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Osteoarthritis is one of the most prevalent chronic joint diseases for middle-aged and
elderly people. But in recent years, the number of young people suffering from the
disease increases quickly. It is known that osteoarthritis is a common degenerative
disease caused by the combination and interaction of many factors such as natural and
environmental factors. DNA methylations reflect the effects of environmental factors.
Several researches on DNA methylation at specific genes in OA cartilage indicated
the great potential roles of DNA methylation in OA. To systematically investigate the
methylation pattern in knee and hip osteoarthritis, we analyzed the methylation profiles
in cartilage of 16 OA hip samples, 19 control hip samples and 62 OA knee samples. 12
discriminative methylation sites were identified using advanced minimal Redundancy
Maximal Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The
SVM classifier of these 12 methylation sites from genes like MEIS1, GABRG3,
RXRA, and EN1, can perfectly classify the OA hip samples, control hip samples and
OA knee samples evaluated with LOOCV (Leave-One Out-Cross Validation). These
12 methylation sites can not only serve as biomarker, but also provide underlying
mechanism of OA.

Keywords: osteoarthritis, methylation, Support Vector Machine, minimal Redundancy Maximal Relevance,
Incremental Feature Selection

INTRODUCTION

Osteoarthritis is one of the most prevalent chronic joint diseases, characterized by the loss,
degeneration and calcification of articular cartilage (Im and Choi, 2013). It often occurs in middle-
aged and elderly people, and the incidence in females is significantly higher than that in males
(Rushton et al., 2014). Research shows that in recent years, with the quickening pace of life, the
number of young people suffering from the disease began to increase, ultimately resulting in
sustained growth in the social burden (den Hollander and Meulenbelt, 2015).

Despite the unremitting efforts of many scholars, the pathogenesis of osteoarthritis is still not
clear yet. Current studies indicate that osteoarthritis is a common degenerative disease caused by
the combination and interaction of many factors such as natural and environmental factors (Felson,
2004). The increase in age, damage of tissue and cell, obesity, the overuse of joints and genetic
susceptibility are known as OA major risk factors (Hunter et al., 2002).

Osteoarthritis mainly involves the cartilage of the weight-bearing joints, followed by the
synovium. At present, it is generally believed that the central part of OA mechanism is the
degeneration of articular cartilage, resulting from the imbalance between anabolism and catabolism
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in the cartilage extracellular matrix caused by mechanical and
biological factors (Martel-Pelletier et al., 2008). Since these
changes are reported to be caused by genetic changes in the
chondrocyte associated with the OA epigenetic mechanism, it’s
assumed that the epigenetic changes of chondrocytes may be a
key driver in osteoarthritis (Reynard and Loughlin, 2012).

Studies on epigenetic of OA have suggested that these
mechanisms is very significant during the onset and progression
of disease (Barter and Young, 2013). Despite the fact that
there exist many epigenetic mechanisms like DNA methylation,
miRNA and histone modifications (Aref-Eshghi et al., 2015),
the involvement of DNA methylation in OA pathophysiology
is the most studied subject (Rice et al., 2020; Sun et al.,
2020; Zhou et al., 2020). DNA methylation mainly occurs
at CpG dinucleotides, selectively adding a methyl group to
cytosine to form 5-methycytosine under the catalysis of DNA
methyltransferase (DNMT). DNA methylation is involved with
transcriptional inhibition by preventing the binding of proteins
to gene promoters and changing chromatin structure (Loeser,
2008). The changes of methylation status can accelerate the
development of OA (Miranda-Duarte, 2018). Thus, further
studies on the mechanisms involved in DNA methylation is
another way to develop new OA therapy strategies.

There have been several researches on DNA methylation
at specific genes in OA cartilage. For instance, the expression
of matrix metalloproteinase genes has been reported to be
upregulated in OA chondrocytes, resulting in extracellular
matrix degradation (Kevorkian et al., 2004). In addition, genes
associated with OA chondrocytes like GDF-5, SOX-9, DIO-
2, and ADAMTS-4 were also suggested to be differentially
expressed between OA cartilage and control group (Reynard
and Loughlin, 2012). It has also been reported that the IL1B
promoter is demethylated in articular chondrocytes as a response
to inflammatory cytokine signaling (Hashimoto et al., 2009).

