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Rice and maize are the principal food crop species worldwide. The mechanism of gene
regulation for the yield of rice and maize is still the research focus at present. Seed size,
weight and shape are important traits of crop yield in rice and maize. Most members
of three gene families, APETALA2/ethylene response factor, auxin response factors
and MADS, were identified to be involved in yield traits in rice and maize. Analysis of
molecular regulation mechanisms related to yield traits provides theoretical support for
the improvement of crop yield. Genetic regulatory network analysis can provide new
insights into gene families with the improvement of sequencing technology. Here, we
analyzed the evolutionary relationships and the genetic regulatory network for the gene
family members to predicted genes that may be involved in yield-related traits in rice and
maize. The results may provide some theoretical and application guidelines for future
investigations of molecular biology, which may be helpful for developing new rice and
maize varieties with high yield traits.
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INTRODUCTION

It has been predicted that crop yields must double to meet the demands of the rising world
population by 205 (Ray et al., 2013). However, it is difficult to increase the effective cultivated
area, and increasing crop yield is the only way to ensure food supply. Rice and wheat are key food
crops and have been the most widely consumed staple foods in most parts of the world. They are
grown as annual grain and belong to the monocotyledonous grass family. At the same time, rice
and maize are model crops studied in the fields of genetics and genomics of grasses. Grain yield
is a complex trait multiplicatively determined by several component traits. The number of grains
per panicle, panicle number per hull, and grain weight are common traits of rice and maize (Wang
and Li, 2011; Bommert et al., 2013; Yang et al., 2018; Harrop et al., 2019). ZmGS5 as the vital gene
to increase the grain weight and cell number in the transgenic plants of Arabidopsis thaliana L.,
suggesting that ZmGS5 may have a conserved function among different plant species that affects
seed development (Liu et al., 2015a). It is shown that yield-related QTLs are conserved between
maize and rice (Liu et al., 2017). Another yield-related QTL is kernel row number QTL, KRN4,
which can enhance grain productivity by increasing KRN per ear (Liu et al., 2015c). The increasing
of endosperm also plays a role in the crop yield, therefore, ZmGE2 gene has effect on the maize
yield, which is associated with increase in embryo to endosperm ratio in maize (Zhang et al., 2012).
The analysis of key genes for crop yield traits and their genetic regulatory networks is a scientific
problem that must be solved for the improvement of crop yields. APETALA2/ethylene response
factor (AP2/ERF), auxin response factors (ARFs) and MADS genes are key factors in grain yield
traits and crop domestication (Harrop et al., 2019; Li et al., 2019; Wang et al., 2019).
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The AP2/ERF superfamily contains key regulators in various
pathways for development and yield in plants (Riechmann and
Meyerowitz, 1998). For example, ZmRAP2.7 and ZmEREB94,
AP2/ERF members, participated in root development and starch
synthesis, respectively (Li et al., 2017, 2019). The function of
ids1/Ts6 is the regulation of spikelet pair meristem development
(Wang et al., 2019). Several AP2-like genes are key factors
with respect to inflorescence branching and architecture in
domesticated rice (Harrop et al., 2019). OsGL6 is involved
in trichome formation in rice (Xie et al., 2020). ARFs can
bind to auxin response DNA elements (AuxRE) of the genes
to regulate plant development and growth (Li et al., 2016).
Genes with MADS-box, a conserved sequence motif, can encode
the transcription factors regulating various processes such as
seed and flower development and organ differentiation in
plants (Schwarz-Sommer et al., 1990; Becker and Theissen,
2003; Gramzow et al., 2010; Alvarez-Buylla et al., 2019). The
ZmMADS69 allele controls maize flowering time (Liang et al.,
2019). Overexpression of zmm28 is associated with a significant
increase in grain yield in maize (Wu et al., 2019). MADS78 and
MADS79 are key regulators in rice early seed development (Paul
et al., 2020). The functions of OsMADS57 are related to plant
vegetative growth in rice (Chu et al., 2019).

Until now, related research on crop yield traits focused on
single gene and their upstream and downstream regulatory
pathways. However, there are rarely studies pertaining to genetic
control networks of multiple genes. A genetic regulatory network
(GRN) is a collection of molecular regulators and is composed
of nodes and edges. The nodes, namely, regulators, can be
DNA, RNA, proteins or complexes of these. The edges are
the functional interaction model, called regulatory relationships,
which can be positive activation and negative inhibition.
Regulators and their functional interactions form the backbone

of the cellular machinery. The network is a mechanism for
controlling morphogenesis and individual development. The
characteristics of genetic control of crop yield for rice and
maize development are helpful for applying the traits in crop
breeding (Yan and Tan, 2019). This can promote research on
the genetic basis of the formation of major crop traits, and
even the theoretical basis for the in-depth understanding of the
common transformation mechanism of the genetic structure of
the complex traits of grasses.

