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Solid tumors are challenged with a hypoxic and nutrient-deprived microenvironment.
Hence, hypoxic tumor cells coordinatively increase the expression of nutrient
transporters and pH regulators to adapt and meet their bioenergetic and biosynthetic
demands. Carbonic Anhydrase IX (CAIX) is a membrane-bound enzyme that plays a
vital role in pH regulation in the tumor microenvironment (TME). Numerous studies have
established the importance of CAIX in mediating tumor progression and metastasis. To
understand the mechanism of CAIX in mediating tumor progression, we performed an
unbiased proteomic screen to identify the potential interactors of CAIX in the TME using
the proximity-dependent biotin identification (BioID) technique. In this review, we focus
on the interactors from this BioID screen that are crucial for nutrient and metabolite
transport in the TME. We discuss the role of transport metabolon comprising CAIX
and bicarbonate transporters in regulating intra- and extracellular pH of the tumor. We
also discuss the role of amino acid transporters that are high confidence interactors
of CAIX, in optimizing favorable metabolic state for tumor progression, and give our
perspective on the coordinative interplay of CAIX with the amino acid transporters in
the hypoxic TME.
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INTRODUCTION

Tumor cells metabolize nutrients in an anabolic or catabolic mode to maintain their biosynthetic
and bioenergetic demands, respectively. In a catabolic pathway, nutrients are broken down to
generate energy for maintaining cellular integrity. Whereas, in an anabolic pathway, they are
utilized to build new macromolecules such as nucleotides and amino acids that support cell growth
and proliferation. Tumor cells can alter their metabolism in favor of either of these pathways based
on their requirements, which is called metabolic reprogramming/rewiring (Ward and Thompson,
2012). Besides, tumor cells can utilize a diverse array of nutrients such as glucose, glutamine
(Gln), essential amino acids, and fatty acids, thus offering them metabolic flexibility (DeNicola
and Cantley, 2015). Both, metabolic reprogramming and flexibility give tumor cells the plasticity
to adapt to any metabolic shifts and survive. Several cell-intrinsic and extrinsic factors influence
metabolic reprogramming and flexibility in tumor cells (DeNicola and Cantley, 2015). One of the
most important extrinsic factors is oxygen availability in the tumor microenvironment (TME)
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(Nakazawa et al., 2016). Solid tumors are characterized by chaotic,
immature vasculature that causes zones of varying oxygen
tensions within the tumor. Depending on the proximity to
blood vessels, tumors are comprised of poorly perfused, chronic
hypoxic zones, and intermittently perfused, cycling hypoxic
zones (Michiels et al., 2016). To survive the nutrient and oxygen
deprivation caused by insufficient perfusion, tumor cells trigger
hypoxia-inducible factor (HIF) signaling, which culminates in the
stabilization and activation of the transcription factor, HIF1α or
HIF2α, and alters the expression of several downstream targets
to promote survival, tumor growth and progression (Xie and
Simon, 2017). One of the HIF1α regulated proteins that play an
important role in the hypoxic TME is the Carbonic Anhydrase IX
(CAIX) (Wykoff et al., 2000; McDonald and Dedhar, 2014).

