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The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated

by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization

of cells in response to internal and external stimuli is fundamental to cell migration and

invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees

of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational

modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context,

phosphorylation of ABPs and its functional consequences have been studied extensively.

However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive

cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling

proteins regulating actin cytoskeletal dynamics has only recently emerged as a field.

The relevance of such protein oxidations to cellular physiology and pathophysiology

has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can

provide novel insights into localized redox regulation of cellular functions. In this review,

we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently

developed tools to study its physiological and pathophysiological consequences.
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INTRODUCTION

Actin Cytoskeleton and ABPs
The actin cytoskeleton is important for maintaining the shape and structure of eukaryotic
cells, as well as for such essential processes as cell migration, cell polarity, intracellular or
extracellular trafficking, cell-cell interactions, and cell division. These processes are regulated
by ABPs through the supply of globular actin (G-actin) for polymerization, nucleation of new
filaments, depolymerization and severing, capping, branching, and formation of actin bundles
[reviewed in Samstag et al. (2003)].

Actin is a 42-kDa globular protein that can be reversibly polymerized into filaments (F-
actin). The length of the filaments is controlled by capping proteins and by actin-depolymerizing
and -severing proteins like ADF-1 and cofilin (Samstag et al., 2013). The organization
of higher-order structures, such as filopodia, invadopodia, lamellipodia, stress fibers, and
microvilli requires actin bundles. Actin-bundling proteins such as plastins form F-actin into
parallel or antiparallel arrays. These bundles provide the actin structures with structural
stability and elasticity (Morley, 2012; Stevenson et al., 2012). Overall, spatiotemporal
regulation of ABPs enables rapid rearrangement of the actin cytoskeleton in response
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to stimuli, and leads to formation of the right structures in the
right place and at the right time (Winder and Ayscough, 2005;
Davidson and Wood, 2016). Studies in recent years have shown
that PTMs on ABPs dictate the responses of the cytoskeleton. In
this review, we highlight the importance of redox regulation of
ABPs and exemplify emerging tools to study this regulation in
the future.

ROS Sources and Protein Thiol Oxidation
Reactive oxygen species (ROS) are produced inmitochondria, the
endoplasmic reticulum (ER), and peroxisomes, or by specialized
enzymes such as nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXes). There are seven NOX isoforms:
NOX1–5 and DUOX1–2 (Hampton et al., 1998). These multi-
subunit enzymes catalyze the generation of O−

2 from NADPH
and O2 and are primarily localized at the plasma membrane and
at the membrane of organelles (Brandes et al., 2014).

Cell types differ in their capacity to produce and detoxify
ROS. Elevated ROS levels, termed a pro-oxidative micromilieu,
have been implicated in various pathophysiological conditions,
including aging and cancer (Jones, 2006; Harris and DeNicola,
2020). Cells use various antioxidant systems to maintain
the balance of ROS. These include thioredoxins, important
oxidoreductases that are e.g., highly upregulated in several tumor
types to compensate for pro-oxidative settings (Raffel et al., 2003;
Samaranayake et al., 2017). When the intracellular redox balance
is disturbed and shifts toward a pro-oxidative micromilieu, toxic
levels of oxidation on protein thiols, DNA, and lipids can result
in cellular senescence and death (Sies and Cadenas, 1985; Jones,
2006). In small quantities, ROS, particularly H2O2, are important
signal carriers acting through reversible cysteine oxidation on
several proteins (Yang et al., 2007).

Cysteine thiol oxidation can change a protein’s functions,
stability, interaction partners, and localization, as well as affect
the presence and degree of other PTMs. Thus, redox-sensitive
cysteines serve as switches that ultimately interconnect biological
functions, allowing the control of cellular signaling and functions
(Jones, 2010; Go and Jones, 2013). In this context, several
protein tyrosine phosphatases (Cho et al., 2004; Yang et al., 2007;
Behring et al., 2020), cell cycle regulatory proteins (Wu and
Momand, 1998; Burch and Heintz, 2005), growth factors, and
actin cytoskeleton-regulating proteins (Tang et al., 1999; Lassing
et al., 2007; Klemke et al., 2008; Hung et al., 2011; Parri and
Chiarugi, 2013; Fremont et al., 2017) are known to be regulated
by thiol switches (see below).