OA happens in knees and hips mostly. But knee OA is more
common than hip OA. Although articular cartilage of hip and
knee joints have substantial similar characters and functions, the
disease progression and subsequent treatment may be different
between the two joints (Pereira et al., 2016). Transcriptomic
studies have indicated that genes dysregulated in hip and knee
OA have great difference (Loughlin and Reynard, 2015), so does
the methylation patterns in hip and knee OA samples (Rushton
et al., 2014). These findings highlight the importance of the
separation of OA researches from skeletal sites and help us
understand the cartilage homeostasis.

The cure for osteoarthritis is mainly to mitigate pain, improve
the function of the joints and avoid the side effects of the
treatment as far as possible. However, due to the slow progress
of osteoarthritis and the lack of sensitive detection methods
to identify early OA changes, it is difficult to find disease-
modifying drugs at present. Epigenetic markers mentioned above
can detect the phenotypes of various chondrocytes, including
articular cartilage homeostasis, chondrogenic differentiation and

Abbreviations: mRMR, minimal Redundancy Maximal Relevance; SVM,
Support Vector Machine; IFS, Incremental Feature Selection; DNMT, DNA
methyltransferase; LOOCV, Leave-One Out-Cross Validation; GEO, Transcript
Expression Omnibus.

the development of OA, which may provide new targets and
strategies for drug treatment of OA.

To systematically investigate the methylation pattern in knee
and hip osteoarthritis, we analyzed the methylation profiles in
cartilage of 16 OA hip samples, 19 control hip samples and
62 OA knee samples. 12 discriminative methylation sites were
identified based on minimal Redundancy Maximal Relevance
(mRMR) and Incremental Feature Selection (IFS). mRMR is
a widely used power feature selection method (Chen et al.,
2017b, 2018b, 2019c; Cai et al., 2018; Li and Huang, 2018; Li
et al., 2019a) which considers not only the relevance with OA
status but also the redundancy among methylation status. It can
identify a small but well performed methylation signature. What’s
more, an SVM (Support Vector Machine) (Chen et al., 2017c,
2019a,b,d; Sun et al., 2018; Li et al., 2019b; Pan et al., 2019) OA
classifier was built based on these 12 methylation sites and it
can perfectly classify the OA hip samples, control hip samples
and OA knee samples evaluated with LOOCV (Leave-One Out-
Cross Validation) (Chen et al., 2014; Zhang N. et al., 2015; Cheng
et al., 2016; Li et al., 2018; Wang and Huang, 2019). Although the
model needs to be validated on independent large dataset, these
12 methylation sites provided clues for the mechanisms of OA.

MATERIALS AND METHODS

The Cartilage DNA Methylation Profiles
of OA Hips, Control Hips and OA Knees
We downloaded the cartilage DNA methylation profiles of 16 OA
hip samples, 19 control hip samples and 62 OA knee samples
from publicly available GEO (Transcript Expression Omnibus)
database under accession number of GSE63695 (Rushton et al.,
2014). The DNA methylations were measured using Illumina
Human Methylation 450 Array. There were 4,82,421 probes
corresponding to methylation sites. The processed beta values
that were normalized with preprocess Funnorm function from R
package minfi were used for further analysis.

Identify the Representative OA
Methylation Sites
To identify the most discriminative features among different
groups, many analysis methods have been developed (Huang
et al., 2008; Cai et al., 2010; Zhang et al., 2012, 2016, 2017; Li et al.,
2014; Zhang P.W. et al., 2015; Chen et al., 2018a; Wang et al.,
2018). ANOVA (Analysis of Variance) is an obvious choice. But
such statistical methods don’t consider the relationship between
features, therefore a lot of redundant features will be selected.

In our study, the number of features, i.e., methylation sites,
was extremely large. Obviously, many of them were redundant.
To select the representative features, we adopted mRMR method
developed by Peng et al. (2005) to reduce redundancy of selected
genes. This method has been widely used and proven to be
very effective in handling high dimensional data (Niu et al.,
2013; Zhao et al., 2013; Zhou et al., 2015; Zhang et al., 2016;
Li and Huang, 2017; Liu et al., 2017). The C++ version
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mRMR program downloaded from http://home.penglab.com/
proj/mRMR/was used in this study.