CAIX – FUNCTION AND ROLE IN
CANCER

Carbonic anhydrase IX is a dimeric, membrane-bound metabolic
enzyme that belongs to the carbonic anhydrase (CA) family
(Alterio et al., 2012). It plays a crucial role in pH regulation
through the reversible hydration of carbon dioxide into
bicarbonate and proton. CAIX comprises of extracellular facing
proteoglycan (PG) and catalytic (CA) domains, a transmembrane
(TM) domain, and an intracytoplasmic (IC) domain (Opavský
et al., 1996). The presence of the PG domain is a unique feature
of CAIX and is absent in other isozymes of the CA family.
The dimerization of CAIX is mediated by the formation of a
disulfide bond between the Cys-41 residue located on the CA
domain (Alterio et al., 2009). Although CAIX expression is
primarily driven under hypoxia through the HIF1α stabilization,
the presence of extracellular lactate (Panisova et al., 2017) and
glutamate (Glu) (Briggs et al., 2016) have also been shown to
stabilize HIF1α and promote CAIX expression under normoxia.
CAIX is predominantly expressed in solid tumors, with restricted
expression in normal tissues (McDonald et al., 2012; Mboge
et al., 2018) and, its expression can be correlated with poor
prognosis (Chia et al., 2001; Loncaster et al., 2001; Klatte et al.,
2009; Korkeila et al., 2009; Ilie et al., 2010) and response to
therapy in solid tumors (Koukourakis et al., 2001; Generali et al.,
2006; Tan et al., 2009; McIntyre et al., 2012). The role of CAIX
in various steps of tumor progression and metastasis is well
established in the past decade. Targeting CAIX, both, by genetic
depletion and using small molecule inhibitors, has elucidated the
importance of CAIX in tumor growth in vivo (Lou et al., 2011).
In addition to its role in tumor growth, CAIX plays a crucial role
in metastasis (Lou et al., 2011; Gieling et al., 2012; Chafe et al.,
2015). Before the cancer cells metastasize to a distant site, they
establish a conducive microenvironment for their survival, called
the pre-metastatic niche. CAIX promotes granulocyte colony-
stimulating factor (G-CSF) production by hypoxic breast cancer
cells, which helps in the mobilization of granulocytic myeloid-
derived suppressor cells to lung metastatic niche and primes for
metastasis (Chafe et al., 2015). Furthermore, CAIX helps in the
maintenance of stemness in cancer stem cells and favor metastasis
(Lock et al., 2013; Gibadulinova et al., 2020; Peppicelli et al.,

2020). While it is evident that CAIX is important in mediating
various steps in tumor progression, the underlying mechanisms
remain unclear. Considering the importance of CAIX in the
hypoxic microenvironment, it is plausible that CAIX interacts
with other proteins in tumor cells to mediate various functions.
Hence, we recently conducted a comprehensive, unbiased study
to identify the protein interactome of CAIX using the proximity-
dependent biotinylation labeling technique called the BioID
method (Roux et al., 2012). This study identified over 140
high confidence protein interactors of CAIX (Swayampakula
et al., 2017). In this mini review, we will focus on the amino
acid transporters (AATs) and acid/base transporters that were
identified as high confidence interactors.

CAIX AND PH REGULATION

Active metabolism within tumor cells leads to the accumulation
of acidic metabolic by-products, which, if unbuffered, will be
lethal to the tumor cells. Therefore, tumor cells deploy several
membrane acid/base transporters (pH regulators) to establish a
favorable pH within the tumor cells (Neri and Supuran, 2011).
Two major acidic metabolic by-products that are produced
by tumor cells are CO2 and lactic acid (Corbet and Feron,
2017). While CO2 is predominantly produced as a by-product
of aerobic respiration, lactic acid production is a result of
anaerobic respiration or aerobic glycolysis in tumor cells. The
CO2 generated by tumor cells acts as a substrate for CAs, to
produce bicarbonate and protons. Lactic acid, on the other hand,
is extruded out of the cells by monocarboxylate transporters
(MCT) as lactate and protons, or buffered intracellular by
bicarbonate ions to produce CO2 (Sun et al., 2020). The
contribution of CO2 and lactic acid in defining the intratumoral
pH will depend on factors such as oxygenation and mitochondrial
respiration in tumor cells. In deep hypoxic zones of a tumor, the
mitochondrial respiration is impeded, and therefore, glycolysis
becomes the primary state of metabolism (Corbet and Feron,
2017). Conversely, in moderately hypoxic zones of the tumor,
the lactate that is released by surrounding anaerobic cells or Gln
imported into cells can feed the TCA cycle and drive oxidative
phosphorylation (Corbet and Feron, 2017; Faubert et al., 2017).
Using tumor spheroids, Swietach et al. (2009, 2010) demonstrated
that in spheroids of up to 300 um in size, CO2 released by the
mitochondria acts as a major substrate for CAIX activity rather
than lactic acid accumulation. The source of CO2 can either be
from the tumor cells or can be provided to anaerobic regions by
surrounding aerobic cells.