Redox Regulation of Cell Migration and
Adhesion
Cells migrate in two- and three-dimensional environments
by mesenchymal and amoeboid migration modalities, and a
mixture of both, depending on the physical barriers, the topology
and composition of the extracellular matrix (ECM), the type
and degree of chemotaxis, and other cellular constituents of
the environment (Yamada and Sixt, 2019). A highly dynamic
and elastic actin cytoskeleton and rapid formation of cellular
extrusions are fundamental to all types of cell migration.

The direction of moving cells is guided by growth factors and
chemokines. Their binding to corresponding receptors initiates
an array of signaling events leading to the recruitment and
activation of ABPs (Blanchoin et al., 2000; DeMali et al., 2002;
Yilmaz and Christofori, 2010). Mesenchymal cell migration
comprises several coordinated steps that primarily depend on
actin dynamics: actin polymerization and depolymerization;
cell adhesion; and actomyosin contraction cycles. Actin
polymerization at the leading edge of cells initiates formation of
invadopodial and filopodial structures in which the interaction
of integrins with the ECM results in further recruitment of
ABPs such as actin-bundling proteins (Blanchoin et al., 2000;
Huttenlocher and Horwitz, 2011). This contributes to the
maturation of actin-based cellular protrusions. Formation of
focal adhesions at the leading edge and resolving at the rear is
critical for the establishment of polarity and forward movement
of the cells (Yamada and Sixt, 2019). Focal adhesions represent
molecular assemblies that anchor cells to the ECM via integrins
and are hubs for signaling events. Degradation of the ECM
by matrix metalloproteinases in invadopodial or podosomal
structures paves the way at the cell front and contractile
structures made up of actomyosin fibers deliver forces in order
to push forward the rest of the cell body and rear (uropod)
(Yamada and Sixt, 2019). The forward movement of the cell
requires detaching at the cell rear which is primarily mediated
by actin-severing proteins like cofilin. Cofilin also mediates
the actin flow which is crucial for amoeboid cell migration.
Particularly, lymphocytes in tissues make use of this mode of
migration. It is characterized by a rounded cell morphology with
cellular protrusions called blebs (Gaylo et al., 2016; Yamada and
Sixt, 2019).

During cell migration, ROS can be generated by intracellular
sources or exogenously in the surrounding micromilieu
(Weinberg et al., 2019). The type, concentration, and location
of ROS can differently influence cell migration and adhesion
through the oxidation of signaling proteins, through oxidation
of actin itself, or through the oxidation of ABPs, such as cofilin
and L-plastin (LPL).

Accumulating evidence suggests that, physiologically, low
levels of ROS are produced by NOXes in response to growth
factor and chemokine stimulation in various cell types. For
example, fibroblast growth factor was shown to induce NOX1
activity which promoted the migration of fibroblasts (Schröder
et al., 2007). Similarly, hepatocyte stimulation by epidermal
growth factor (EGF) induced NOX activity which was shown
to be important for cell spreading and migration (Flinder et al.,
2011). Pathophysiologically, in solid tumors ROS produced by
NOXes were reported to be critical for epithelial-to-mesenchymal
transition, tumor cell migration, and invasion (Tobar et al., 2010;
Kim and Cho, 2014). In particular, overexpression of NOX4
induced through TGF-β has been implicated in migration of
epithelial (Tobar et al., 2010), breast cancer (Boudreau et al.,
2012), and melanoma cell lines (Ribeiro-Pereira et al., 2014).
Similarly, other NOXes are reported to be critical for progression
of various cancer types (Konate et al., 2020). Blockade of
endogenous ROS production in migrating cells has provided
strong evidence that NOX-induced ROS are central to cell
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migration (Heo et al., 2008; Tobar et al., 2010; Tamborindeguy
et al., 2018). However, how NOXes are induced by these
stimulations remains largely elusive, as does how ROS produced
by NOXes are involved in thiol switches on specific proteins.
Downstream of growth factor or chemokine stimulation during
migration or adhesion, integrins cluster at focal adhesions,
signaling molecules, such as protein kinases, and protein tyrosine
phosphatases (PTPs) are recruited, and actin polymerization and
rearrangement take place; these processes are also regulated by
ROS (Figure 1A).