Its idea is simple and clear. Let us use � to denote all the
4,82,421 methylation sites, �s to denote the selected m sites, and
�g to denote the n sites to be selected.

First, we evaluated the relevance of site g from �g with three-
class sample labels l (OA hips, control hips and OA knees) was
calculated with mutual information (I) equation (Sun et al., 2012;
Huang and Cai, 2013):

I(g, l) (1)

Meanwhile, the redundancy of site g with the m selected sites
gi (i = 1, 2, . . . , m) in �s can also be calculated based on mutual
information:

1
m

∑
gi∈�s

I(g, gi)

 (2)

The goal can be characterized as maximizing the function
which balances the relevance and redundancy:

max
gj∈�g

I (gj, l)− 1
m

∑
gi∈�s

I(gj, gi)

  (
j = 1, 2, . . . , n

)
(3)

Each time, one best site that maximized this function will be
moved from �g to �s. Eventually, all the sites will be ranked base
on their relevance with sample labels and redundancy between
each other. The ranked methylation sites from large to small can
be represented as:

S =
{
g′1, g

′
2, . . . , g

′
r, . . . , g

′
N
}

(4)

The top ranked methylation sites have better
discriminative ability.

To reduce the computational complexity, we focused on the
top 300 mRMR sites for further analysis which should be enough
to classify the samples and suitable as biomarkers.

Optimize the Discriminative Methylation
Sites for OA
Although we identified the non-redundant OA sites using
mRMR method, we still wanted to obtain the methylation site
combinations which can classify the OA hips, control hips and
OA knees. To do so, we applied a widely used optimization
method, IFS (Jiang et al., 2013; Li et al., 2014; Shu et al., 2014;
Zhang et al., 2014; Huang et al., 2015; Zhang P.W. et al., 2015;
Chen et al., 2017a).

Based on the ranked mRMR site list, each time, the top r sites{
g′1, g

′
2, . . . , g

′
r
}

were chosen to construct a SVM (Support Vector
Machine) classifier and its accuracy evaluated with LOOCV
(Chen et al., 2014; Zhang N. et al., 2015; Cheng et al., 2016;
Li et al., 2018; Wang and Huang, 2019) was recorded. SVM
is classical machine learning classifier with a wide range of
applications in biomedicine (Chen et al., 2017c, 2019b; Li et al.,
2018, 2019b; Sun et al., 2018; Pan et al., 2019). The R function svm
in package e10711 was used to apply the SVM method. LOOCV,

1https://CRAN.R-project.org/package=e1071

FIGURE 1 | The IFS curve of the number of methylation sites and their
classification accuracy. The x-axis was the number of methylation sites used
to construct the SVM classifier and y-axis was the classification accuracy of
the SVM classifier evaluated with (Leave-One Out-Cross Validation). When the
top 12 methylation sites were used, all samples can be perfectly classified.

as known as Jackknife test, is a widely used objective method to
evaluate the prediction performance of classifiers (Chou, 2011).
Each time, one sample was treated as test sample while the other
samples were used to train the model. At last, each sample had
been tested for once and the classes of all samples were predicted.
By comparing the predicted classes and actual classes, we can
calculate the LOOCV accuracy.

After 300 rounds, the performances of the 300 methylation
subsets were tested. By analyzing the number of used methylation
sites and the performance of corresponding classifier, we can
easily find the best methylation sites.

RESULTS AND DISCUSSION

The Representative OA Methylation Sites
In the OA methylation dataset, there were 4,82,421 features. On
one hand, the number of features was large; on the other hand,
there were redundancy among these methylation sites. To reduce
the number of features to a reasonable number for further study,
we adopted the mRMR method.

The methylation sites were ranked based on both their
relevance with the sample labels, i.e., OA hips, control hips or OA
knees, and their redundancy with each other. In other words, only
the methylation site that exhibited different pattern with already
selected sites will be selected from the candidate methylation site
pool. With the mRMR analysis, we identified the top 300 most
representative OA methylation sites.

The Discriminative Methylation Sites for
OA
Although the mRMR method considered the relevance between
features and sample labels, but it was balanced with redundancy.
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TABLE 1 | The 12 discriminative methylation sites for OA.