Carbonic anhydrase IX establishes a pH gradient of alkaline
intracellular pH and acidic extracellular pH in tumor cells
that helps in survival and tumor growth (Chiche et al., 2009).
Maintenance of intracellular pH by CAIX is critical to support
glycolysis and help cancer cells to adapt under hypoxia (Benej
et al., 2020). Numerous studies have shown that CAs associate
with acid/base transporters to form a temporary complex called
transport metabolon (Deitmer and Becker, 2013). CAs form
a transport metabolon with MCTs to effectively shuttle the
protons from and to MCT, and enhance its activity (Klier et al.,
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2014). In CAIX, the 18 Glu and 8 Asp residues in the PG
domain have been proposed to act as proton antenna or proton
collectors (Ames et al., 2018), whereas the His200 in the catalytic
domain facilitates the proton shuttle from the catalytic center
into surrounding space, and support MCT activity (Jamali et al.,
2015). Another important transport metabolon in the context of
CAIX is the bicarbonate metabolon that involves the association
of CAIX with bicarbonate transporters. CAIX co-localizes and
functionally cooperates with the bicarbonate transporter, NbCe1
(SLC4A4), in the invadopodia to achieve an alkaline pH
that promotes invadopodia formation (Debreova et al., 2019).
Additionally, CAIX interacts with matrix metalloproteinase 14
(MMP14) in invadopodia. MMP14 is a proteolytic enzyme that
degrades the extracellular matrix (ECM) and its activation is
important for invadopodial function. The association of CAIX
with MMP14 provides protons for MMP14 activation and
therefore helps in the invadopodial function (Swayampakula
et al., 2017). The increased MMP14 activity, coupled with
the intracellular alkalinization within the invadopodia, aids in
invadopodia elongation and therefore in tumor cell invasion.

The sodium-bicarbonate transporter, NBCn1 (also known
as SLC4A7) is a high confidence interactor of CAIX that
emerged in the BioID study. Genome-wide association studies
have shown NBCn1 to be a causative gene in breast cancer
(Ahmed et al., 2009). NBCn1 functions as an acid extruder
and creates a favorable pH gradient in tumors (Boedtkjer et al.,
2013; Lee et al., 2016). Furthermore, loss of function studies
by the genetic depletion of NBCn1 has elucidated its role in
tumor growth (Lee et al., 2016) and cell cycle progression (Flinck
et al., 2018). Considering the importance of this bicarbonate
transporter in regulating pH in tumor cells, it may mediate
an important function by forming a bicarbonate metabolon
with CAIX. However, to this date, the role of this interaction
remains uninvestigated.

CAIX AND AMINO ACID TRANSPORT

Hypoxic zones in the tumor have a restricted supply of nutrients
and therefore continually adapt to metabolize various nutrients
to maintain their biologic functions (Samanta and Semenza,
2018). Amino acids are a major source of carbon and nitrogen
for the biosynthesis of various macromolecules (Figure 1). In
this section, we will discuss three AATs that were identified as
potential interactors of CAIX from the BioID screen (Table 1).
We will describe the role and regulation of these transporters
in cancer, and then discuss how these transporters may work
coordinatively with CAIX in the hypoxic TME.

ASCT2
The Alanine Serine Cysteine Transporter 2 (ASCT2) aka SLC1A5,
is a plasma membrane amino acid transporter that mediates
sodium-dependent antiport of neutral amino acids. Despite what
the name suggests, ASCT2 preferentially transports glutamine,
while cysteine acts as a modulator of the transport (Utsunomiya-
Tate et al., 1996; Scalise et al., 2018). ASCT2 is a trimeric
protein comprising a scaffold domain that enables the interaction