Redox Regulation of the Actin
Cytoskeleton
During cell adhesion and migration, ECM-integrin complexes
are formed, bringing the cytoskeleton and other signaling
proteins to the sites of new cytoskeletal assembly (Figure 1A).
ROS regulate the actin cytoskeleton at several stages.
Transcription factors including NF-κB, AP1, NRF2, HIF1-
α (Staal et al., 1995; Kim et al., 2010) and signaling enzymes
[PI3K/Akt and mitogen-activated protein kinase (MAPK)] can
be indirectly regulated by ROS (Koundouros and Poulogiannis,
2018; He et al., 2019). Thus, ROS can influence the expression
of various genes, including those encoding ABPs (Clarkson
et al., 2002). The second regulation level is the direct oxidation
of kinases and phosphatases, leading to their activation or
deactivation, and thereby controlling the phosphorylation
state and activity of ABPs (Figure 1B). In recent years, it
has become clear that direct oxidation of actin and ABPs
also has an important role in regulating actin cytoskeletal
rearrangements (Figures 2A,B).

Redox Regulation of Signaling Molecules
Orchestrates Actin Cytoskeletal Dynamics
Integrins
Integrins are transmembrane proteins that link the cell
cytoskeleton to the ECM and bidirectionally transmit signals
between cells and their environment, termed inside-out or
outside-in signaling (Hynes, 2002). Integrins are heterodimers
composed of α-subunits (18 types) and β-subunits (8 types). They
bind to components of the ECM as well as to other receptors
on neighboring cells. Intracellularly, integrins are connected to
the actin cytoskeleton by adaptor proteins including talin and
tensin (Calderwood and Ginsberg, 2003; Kechagia et al., 2019).
Rezende et al. showed that two cysteines of integrin α7β1 formed
a disulfide bridge after H2O2 treatment in vascular smooth
muscle cells, and that this oxidation increased integrin binding
to laminin (de Rezende et al., 2012). A follow-up study revealed
thiol switches on two cysteines in the hinge region of the α7
chain, resulting in a high-ligand-binding conformation and thus
regulating integrin binding to laminin, cell morphology, and
migration (Bergerhausen et al., 2020).

Kinases
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase
orchestrates signaling cascades in the focal adhesions of
migrating cells. It carries an integrin-binding domain and

two proline-rich sequences that bind to SH2 domain-
containing proteins (Mitra et al., 2005). FAK is activated
by autophosphorylation at Tyr397 upon integrin binding to
promote cell motility and adhesion. In protrusions of migrating
cells, FAK signaling to downstream GTPases regulates changes
in actin and microtubule structures. In this context, FAK
phosphorylates Rho-family GTPase-activating proteins and
their guanine nucleotide-exchange factors, as well as ABPs
(Mitra et al., 2005). ROS-induced phosphorylation at various
tyrosine residues enhances the kinase activity of FAK (Ben
Mahdi et al., 2000; Basuroy et al., 2010); this was recently shown
to be associated with increased cell survival (Ribeiro-Pereira
et al., 2014). However, it is not yet known whether the increased
phosphorylation of FAK is due to inhibition of a phosphatase or
activation of a kinase. Importantly, a study demonstrated that
focal adhesion turnover can be regulated by ROS (Datla et al.,
2014). The authors showed elevated ROS in focal adhesions of
migrating vascular smooth muscle cells. An siRNA-mediated
knockdown of NOX4 or of its regulator Poldip2 prevented
focal adhesion stability. In light of their findings, authors
implicated the importance of ROS at focal adhesions and its
regulatory influence on proteins, such as RhoA GTPases and
FAK (Datla et al., 2014).