Rank Probe Chromosome Coordinate Gene mRMR score

1 cg09462924 2 66666470 MEIS1 0.943

2 cg22118147 5 172144013 - 0.263

3 cg18576667 15 27597409 GABRG3 0.328

4 cg07533951 12 114879558 - 0.284

5 cg14545975 9 137297213 RXRA 0.245

6 cg05877497 2 66667946 MEIS1 0.264

7 cg21811143 2 119599748 EN1 0.219

8 cg09989996 1 753376 FAM87B 0.235

9 cg19738283 2 176976802 HOXD10 0.244

10 cg02824888 12 115129011 - 0.226

11 cg04288999 2 66667852 MEIS1 0.238

12 cg00995986 2 66665428 MEIS1 0.214

We would like to find the methylation sites that can best classify
different OA samples. These sites not only should be concise, but
also have great discriminative ability.

To find the best discriminative methylation sites for OA, we
plotted the IFS results in Figure 1 in which, the x-axis was the
number of methylation sites and the y-axis was the LOOCV
accuracy of the SVM classifier based these sites. It can be seen that
when the top 12 mRMR sites was used, the ACC was the highest.
All samples were correctly classified. The 12 chosen methylation
sites were given in Table 1. The chromosome positions were from
Genome Build 37 (hg19). We must be cautious that this accuracy

needs to be validated on an independent large OA cohort. But
since there is no other similar dataset, we can only try our
best and evaluate it with objective LOOCV method. The results
provided clues about the difference between OA and control and
the difference between hip OA and knee OA and worth to be
further investigated.

To explore the methylation levels of the 12 sites in different
disease status, we plotted the heatmap of them in all samples
in Figure 2. It can be seen that OA hip were more similar with
OA knee than with control hip. The disease status surpassed
the tissue specificity. As for OA hip and OA knee, there
were nine highly methylated sites in OA knee (cg21811143,
cg19738283, cg00995986, cg09462924, cg05877497, cg04288999,
cg07533951, cg14545975, and cg02824888) while there were three
highly methylated sites in OA hip (cg18576667, cg22118147,
and cg09989996).

The Relationship Between the
Methylation Signature of Cartilage
Tissue and Gene Expression Signature of
Blood in OA
There have been studies of blood expression profiles of OA
(Ramos et al., 2014; Li et al., 2018). Ramos et al. identified 27
blood expression signature genes of OA (Ramos et al., 2014)
and Li et al. (2018) identified 23 blood expression signature
genes. By combining them, we obtain 46 blood expression
signature genes. There was no overlap between the 46 blood

FIGURE 2 | The heatmap of the 12 methylation sites in OA hips, control hips and OA knees. Each row corresponded to the scaled methylation level of one site and
each common corresponded to a sample which could be OA hip, control hip or OA knee. It can be seen that all samples were clustered into the right groups.
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FIGURE 3 | The relationship between the methylation signature of cartilage tissue and gene expression signature of blood in OA. We mapped the tissue methylation
signature genes (light yellow) and blood expression signature genes (light blue) onto the STRING network and found that MEIS1 was the hub of methylation signature
which can interact with the other three methylation genes (EN1, RXRA, and HOXD10) and the blood expression signature gene (MLLT6). Through RXRA, MEIS1 can
regulate a large cluster of blood expression signature genes.

expression signature genes and our cartilage tissue methylation
signature genes. But when we mapped them onto STRING
network2 (Szklarczyk et al., 2018), the network relationship
between tissue methylation genes and blood expression genes
(Figure 3) was clear. It can be seen that MEIS1 was the hub
of methylation signature which can interact with the other
three methylation genes (EN1, RXRA, and HOXD10) and the

2http://string-db.org, version: 11.0

blood expression signature gene (MLLT6). Through RXRA
and MEIS1 can regulate a large cluster of blood expression
signature genes.