between protomers, and a transport domain that helps in the
amino acid transport (Garaeva et al., 2018). As one of the
major glutamine transporters in cells, ASCT2 is ubiquitously
expressed across various tissues in the body and plays a crucial
role in mediating cellular functions such as hematopoietic stem
cell differentiation (Oburoglu et al., 2014) and T-cell activation
(Nakaya et al., 2014; Poffenberger et al., 2014). Increased
expression of ASCT2 is observed in several cancer types and
is associated with poor prognosis (Witte et al., 2002; Shimizu
et al., 2014; Kaira et al., 2015b; Liu et al., 2015; Sun et al., 2016;
Bernhardt et al., 2017). The upregulated cellular expression of
ASCT2 in cancer is mediated by oncogenic signals such as Kirsten
rat sarcoma (K-Ras) (Toda et al., 2017) and myelocytomatosis
(N-Myc) (Ren et al., 2015). K-Ras plays an important role in
mediating various growth signaling pathways in cells. Mutation
in K-Ras is shown to upregulate the expression of ASCT2 and
promote cell proliferation in colorectal cancer (Toda et al.,
2017). N-Myc, on the other hand, is a transcription factor that
drives the expression of genes involved in cell proliferation. Ren
et al. (2015) showed N-Myc to upregulate ASCT2 expression by
directly binding to its promoter region. In addition to oncogenic
signals, cellular stress such as amino acid starvation can also
upregulate ASCT2 expression. Under amino acid deprivation, a
stress response transcription factor called activating transcription
factor 4 (ATF4) binds to ASCT2 promoter and increases ASCT2
expression (Ren et al., 2015). Functional studies using in vitro and
in vivo models have shown ASCT2 inhibition to effectively reduce
tumor growth in various types of cancer (van Geldermalsen
et al., 2016; Marshall et al., 2017; Ye et al., 2018) by attenuating
the mechanistic Target of Raptor (mTOR) signaling pathway
(Figure 1; Wang et al., 2014, 2015). Furthermore, ASCT2 has
been shown to facilitate Gln uptake in cancer stem cells and
promote tumor growth in pancreatic ductal adenocarcinoma
(PDAC) (Wang V.M. et al., 2019). Based on this evidence,
it can be concluded that ASCT2 plays an important role in
tumorigenesis and is an attractive candidate to target cancer.
Over the years, several drug candidates to target ASCT2 have
been discovered. However, identifying drugs that selectively
target ASCT2 has been a challenge due to limited structural
studies until recently (Jiang et al., 2020). The recent development
of an antagonist, V9302 by Schulte et al. (2018) has shown
promise in targeting ASCT2 (Scopelliti et al., 2018).

SNAT2
Sodium coupled neutral amino acid transporter 2 (SNAT2) aka
SLC38A2, mediates uniport of neutral amino acids including
glutamine in a sodium-dependent manner (Mackenzie and
Erickson, 2004). It comprises of 11 hydrophobic membrane-
spanning domains with an extracellular C-terminus and an
intracellular N-terminus (Ge et al., 2018). SNAT2 expression
is regulated by extracellular amino acid. Under amino acid
deprivation, the global translation is halted, with a concomitant
increase in the ATF4 translation. The binding of ATF4 to the
amino acid response element (AARE) on the SNAT2 promoter
increases SNAT2 expression (Palii et al., 2006). Conversely,
SNAT2 can sense the presence of amino acids such as Tyr
and Gln, and inhibit its expression (Hyde et al., 2007; Hundal
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FIGURE 1 | Interaction of CAIX with amino acid transporters and acid/base regulators from BioID. (A) Under hypoxia or low amino acid conditions, cells upregulate
the expression of SNAT2 and ASCT2 to increase Gln uptake. Normally, Gln can be utilized for biosynthetic reactions such as nucleotide synthesis, bioenergetic
reactions by entering the TCA, or for REDOX reactions by glutathione synthesis. Under hypoxia, Gln is utilized for fatty acid synthesis by the reductive carboxylation
of α-KG to citrate by IDH1. Alternatively, the intracellular glutamine can be utilized for importing essential amino acids such as leucine, by coupling the transport
activity of ASCT2 with LAT1. The imported leucine can bind to a leucine sensor, Sestrin2, removing its inhibitory effect on the RagA/B and activate mTORC1
(Wolfson et al., 2016). The activated mTORC1 promotes protein translation and cell proliferation. (B) Hypoxic cells upregulate CAs, MCTs, and acid/base
transporters to buffer the intracellular pH changes that occur due to the accumulation of metabolic acids such as CO2 and lactic acid (see text). CAIX mediates the
reversible conversion of CO2 to proton and bicarbonate. This reaction is coupled with the bicarbonate import through NBC, thereby creating a pH gradient of
alkaline intracellular pH and acidic extracellular pH that is favorable for cell survival and growth. xCT, cysteine/glutamate transporter; SNAT2, sodium coupled neutral
amino acid transporter; ASCT2, alanine serine cysteine transporter 2; LAT1, L-type amino acid transporter; CAIX, carbonic anhydrase IX; NBC, sodium coupled
bicarbonate transporter; GLS, glutaminase; GDH, glutamate dehydrogenase; GOT, glutamic oxaloacetic transaminase; GCL, glutamate-cysteine ligase; GS,
glutathione synthase; IDH1, Isocitrate dehydrogenase 1.