Similar to FAK, various protein kinase C (PKC) family
proteins are critical to the phosphorylation of ABPs. Redox-
dependent activation of PKCs can occur via direct regulation of
redox-sensitive cysteines, or via ROS-dependent production of
lipid intermediates or ROS-induced calcium regulation [reviewed
in Steinberg (2015)].

Src kinases are another family of kinases with critical roles in
actin cytoskeletal rearrangements. Src kinases contain SH3 and
SH2 domains and a catalytic domain that autophosphorylates
Tyr residues. Src is primarily found in its inactive conformation;
dephosphorylation of the autophosphorylated Tyr sites is
required for its activation. Importantly, Src kinases have been
reported to be oxidized at certain cysteine residues at the catalytic
site; this disrupts autophosphorylation, thereby activating the Src
kinases (Knock and Ward, 2011). A study of Cys245Ala and
Cys487Ala mutants indicated that oxidation at these cysteines
was critical for Src activity, and thus for regulation of cell
invasion capacity and anchorage-dependent growth (Giannoni
et al., 2005). However, in many other cellular systems direct
or indirect effects of ROS on Src kinase activity could not be
differentiated since both activation (Heppner et al., 2018) and
inactivation (Tang et al., 2005; Kemble and Sun, 2009) of Src
kinases have been reported.

Rho GTPases
Binding of chemokines to RTKs activates Rho family of
GTPases, such as Rac1, Cdc42, and RhoA. The cycling between
GDP-(inactive) and GTP-bound (active) states modulates the
interaction of Rho GTPases with cellular targets during
physiological processes, such as migration and adhesion.

In particular, Rho GTPases regulate recruitment and
activation of the ARP2/3 complex, leading to F-actin
polymerization and branching (Figure 1). Rac1, Cdc42, and Rho
GTPases were reported to be regulated by ROS. Interestingly,
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FIGURE 1 | Redox regulation of proteins involved in cell activation and migration. (A) Cdc42 and Rac1 activation after stimulation by growth factors or chemokines

leads to recruitment of the ARP2/3 complex, thereby inducing actin branching and polymerization at the leading edge. Bidirectional interactions of integrins with the

ECM and intracellular interactions with adaptor molecules, such as talin and LPL lead to recruitment of Src and FAK kinases. This results in directional actin

polymerization and formation of cellular extrusions. ROS are generated by NOXes either intracellularly or extracellularly in response to growth factor or chemokine

stimulation. Different NOXes have different activation complexes and Rac1 activity is necessary for activation of NOX1-3. Extracellular ROS radicals (O−

2 ) are converted

to H2O2, which enters the cell through the plasma membrane or via aquaporins (not shown). ROS are also produced by mitochondria. Note that NOX2 is depicted as

an example in the figure. (B) Influence of ROS on the signaling molecules and ABPs involved in cell migration and adhesion. Solid green arrow, activation of protein;

dashed green arrow, “potential” activation of protein; solid red lines, inhibition of protein activity; dashed red lines, “potential” inhibition of protein activity.

Rac1 can regulate ROS production and is itself regulated by ROS
[reviewed in Hobbs et al. (2014)]. It is evidenced that NOX1,
NOX2, and NOX3 activation requires a complex comprising
active Rac1 for electron transport from NADPH to O2 (Hordijk,
2006). Rac1 also interacts with redox-modulating enzymes such
as SOD1. The latter was proposed to activate Rac1/NOX in a
redox-dependent manner (Harraz et al., 2008). ROS can induce
the exchange of GDP from Rac1 leading to its activation. This
seems to be mediated by direct Rac1 oxidation on Cys18 at the
catalytic site as a Cys-Ser mutant did not show any activation
in response to H2O2 treatment (Heo and Campbell, 2005).
While the specific redox modification of Rac1 was previously
only associated with the formation of lamellipodia (Hobbs et al.,
2014), Rac1-mediated ROS production by NOXes has been
attributed to several functions including cell migration (Myant
et al., 2013; Tolbert et al., 2019).