The Biological Functions of the
Discriminative Methylation Sites for OA
In Table 1, we annotated the methylation sites to genes based on
their chromosome coordinates. Four of them were corresponding
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FIGURE 4 | The four methylation sites on the gene structure of MEIS1. MEISI is a long gene of 1,40,418 bps with 13 exons. The methylation sites cg00995986 and
cg09462924 located between exon 2 and exon 3 while cg04288999 and cg05877497 located between exon 4 and exon 5 in MEIS1. They were close on
chromosome position.

to the same gene, MEIS1 (Meis Homeobox 1). We checked
the consistency of these four MEIS1 methylation sites in OA
hips, control hips and OA knees in Figure 2 and we found
they shared similar pattern although they were not identical.
MEISI is a long gene of 1,40,418 bps with 13 exons. We
mapped the four methylation sites onto the gene structure
of MEIS1 (Figure 4). The methylation sites cg00995986 and
cg09462924 located between exon 2 and exon 3 while cg04288999
and cg05877497 located between exon 4 and exon 5. They
were close on chromosome position. There have been reports
that MEISI was associated with blood and epithelial cancers,
such as acute leukemia and skin cancer (Okumura et al.,
2014; Wang et al., 2014). As a transcription factor, MEISI can
bind chromatin DNA and regulate pluripotency of stem cells
(Okumura et al., 2014). It is generally considered as an oncogene
which accelerate development (Wang et al., 2014). There are no
reported associations between MEISI and osteoarthritis. MEISI
may serve as a novel OA biomarker, especially for distinguishing
the difference between hip OA and knee OA.

Another interesting methylation site was cg21811143 which
locate in EN1 (Engrailed Homeobox 1). It plays a role in
controlling development of the central nervous system (CNS)
(Webb et al., 2008) and segmentation course, where it is required
for the formation of posterior compartments (Lawrence and
Johnston, 1984). Recent studies have identified EN1 gene as
a decisive factor of bone mineral density (BMD) via whole-
genome sequencing (Zheng et al., 2015), while higher BMD was
considered to be involved with OA in many cross-sectional and
longitudinal epidemiological studies (Belmonte-Serrano et al.,
1993). SNP rs4144782 in EN1 was reported to be significantly
associated with increased risk of knee OA (OR = 1.26; 95% CI:
1.05–1.50, p-value = 0.012) (Li et al., 2017). What’s more, the
EN1 mRNA levels were differentially expressed between Knee
and hip Intra-articular adipose tissues (IAATs) and Subcutaneous
adipose tissue (SCAT) (Eymard et al., 2017). Its expression
was strongly decreased in all IAATs compared with SCAT
(Infrapatellar fat pad, IFP: 0.3-fold, p = 0.006; Suprapatellar fat
pad, SPFP: 0.2-fold, p = 0.006; and Acetabular fat pad, AFP: 0.3-
fold, p = 0.046) (Eymard et al., 2017). The genomic, methylation
and transcriptomic evidences of the association between EN1
and OA make it a strong candidate OA gene worth further
experimental validation.

GABRG3 and RXRA, were gamma-aminobutyric acid
(GABA) receptor and retinoid X receptor, respectively. Beside
autistic disorder (Menold et al., 2001) and Alzheimer’s disease
(Iwakiri et al., 2009), GABRG3 is associated with alcohol

dependence by affecting disinhibition and hyperexcitability of
CNS (Dick et al., 2004; Edenberg and Foroud, 2006). Maybe it
can also affect how OA patients feel about pain. For RXRA, its
methylation status was reported to be associated with childhood
bone mineral content (BMC) (Harvey et al., 2014).

The methylation sites that can’t be annotated to genes may
functions through trans-regulation (van Eijk et al., 2012). Their
roles can be investigated with integrative analysis of multi-omics
OA data in the future.

Another issue of this work was the small sample size. It
will overestimate the prediction performance. The confounding
factors and disease heterogeneity will be difficult to detect in such
small dataset. The signature needs to be validated on large cohorts
from different medical centers.

CONCLUSION

As a chronic joint disease, osteoarthritis is very common in elder
people. Even young people are more and more likely to have
OA symptoms due to the quickening pace of life. OA happens
in knees and hips mostly, but knee OA is more common than
hip OA. The disease progression and treatment of hip and knee
OA are different. Since the epigenetic factor plays key roles in
OA, we systematically analyzed the DNA methylation profiles of
cartilage from 16 OA hip samples, 19 control hip samples and
62 OA knee samples. With advanced feature selection methods,
12 OA discriminative methylation sites were selected from a total
of 4,82,421 sites. These sites corresponded to genes like MEIS1,
EN1, GABRG3, and RXRA. These results provided not only novel
OA biomarkers, but also possible mechanisms that worth further
investigation in an independent large cohort.
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