TABLE 1 | List of potential CAIX interactors with role in nutrient or metabolite transport function from the BioID.

Functional class Gene symbol Gene name Biological role

Amino acid transporters SLC3A2 or CD98hc Solute carrier family 3 member 2 or
Cluster differentiation 98 heavy chain

Amino acid transport heavy chain subunit. Forms a complex with light
chain subunit to create functional heteromeric amino acid transporter

SLC7A5 or LAT1 Solute carrier family 7 member 5 or
L-type amino acid transporter 1

Sodium independent transport of large neutral amino acids such as
Leu, Ile, Val, His, Met, Trp, and Phe Tyr (Kanai et al., 1998)

SLC1A5 or ASCT2 Solute carrier family 1 member 5,
ASCT2 or Alanine Serine Cysteine
transporter 2

Sodium-dependent transport of neutral amino acids such as Glu, Gln,
Ala, Ser, Thr, Val, and Gly (Utsunomiya-Tate et al., 1996)

SLC38A2 or SNAT2 Solute carrier family 38 member 2 or
Sodium coupled neutral amino acid
transporter 2

Sodium-dependent transport of neutral amino acids such as Ala, Gln,
Ser, Met, Asn, Cys, Gly, His, and Pro (Mackenzie and Erickson, 2004)

Acid/base transporter SLC4A7 or NBCn1 Solute carrier family 4 member 7 or
Sodium bicarbonate cotransporter 3

Sodium bicarbonate cotransport
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and Taylor, 2009). Besides extracellular amino acid, SNAT2
expression is regulated by endoplasmic reticulum stress (ERS).
In breast cancer cells, paclitaxel-induced ERS causes a ubiquitin
ligase, RNFα to associate with SNAT2 and ASCT2, and cause
their degradation. This leads to decreased Gln uptake, decreased
proliferation, and increased cell death in the tumor cells (Jeon
et al., 2015; Moses and Neckers, 2015). Studies from Broer’s
group have elucidated that SNAT2 expression increases upon
the disruption of ASCT2 transporter activity (Broer et al., 2016,
2019), thereby classifying SNAT2 as a rescue transporter. In
addition to its role as a Gln transporter, SNAT2 has shown
to play an important role in transporting Ala into PDAC cells
from the surrounding pancreatic stellate cells (Parker et al.,
2020). Furthermore, genetic depletion of SNAT2 in PDAC cells
decreases the Ala uptake and reduce tumor growth in vivo (Parker
et al., 2020). These studies highlight the importance of SNAT2
in cancer, however, the clinical relevance of this transporter in
cancers remains unexplored.