Protein Tyrosine Phosphatases
PTPs regulate intracellular signaling by RTKs, integrins, and
cytokine receptors. They dephosphorylate several proteins of

cytoskeletal signal transduction pathways (Wu et al., 2005;
Li et al., 2014). PTPs contain a motif with a highly acidic
catalytic cysteine residue, whose nucleophilic attack on a targeted
phosphotyrosyl residue results in its dephosphorylation (Zhang
and Dixon, 1994). The catalytic cysteine, which has a low pKa
value, is also highly susceptible to oxidation. As a consequence,
PTPs are transiently oxidized and inactivated. Well-known
redox-regulated PTPs include PTEN and PTP1B (Salmeen et al.,
2003; Tonks, 2005; Chen et al., 2009; Schwertassek et al.,
2014).

Binding of growth factors to RTKs activates the PI3K/AKT
signaling pathway which is pivotal to cell growth and survival.
Activated PI3K mediates conversion of PIP2 to PIP3 which
further activates downstream kinases such as AKT. As opponent
of PI3K, PTEN, a plasma membrane lipid phosphatase, converts
PIP3 into PIP2. Thereby, it inhibits cell growth, survival,
and cell migration and acts as a tumor suppressor. In this
context, lack of PTEN in glioblastoma (Davidson et al., 2010),
in gastric cancer (Ma et al., 2017), and in other cancers
(Coronel-Hernandez et al., 2019; Hu et al., 2019; Zhang et al.,
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FIGURE 2 | Redox regulation of cell migration. (A) Migrating cells establish polarity in response to chemokine and growth factor stimuli. At the leading edge, branched

networks called lamellipodial protrusions and focal adhesions are formed. Filopodial extensions are formed by actin bundles. The cells contain an intracellular ROS

gradient owing to localized ROS production resulting from NOX activity at the leading edges of migrating cells. At the rear, the sources and role of ROS are not known

(indicated by a question mark). The intracellular ROS gradient is depicted in blue and white; dark blue and white indicate high and low ROS concentrations,

respectively. The ROS gradient in the surrounding micromilieu is depicted in green and white; these colors indicate high and low extracellular ROS concentrations,

respectively. (B) List of redox-regulated ABPs and actin, showing oxidized residues, the influence of oxidation on protein function and the consequent cellular

functions, and data on spatiotemporal oxidation. “*” indicates the most sensitive cysteine on actin among other oxidized cysteine residues. Solid red lines indicate

inhibition of protein activity; dashed red lines indicate “potential” inhibition of protein activity. Solid red arrows indicate downregulation of protein and cellular functions.

2020) was correlated with enhanced migration and invasion.
Several studies revealed inhibition of the catalytic activity of
PTEN by ROS thereby allowing prolonged signaling for cell
survival, proliferation, and migration. PTEN oxidation generally
enhances PI3K/AKT signaling resulting in cell type- and
context-dependent functional consequences (Wu et al., 2013;
Kim et al., 2018). Importantly, in tumor cells PTEN oxidation
promotes tumor progression (Shen et al., 2015). Another
well-known oxidized PTP is PTP1B, a regulator of insulin
signaling and cellular metabolism. However, PTP1B oxidation

was associated with both tumor promoting and inhibiting
functions (Lessard et al., 2010; Xu et al., 2019) and requires
further elaboration.

Redox Regulation of Actin and ABPs
Actin Oxidation
Actin has three isoforms, and all six cysteines of β/γ-actin and
five cysteines of α-actin have been reported to be oxidized
[reviewed in Wilson et al. (2016); Xu et al. (2017)]. Cys374
is the most critical of these redox-sensitive cysteines which
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can form an intramolecular disulfide bridge with Cys285 or an
intermolecular disulfide bridge with Cys374 of another actin
molecule (Lassing et al., 2007; Farah et al., 2011). Oxidation at
Cys374 slows down the polymerization and stability of F-actin
(DalleDonne et al., 1999). Another study showed that Cys374
oxidation induces actomyosin disassembly, and thus contributes
to a contraction of the cytoskeleton during cell spreading and
stress fiber formation (Fiaschi et al., 2006). In addition, S-
glutathionylation of actin at Cys374 seems to be important for
stress fiber formation, and for the spreading capacity of cells
(Dalle-Donne et al., 2003; Fiaschi et al., 2006).

