dopamine
in mediating neuro-synaptic plasticity is already established
(Tecuapetla et al., 2007; Ishikawa et al., 2013; Langlois et al.,
2018). Dopamine is also useful in cancer treatment as it
results in the shrinking of tumor size (Liu et al., 2019) and
inhibiting its progression and exerts anticancer effect (Sarkar
et al., 2008; Zhang et al., 2017; Kline et al., 2018). Here at
single cell level the interaction between dopamine activation
and inactivation with cancer is studied. This revealed that
the downstream target switches, which could be a result of
rewiring in underlying cascades. Hence, this serves as an
elementary evidence for signaling plasticity in cancer cells.
Further experimental characterization of this plasticity might
reveal the machinery involved as well as advance its role in
anticancer therapeutics.

Moreover, with the advent of automation in the cell-painting
assay, the screen can be substantially increased enabling to
integrate these methods to characterize the downstream effect of
a larger number of bioactive compounds. Themethods developed
here enables integration of high content complex data for
studying phenotypic responses and cellular signaling. The report
shows how quantitative analysis on cellular imaging screens
could be used to derive mechanistic evidence regarding cellular
signaling and associated activation, heterogeneity, and plasticity.
Identification of these characteristics of molecule treatment will
not only enhance understanding of cellular function but also

can be applied to transitional research to validate drug and
therapeutic effects. This shall also benefit drug discovery and
personalized medicine by analyzing subtle changes in the effect
of diverse molecules.

In summary, taking advantage of the individual-cell
measurements in the high content screen, the cellular phenotypic
response has been probed. Subsequently, these facilitated the
understanding of varying responses in the downstream effect
for multiple treatments on cancer cells, specifically the organelle
targets, predicting the overall cellular response efficiently for
new candidate molecules and finally evaluate the signaling
heterogeneity. Since specifics of the treatment would be
identified, this will envisage the identification of hallmarks
of both molecular as well as disease targets in cells and open
promising avenues through interdisciplinary investigation and
quantitative models.
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