As shown in Figure 1, we evaluated the evolutionary
relationships of three gene families, AP2, ARF, and MADS, in
rice and maize, respectively. We constructed the GRN of the gene
families to predict yield-related uncharacterized genes, which can
provide some theoretical guidelines for future molecular biology
investigations involving high yield traits in rice and maize.

MATERIALS AND METHODS

DATA
RiceData
The information of gene families related to rice is derived from
RiceData1. This database can be used to query resources, such
as excellent rice germplasms, rice mutants, molecular markers,
genes, and pedigrees. Relevant literature searches were also
conducted. In 2005, the Institute of Crop Sciences and Chinese
Rice Research Institute of the Chinese Academy of Agricultural
Sciences proposed and chaired the construction of the rice gene
database. The RiceData database mainly collects genetic rice
information (including QTLs), including gene names, functions,
locations, and relevant references.

1http://www.ricedata.cn/gene/

FIGURE 1 | The process of analysis for genetic regulation networks in rice and maize.
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National Center for Biotechnology Information (NCBI)
National Center for Biotechnology Information was established
in 1988 to build academic information systems for molecular
biology (Sayers et al., 2020). The resources of NCBI
comprise six categories: literature, health, genomes, genes,
proteins, and chemicals (Sayers et al., 2020). In addition
to biological data, NCBI also provides an assortment of
analysis and visualization software (Sayers et al., 2020). We
obtained sequence data for MADS and AP2 families in
maize from NCBI.

Tools
STRING
STRING is a web-server2 that is widely used to visualize data
as interaction networks and to perform gene-set enrichment
analysis (Szklarczyk et al., 2019). It collects and integrates
known protein-protein interaction (PPI) data from all publicly
available sources (Szklarczyk et al., 2019). The source databases
include KEGG, Reactome, BioCyc, Gene Ontology and so
on (Caspi et al., 2016; Fabregat et al., 2016; Kanehisa et al.,
2017; The Gene Ontology Consortium, 2017). STRING
interaction predictions are produced by computational
prediction efforts, including protein co-expression systems
analysis, shared genome shared signal measurement and
PubMed abstracts for text mining from all databases, as well as
OMIM, and so on.

IQ-TREE
Phylogenetic analyses have been widely used in molecular
systematics. In biology, phylogenetics can be applied in the
analysis of the evolutionary relationships among individuals
or groups of organisms. IQ-TREE is freely available software
for discovering these relationships through phylogenetic
inference implementing Maximum likelihood (ML) (Nguyen
et al., 2015). The substitution model was calculated with
MODELFINDER (integrated in IQ-TREE; best-fit model:
JTT + R5 chosen according to the Bayesian information
criterion). We also constructed the phylogenetic trees for rice
and maize by IQ-TREE.

MAFFT
Multiple sequence alignments (MSA) is widely used in the
alignment of proteins and nucleotide sequences, which
are assumed to be inherited from a common ancestor.
Detecting co-evolution is a critical step in the prediction
of protein-protein interactions (de Juan et al., 2013; Wang
et al., 2017). MAFFT is MSA software that offers three
alignment strategies, including the progressive method
(PartTree, FFT-NS-1, and L-INS-1), iterative refinement
methods (FFT-NS-i, L-INS-i, E-INS-i, and G-INS-i) and
so on (Katoh and Standley, 2013; Katoh et al., 2019). We
aligned protein sequences with their corresponding amino
acid domains with MAFFT (Katoh and Standley, 2013;
Katoh et al., 2019).

2https://string-db.org/

RESULTS

Identification of AP2 Domain, ARF
Domain and MADS Genes in Rice and
Maize
The AP2 domain, ARF domain and MADS gene candidate
sequences from rice and maize genomes were derived from the
China Rice Data Center (see text footnote 1) and NCBI3. 300,
69 and 143 potential sequences were identified as AP2 domain-
containing genes, ARF domain-containing genes and MADS
genes, respectively. Detailed information about these genes for
rice and maize are provided in Supplementary Tables 1, 2.