LAT1
The L-type amino acid transporter (LAT1) aka SLC7A5, is a
heterodimeric amino acid transporter that mediates a sodium
independent antiport of neutral essential amino acids (Kanai
et al., 1998; Wagner et al., 2001). It comprises a heavy chain
subunit called cluster differentiation 98 (CD98hc) that associates
with a light chain subunit such as LAT1. The heavy chain
consists of an extracellular C-terminus, a transmembrane helix,
and an intracellular NH2 terminus. The light chain, on the
other hand, has 12 transmembrane domains with both COOH
and the NH2 termini facing the intracellular space (Yan et al.,
2019). While LAT1 is expressed across various tissues, it is highly
expressed at the blood-brain barrier and functions in amino
acid transport to the brain (Boado et al., 1999). The importance
of LAT1 in tumor growth was elucidated by Cormerais et al.,
using knock out models for LAT1 and CD98hc. This study
showed the genetic disruption of LAT1 to decrease leucine uptake
and inhibit mTORC1, causing decreased tumor growth in vivo.
N-Myc upregulates LAT1 expression by directly binding to the
promoter region of LAT1. The resulting amino acid uptake
promotes the sustained translation of Myc, thereby working in
a feed-forward loop that helps in tumorigenesis (Yue et al., 2017).
LAT1 expression is associated with poor prognosis (Kaira et al.,
2015a; Shimizu et al., 2015) and resistance to chemotherapy
in solid tumors (Altan et al., 2018). Downregulation of LAT1
has been shown to decrease cell growth (Marshall et al., 2016)
invasion, and migration (Janpipatkul et al., 2014). Targeting LAT1
using a small molecule inhibitor, JPH203 has shown success in
pre-clinical trials and was recently evaluated in clinical phase trial
1. Although the sample size was low in this clinical trial, the
drug was well tolerated and showed promise in targeting LAT1
in patients with advanced solid tumors (Okano et al., 2018).

Potential Role of CAIX in Amino Acid
Transport Regulation
As discussed above, AATs play important roles in promoting
tumor progression, and their interaction with CAIX suggests

an important mode of functional regulation that requires
further investigation.

It is well-known that Gln is an important amino acid in
cancer metabolism and several cancer types rely on Gln, which
is called Gln addiction (Wise and Thompson, 2010). In hypoxic
tumor cells, Gln is channeled for lipid biosynthesis to support
cell proliferation (Figure 1). This process is mediated by the
reductive carboxylation of α-ketoglutarate (α-KG) to citrate,
and the subsequent entry of citrate into lipogenesis (Metallo
et al., 2011). Furthermore, it is shown that Gln carbon and
nitrogen are efficiently metabolized to support lipid biosynthesis
under hypoxia (Wang Y. et al., 2019). The glutamine transporter
SNAT2 is upregulated under hypoxia (Morotti et al., 2019) and
support glutamine uptake in cancer cells. Interestingly, studies
have shown that SNAT2 compensates for the loss of function
of ASCT2 (Broer et al., 2019). Moreover, ASCT2 and LAT1
function as obligatory transporters, in which, the influx through
one transporter is coupled to the efflux through the second
transporter (Nicklin et al., 2009). These data suggest that these
three AATs work cooperatively in the TME to promote cancer
progression (Figure 1). To our knowledge, there is no existing
evidence in the literature on the functional role of CAIX in AA
transport, although the identification of potential interactions
between CAIX and these AATs suggests that reciprocal functional
regulations may be important hallmarks for tumor progression.
Considering the pivotal role of CAIX in pH regulation, it is
probable that the pH gradient mediated by CAIX in the tumor
could influence the function of these AATs. In fact, the transport
function of these AATs are influenced by pH, however, the effects
are different. The amino acid transport by SNAT2 is sensitive to
extracellular pH, where increased extracellular protons compete
with sodium ions and impede the SNAT2 activity. This pH
sensitivity of SNAT2 is shown to be mediated by the presence of
His residues at the C-terminus (Baird et al., 2006). In contrast,
glutamine transport by ASCT2 is not hugely influenced by pH
(Utsunomiya-Tate et al., 1996). However, ASCT2 also mediates
Glu antiport, and this is highly pH-dependent (Utsunomiya-
Tate et al., 1996). At a pH gradient of low extracellular pH
(6.0) and high intracellular pH (7.0), the Glu influx increased
in proteoliposomes containing ASCT2 (Scalise et al., 2020). In
addition to altering the transport by ASCT2, changes in pH
has shown to impact the expression of ASCT2. Under chronic
acidosis, ASCT2 is upregulated by HIF2α and cause a shift in the
cancer cell metabolism to favor reductive glutamine metabolism
(Corbet et al., 2014). These studies suggest that the pH gradient
across the tumor could influence the function of AATs, however,
whether CAIX’s pH regulatory role influences the coordinative
interplay of these AATs remains a topic of future investigation.
Investigating the effect of loss of function of CAIX on amino acid
transport and metabolism could reveal the importance of CAIX’s
interaction with the AATs. Such studies could be of importance
in highly aggressive cancers like pancreatic cancer that have
complex metabolic network (Sperb et al., 2020) and are difficult
to treat. CAIX expression (Strapcova et al., 2020) and its function
in altering tumoral pH (Cruz-Monserrate et al., 2014) are shown
to be important in the early events of pancreatic carcinogenesis.
Furthermore, ASCT2 and SNAT2 play an important role in
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importing AA in pancreatic cancer, as described earlier in this
section. Therefore, it is plausible that CAIX and AATs coordinate
their functions to support tumor metabolism and promote
pancreatic cancer progression.