Further findings on thiol modifications at different cysteine

residues of actin suggest different consequences depending on
the cell type, and concentration and type of ROS (DalleDonne

et al., 1995; Shartava et al., 1995; Moldovan et al., 2000; Wang
et al., 2001; Fiaschi et al., 2006; Lassing et al., 2007; Thom et al.,
2008; Farah et al., 2011). In several studies, non-physiological
concentrations of exogenous ROS (mM range) were utilized
which mostly diminished actin assembly. Contrarily, low
concentrations of ROS were reported to positively influence
actin polymerization. In this regard, an early study showed
that blockade of NOXes in endothelial cell lines prevented G-
actin incorporation into growing F-actin suggesting that ROS

production by NOXes is critical for F-actin assembly (Moldovan
et al., 2000). Similarly, blockade of NOXes downmodulated
actin stress fiber formation and migration of tumor cell lines
providing evidence for a positive role of ROS for localized actin
polymerization and dynamics (Auer et al., 2017; Tamborindeguy
et al., 2018). However, to the best of our knowledge, even though
localized ROS production by NOXes during cell migration was
elucidated (Kaplan et al., 2011; Tamborindeguy et al., 2018),
there is no literature showing localized oxidation of actin
on cysteine residues during physiological processes such as
cell migration.

Actin is also regulated by oxidation at Met44 and Met47
through molecules interacting with CasL (MICAL) proteins
(Hung et al., 2011; Grintsevich et al., 2016). Oxidation by
MICALs diminishes inter-actin contacts, resulting in enhanced
F-actin disassembly, diminished actin polymerization, and
increased monomeric actin concentrations in cells (Grintsevich
et al., 2017). MICAL1 specifically mediates oxidation of F-actin,
which enhances the binding of cofilin to filaments. This, in
turn, increases actin filament severing by cofilin and subsequent
actin depolymerization (Grintsevich et al., 2016). Physiologically,
localized MICAL1 functions were shown to be critical for
cell division (Fremont et al., 2017). Pathophysiologically, its
expression was directly linked to cell migration and invasion in
breast cancer cells (Deng et al., 2018) and in melanoma cells
(Loria et al., 2015).

Myosin II Oxidation
Myosin II motor protein is expressed in almost all cells and
is divided into two categories: non-muscle and muscle myosin.
Myosin II is critical for cell adhesion, migration, and division.
The force that is generated bymyosin II ATP hydrolysis facilitates
actomyosin contractions in migrating cells. There is limited
evidence regarding the redox regulation of myosin II. Initially,

rat myocardial myosin II was shown to be S-glutathionylated
(Passarelli et al., 2008). The myosin II homolog in protists was
found to be oxidized at Met394 after H2O2 treatment, which
reduced its actin-activated ATPase activity (Moen et al., 2014).
A study by Fiaschi et al. showed that integrin-engagement during
adhesion of fibroblasts led to ROS production. A following mass
spectrometric analysis revealed that myosin II was more oxidized
in adherent cells than in round cells. Further investigation
showed a diminished interaction between non-muscle myosin
II and actin in spreading cells suggesting a role of myosin II
redox regulation for actin cytoskeletal rearrangements (Fiaschi
et al., 2012). However, this phenomenon needs to be further
elaborated. Moreover, none of these studies focused on specific
oxidation of cysteine residues of human myosin II. A direct
correlation between involvement of myosin II oxidation and its
cellular functions requires identification and characterization of
its redox-sensitive cysteines.