Phylogenetic Analysis of AP2 Domain
Proteins in Rice and Maize
We constructed the phylogenetic tree of the AP2 protein
sequences in rice and maize to illustrate the phylogenetic
relationship. The phylogenetic tree for an AP2 domain-
containing gene family in rice and maize revealed four major
clades grouping into 10 subfamilies (Figure 2A). Among the 300
AP2 proteins, 1 belongs to group I, 1 to group II, 3 to group
III, and 2 to Group IV. The large groups for AP2 members
are VII and VIII. Group VII can be further clustered into four
subgroups, besides three subgroups in group VIII. Group I and
group II only contain one respective gene each: OsRAV2 and
ZmAP2-5. Group III includes three genes of maize, and these
groups are the ancient clades. From the dataset, most of the
proteins containing the AP2 domain were related to crop yield
(Riechmann and Meyerowitz, 1998; Harrop et al., 2019). The
yield-related gene OsEATB is in Group VIIIb. Group V includes
three close clades, with one clade containing three well-known
yield-related genes, OsRSR1, OsSNB, and OsIDS1 (Fu and Xue,
2010; Rashid et al., 2012; Lee et al., 2014; Rao et al., 2014; Ji et al.,
2019). The existence of such yield-related proteins was one of
the unusual features of the AP2 gene family in flowering plants,
such as maize and rice. From the groups or subgroups, the crop
yield-associated genes were randomly selected as representatives
for further analysis. From previous research, OsEATB can reduce
the plant height and panicle length during the maturity stage,
promoting the branching potential of both tillers and spikelets
(Qi et al., 2011). In rice, the absence of BBM1, BBM2, and BBM3
would result in embryo arrest and abortion in group V (Khanday
et al., 2019). Overexpression of OsAP2-39 can cause a variety of
phenotypic changes in transgenic rice, such as the reduction of
plant height, tiller, leaf number and 1–2 weeks postponement
for heading, ultimately resulting in a decrease in yield due to
reduced biomass and grain number (Yaish et al., 2010). OsRSR1
regulates starch synthesis in rice (Fu and Xue, 2010). Compared
with the wild type, the grain size is larger and the quality
and yield are higher in rsr1 (Fu and Xue, 2010). OsIDS1 and
OsSNB play important roles in the establishment of inflorescence
morphology and floral meristems. There is a significant decrease
in branches and spikelets of the inflorescence for the double
mutant snb/osids1 plant (Lee and An, 2012). The function of the

3https://www.ncbi.nlm.nih.gov/
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FIGURE 2 | Phylogenetic trees of three gene families in rice and maize (A) Phylogenetic tree of the AP2 domain-containing proteins in rice and maize. Protein
sequence alignment using E-INS-i algorithm. AP2 domain-containing proteins grouped into 10 subfamilies. (B) Phylogenetic tree of the ARF proteins in rice and
maize. Protein sequence alignment using E-INS-i algorithm. Auxin response factor proteins grouped into 10 subfamilies. (C) Phylogenetic tree of the MADS-box
proteins in rice and maize. Protein sequence alignment using E-INS-i algorithm. MADS-box proteins grouped into 17 subfamilies.

OsSNB gene was determined by decreased seed fall, a seed length
increase of 7.0%, and a 1000-seed weight increase of 6.1% in the
ssh1 mutants (Jiang et al., 2019). The SHAT1 gene, which encodes
an AP2 transcription factor, is required for seed shattering in rice
(Jiang et al., 2019).

Phylogenetic Analysis of ARF Domain
Proteins in Rice and Maize
The full-length amino acid sequences of ARF domain proteins
were used for multiple sequence alignment and phylogenetic
analyses, respectively. The phylogenetic tree of 69 members
of ARF domain-containing genes for rice and maize was
constructed (Figure 2B). These ARF domain-containing
members can be distinctly divided into eight groups and 11
subfamilies. There is only one gene in groups I and II, OsARF5
and ZmARF20, respectively, besides two genes confirmed in
groups III, IV, and V. Group VI has 10 genes, and group
VIII is the largest one of all. The gene OsARF1 in group
VIIId was indicated to be essential for growth in vegetative
organs and seed development (Attia et al., 2009). Floral organ
development is essential to plant yield and seed quality, so
overexpression of OsARF19/OsARF7a resulted in high auxin
content, dwarfism, shrunken grains and upregulated expression
levels of OsMADS29 and OsMADS22, which are two floral
organ regulators (Zhang et al., 2015). OsARF2 and OsARF4 are
located in the same loci (Wang et al., 2007). During rice grain
development, the interaction of OsARF4/OsARF2 and OsSK41
can repress the expression of some auxin responsive genes, and
the grain size with respect to osarf4/osarf2 performance is larger
(Hu et al., 2018).