One of the interesting findings of the BioID CAIX interactome
(Swayampakula et al., 2017) was the potential interaction of
LAT1 and CD98hc with CAIX. Modulation of LAT1 function
and transport of neutral amino acids by CAIX, perhaps in the
context of complexes with integrins, which also associate with
CD98hc (Fenczik et al., 2001; Feral et al., 2005), may have
significant effects on cellular growth through the regulation of
protein translation by mTORC1. While this possibility needs to
be investigated in further detail, it is interesting that inhibition of
CAIX modulates mTORC1 signaling in breast cancer cells grown
in 3D cultures (Lock et al., 2013).

CONCLUSION

Since the seminal findings of Otto Warburg on altered
metabolism in cancer, the concept of metabolic reprogramming
in cancer has evolved and led to a better understanding of
the complex nature of cancer metabolism (Martinez-Outschoorn
et al., 2017). Research on the role of metabolite transport
has progressed tremendously and unraveled the importance
of numerous nutrient and acid/base transporters in the TME
(Ganapathy et al., 2009; Bhutia et al., 2015; Becker and Deitmer,
2020). Understanding the interaction of these metabolic proteins
in the TME would be beneficial in identifying novel targets for
effective therapy. Based on our interactome study, we identified
the potential interaction of nutrient transporters and acid/base
transporters with CAIX in the hypoxic TME. CAIX is an
important pH regulatory protein in the TME that mediates
tumor progression in several solid tumors. The CAIX/CAXII

specific small-molecule inhibitor, SLC-0111 (Pacchiano et al.,
2011; Supuran, 2018) has shown promising effect on suppressing
tumor growth and metastasis by itself and in combination
with conventional chemotherapeutic drugs (Boyd et al., 2017;
McDonald et al., 2019) or immune checkpoint inhibitors
(Chafe et al., 2019). Currently, SLC-0111 has completed the
Phase-I clinical trial and progressed into a Phase-Ib trial
(ClinicalTrials.gov Identifier: NCT03450018) in combination
with gemcitabine in CAIX-positive pancreatic cancer patients
(McDonald et al., 2020).Furthermore, recent studies have
shown that the metabolic plasticity in solid tumors offers
adaptation and resistance to single therapy strategies by initiating
compensatory mechanisms, however, this is effectively overcome
by combinatorial therapy (Biancur et al., 2017; Momcilovic et al.,
2018). Therefore, investigating the interaction of CAIX with these
nutrient transporters might open new avenues of co-targeting
strategies for the treatment of solid tumors.
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