Gelsolin Oxidation
Gelsolin participates in actin-remodeling by sequestering actin
monomers and by severing, capping, and nucleating F-actin.
It is expressed abundantly in all cell types and exists as two
isoforms located intracellularly and as a secreted form (Feldt
et al., 2019). Human cytoplasmic gelsolin contains five cysteine
residues. In the secreted protein, two of these five cysteine
residues are forming disulfide bridges (Wen et al., 1996). An
early study showed that gelsolin can prevent cytochrome c release
from mitochondria and inhibit apoptosis (Koya et al., 2000).
Moreover, elevated gelsolin expression is linked to increased
intracellular superoxide levels, promoting the invasive capacity
of colon cancer cells (Tochhawng et al., 2016). A recent
study further revealed an increase in translocation of cytosolic
gelsolin to mitochondria and a decrease in extracellular/plasma
gelsolin when oxidative phosphorylation in mitochondria is
dysfunctional (Garcia-Bartolome et al., 2020). Taken together,
while gelsolin is regulated by ROS at the expression level, its
direct redox regulation and particular functional consequences
need to be elaborated.

Cofilin-1 Oxidation
Cell migration requires dynamic rearrangements of the actin
cytoskeleton. Cofilin is a key molecule mediating actin dynamics
and cell migration. Cofilin severs actin filaments, providing
free barbed ends that can be used for the formation of
new actin filaments or for depolymerization (Samstag et al.,
2003). Cofilin-1 is expressed in non-muscle cells and is
activated by dephosphorylation on Ser3 (Moriyama et al.,
1996; Nagaoka et al., 1996; Nebl et al., 1996). Its activity
is also controlled by thiol modifications on its cysteines
(Cys39, Cys80, Cys139, and Cys147) (Klemke et al., 2008;
Samstag et al., 2013). Under pro-oxidative conditions, Cys139
is modified to sulfonic acid (Cys-SO3H), and Cys39 and Cys80,
which are buried inside the molecule, are likely to form an
intramolecular disulfide bridge. Thereby, cofilin-1 loses its ability
to dismantle F-actin, with consequent increases in F-actin
stability and net actin polymerization. In T cells, this results
in stiffening of the actin cytoskeleton, which can diminish
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T cell migration and cell-cell interaction, namely immune
synapse formation between T cells and antigen-presenting cells
(Klemke et al., 2008; Samstag et al., 2013). Excessive H2O2

exposure leads to mitochondrial translocation of cofilin-1,
followed by necrotic-like programmed cell death (Wabnitz et al.,
2010a). Conversely, a reducing microenvironment, such as that
provided by antigen-presenting dendritic cells, prevents cofilin-
1 oxidation and renders cofilin-1 insensitive to inactivation by
phosphatidylinositol 4,5-bisphosphate thereby promoting T cell
activation (Schulte et al., 2013).

LPL Oxidation
L-plastin (LPL) is an actin-bundling protein which is
physiologically expressed in hematopoietic cells and ectopically
expressed in malignantly transformed tumors of non-
hematopoietic origin (Pacaud and Derancourt, 1993; Park
et al., 1994; Klemke et al., 2007). LPL is specifically localized
to sites of actin polymerization including invadopodia (Van
Audenhove et al., 2016), podosomes (Zhou et al., 2016), filopodia
(Delanote et al., 2010; Schenk et al., 2017), lamellipodia, stress
fibers, the cell cortex, focal adhesions, and cell-cell interaction
zones (Wabnitz et al., 2010b, 2016). In addition to the known
enhanced activity of LPL resulting from phosphorylation on
Ser5 (Shinomiya et al., 2007; Wabnitz et al., 2007, 2010b),
Balta et al. showed that LPL is regulated by thiol oxidation
at Cys101 and Cys42 residues, which could be reverted by
thioredoxin 1 (Balta et al., 2019). In line with these data, a global
analysis of cysteine thiols modified by allicin, an organosulfur
compound obtained from garlic, showed that LPL was one of
the top five most abundant allicin-bound proteins in Jurkat
leukemia cells (Gruhlke et al., 2019). LPL oxidation diminished
its actin-bundling capacity and dependent cellular functions,
including cell migration and invasion. Generation of a new
sensor (LPL-roGFP-Orp1) allowed spatiotemporal analysis of
LPL oxidation in tumor cells. This unraveled that LPL oxidation
occurred primarily at the cell periphery. It attenuated peripheral
actin dynamics and particular cellular functions, such as cell
spreading and filopodia formation (Balta et al., 2019).