Phylogenetic Analysis of MADS Proteins
in Rice and Maize
To understand the evolutionary and phylogenetic relationships
of MADS proteins, a phylogenetic tree using E-INS-i algorithm
was constructed from rice and maize (Figure 2C). The 143
MADS protein sequences were aligned and classified into six

well-supported groups and 17 subfamilies labeled with different
colors. According to the phylogenetic tree, there is only one
gene in group I, as well as five genes, 10 genes and four genes
in groups II, III, and IV, respectively. Group V and VI are
larger than others, with seven and six subfamilies, respectively.
Based on previous studies, MADS protein functions are related
to floral, ovule and seed organ development (Schwarz-Sommer
et al., 1990; Becker and Theissen, 2003). For example, OsMADS3,
OsMADS13, and DROOPING LEAF play various important
roles in floral development (Dreni et al., 2007; Liu et al.,
2011). Downregulated expression of OsMADS7 and OsMADS8
resulted in severe phenotype deterioration for plants, including
late flowering, abnormal performance of lodicules, stamens and
carpels, and a loss of floral determinacy (Cui et al., 2009).
OsMADS1 is mainly expressed in flower organs and determines
the formation of the lemma and palea (Chung et al., 1994). All
of the OsMADS1 transgenic plants exhibited similar phenotypes,
including dwarfism, distorted panicles, decreased numbers of
branches and spikelets, and elongated sterile lemmas (Jang
et al., 2017). The Gγ subunits interacting with GS3 and DEP1
can activate the expression of OsMADS1 to regulate grain
shape (Liu et al., 2018). OsMADS17 expression is regulated by
OsMADS1 and involved in hormone signaling and floral identity
(Hu et al., 2015).

Prediction and Analysis of Genetic
Network for Rice Yield-Related Genes
Here, the rice yield-related genes belonging to MADS-box,
ARF, and AP2 domain-containing gene families were used to
construct the genetic network. The AP2 domain-containing
protein gene family contains nine proteins: OsEATB, OsRSR1,
OsBBM1, OsBBM2, OsBBM3, OsSNB, OsIDS1, OsAP2-39, and
OsERF078/FZP. There are three proteins, OsARF1, OsARF19/7a,
and OsARF4/OsARF2, belonging to the ARF family. OsMADS1,
OsMADS3, OsMADS7, OsMADS8, OsMADS13, and
OsMADS17 belong to the MADS-box gene family. The
protein sequences are provided in Supplementary File 5. The
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FIGURE 3 | The PPI networks of yield-related genes (A) The PPI network of yield-related genes in rice. (B) The PPI network of yield-related genes in maize.

STRING database and Cytoscape_v3.7.2 were used to construct
the protein-protein interaction network (PPI) (Szklarczyk
et al., 2019) and the PPI network detail information is in
Supplementary Table 3. From Figure 3A, there are 14 proteins
from the three gene families, as well as seven proteins which have
not been cloned. Among the seven proteins, OsqHd1, similar
to SBP-domain protein 4, is a minor QTL with the functions
of delaying heading and increasing the numbers of spikelets
per panicle, grains per panicle and the grain yield per plant
(Chen et al., 2014). OsEBP-89, OsERF62, OsERF71, OsAP2-20,
and OsAP2-37 indicated that the AP2 domain-containing
gene family plays an important role in rice yield. NRPB3-like
(Os09g0110400) and OMTN4 (Os06g0675600) belong to the NAC
gene family, and overexpression of OMTN4 negatively affected
drought tolerance during the rice reproductive stage (Fang et al.,
2014). The homologous gene for ABC1-like (Os01g0318700)
protein is AtOSA1 (AT4G01660) in Arabidopsis, a member
of the ATH subfamily which encodes an ABC transporter
(Jasinski et al., 2008).

Prediction and Analysis of Genetic
Network for Maize Yield-Related Genes
Some yield-related genes were randomly selected from the
MADS-box, ARF and AP2 domain-containing gene families in
maize. The AP2 domain-containing protein gene family contains
three proteins, ZmEREB94, ZmEREB156 and ZmRap2.7, as well
as ZmMADS1, ZmMADS3, ZmMADS31, Zmm4, ZmMADS1a,
and ZmMADS2, which belong to the MADS-box gene family.
The protein sequences are provided in Supplementary File 5.
The STRING database and Cytoscape_v3.7.2 were used to
construct the protein-protein interaction network (PPI)
(Szklarczyk et al., 2019) and the PPI network detail information
is in Supplementary Table 3. From Figure 3B, there are seven
cloned proteins from the three gene families and 21 unknown
proteins. Among the 21 proteins, ZmMYBR66 and ZmMYBR106
belong to the MYB gene family, Zm00001d002684 has the
function of flower locus D, and Zmhda108 and ZmHDA19
belong to the histone deacetylase family. A large number of
uncloned genes were uncharacterized proteins.

Analysis of the Similar Genetic Network
for Maize and Rice Yield-Related Genes
In this research, the yield-related genes were selected from total
rice and maize in Supplementary Table 4 and Supplementary
File 5. Twenty-eight protein sequences containing 18 rice protein
sequences and 10 maize protein sequences were used to construct
the co-network using the STRING database. Based on the
previous research, there are 13 cloned proteins that interact with
the other 18 new proteins (Figure 4).

OsERF71, OsAP2-20, OsAP2-37, NRPB3-like (Os09g0110400),
and OMTN4 (Os06g0675600) suggested that the AP2 domain-
containing and NAC gene family serve important roles in rice
yield. OsqHd1 also takes part in increasing the number of grains
per panicle and grain yield (Chen et al., 2014). Overexpression
of OsMADS56 also resulted in delayed flowering in the situation

FIGURE 4 | The PPI network of rice and maize yield-related genes.
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of long days (Ryu et al., 2009). There is an aberrant phenotype
of the mutant osmads34-t compared with the wild plants, such
as more primary branch numbers, abnormal panicles, and the
length of sterile lemmas: therefore, OsMADS34 is involved in
rice yield and grain size (Kobayashi et al., 2009, 2012; Gao
et al., 2010; Yu et al., 2016). Loss of OsMADS51 exerted
little effect on flowering in long days, and OsMADS51 can
transmit an SD promotion signal from OsGI to Ehd1 as a novel
flowering promoter (Kim et al., 2008). The axillary buds exhibited
accelerated development and frequently grew into effective tillers
upon overexpression of OsMADS15. The panicles were large
in the OsMADS15 transgenic rice (Lu et al., 2012). OsMET1A
is a DNA methyltransferase which is primarily responsible for
maintaining CpG methylation (Yamauchi et al., 2008). OsECHS,
OsECHS1 and OsADA2 are three uncharacterized proteins.
These results suggested that most proteins in the predicted
network are yield-related genes.

DISCUSSION

A large diversity of agronomic traits are important determinants
of yield in rice and maize, such as grain size, shape weight,
spikelets and tillers per plant, among others. Brassinolide (BR)
and auxin, as the most important plant hormones, serve
important roles in grain development and regulate factors such
as grain size, shape, and weight.

Maize and rice share a common ancestor. Similar traits were
usually controlled by QTLs in syntenic regions among species.
Many genes that may affect seed shape and weight have been
mapped and cloned in rice, such as GS3, GW2, and GS5.
GS3 and GW2 were isolated for maize orthologs genes of rice,
and found that maize genes also controlled similar traits. AP2
domain, ARF domain, and MADS genes families are involved
in the determinants of yield. Previous studies have suggested
that AP2 functions as a nuclear transcription factor in plant
cells. Auxin and BR serve important roles in the development of
seeds and genes (Zuo and Li, 2014). The ARF family members
function as transcriptional activators and repressors in plants
(Guilfoyle, 2015). In addition, ARF18 impacts the expression
of the downstream auxin-responsive genes and affects silique
length and seed weight (Liu et al., 2015b). However, previous
research indicates that rice grain weight, grain size, grain hull,
endosperm development and activity in maternal tissues are

negatively regulated by OsARF4 (Hu et al., 2018). In addition,
WRINKLED1 (WRI1), as the AP2/EREBP transcription factor in
Arabidopsis, also serves the function of seed storage metabolism
(Maeo et al., 2009). In rice, OsERF2 mediated gene expression in
the metabolism of sucrose and plant hormone signaling pathways
affecting the accumulation of sucrose and UDPG (Maeo et al.,
2009). The MADS family is a group of crucial regulatory factors
that control the development of floral organs: for example, the
OsMADS1 gene can induce flowering (Chung et al., 1994).

In our study, there were several genes predicted to
participate in the yield-related network, and these genes were
uncharacterized genes belonging to diverse gene families. Some
genes were known as yield-related genes, OsqHd1, an SBP-
domain protein, serves the function of delaying heading and
increasing grain yield. NRPB3-like was a predicted gene of the
NAC gene family, and ABC1-like was an aarF domain-containing
protein kinase. These genes are novel, so further studies on the
functions of these unknown genes are necessary.
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