DISCUSSION

As described above, ROS induce oxidation of actin, LPL, and
cofilin, with additive diminishing effects on cell migration
and invasion, as oxidation changes the F-actin structure,
inhibits actin-bundling by LPL, and prevents dynamic
actin reorganization by cofilin. Signaling molecules are also
regulated by thiol modifications, thereby influencing actin
cytoskeletal reorganization. Moreover, global application of
ROS undoubtedly leads to oxidation of many different proteins.
However, the effects of the oxidation of individual proteins on
individual cellular functions remained largely unknown.

The first steps toward understanding redox regulation of
cysteine thiols and the consequent changes in cellular functions
involved mutation of individual cysteines in cellular proteins
and studying the respective functional effects in transfected
cells under control and pro-oxidative conditions. These initial
studies highlighted the principal role of a given protein

oxidation in cellular functions, usually under non-physiological
ROS conditions.

Protein oxidation was linked to particular cellular
subcompartments, such as mitochondria, peroxisomes, or
the ER, where it is involved in important processes including
protein and lipid biosynthesis (Ushio-Fukai, 2006; Kaplan et al.,
2011; Bechtel et al., 2020). However, spatiotemporal protein
oxidation can also take place throughout the cytoplasm or
at certain parts of the cell membrane through localized ROS
production or a localized absence of antioxidant systems,
respectively. Yet, only in a handful of studies the spatiotemporal
regulation of cysteine oxidation under physiological conditions
was investigated (Grintsevich et al., 2017; Tsutsumi et al., 2017;
Balta et al., 2019). Recently, the development of new tools has
facilitated study of this phenomenon, providing insights into
the redox regulation of cellular functions. In this context, a
recent study found that localized oxidation of actin by MICAL1
led to localized depolymerization of actin filaments, which
is critical for cytokinetic abscission (Fremont et al., 2017).
NOX2 activity at the leading edge of migrating endothelial cells
was also shown to be required for directional cell migration
(Ushio-Fukai, 2006; Kaplan et al., 2011). Along the same lines,
using a dimedone-based proximity ligation assay (PLA), specific
protein oxidation was clearly detectable in the vicinity of NOXes
(Tsutsumi et al., 2017). However, apart from these findings,
there is limited evidence for localized ROS production or the
absence of antioxidant systems during physiological processes
in cells.

Studying spatiotemporal oxidation of individual ABPs is a
novel and promising strategy to understand the physiological and
pathophysiological redox regulation of cell migration and other
cell functions. Using a dimedone-based PLA and an LPL-linked
ROS sensor, Balta et al. demonstrated that spatial LPL oxidation
within actin-based cellular extensions was likely to result both
from low levels of antioxidants and an elevated accumulation
of pro-oxidative molecules at cellular extensions. Importantly,
finding spatiotemporally occurring oxidation sites of LPL also
enabled a specific focus on cellular actin-based functions, e.g.,
actin bundling, in which LPL oxidation is critically involved
(Balta et al., 2019).

These findings further suggest that spatiotemporal oxidation
of ABPs or actin may have a major role in the regulation of actin-
based cellular processes at the cell periphery during physiological
processes such as cell migration. The methods applied could also
be used to investigate spatial oxidation of many other proteins
functioning in cellular extensions. Thus, fusion of the ROS sensor
roGFP-Orp1 or dimedone-based PLA with other potentially
oxidized ABPs or signaling molecules could be used to decipher
whether they are locally oxidized, either due to their proximity to
NOXes or due to the local absence of antioxidant systems.

Finally, a dysfunctional cytoskeleton resulting from oxidation
of ABPs may have an important role in cancer immunology. As
tumor-specific T cells require a highly dynamic actin cytoskeleton
in order to infiltrate solid tumors, a pro-oxidative tumor
environment and the resulting oxidations on LPL, cofilin, or
actin, and potentially other ABPs in T cells might inhibit their
tumor infiltration capacity.
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