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Endocytosis is the process of actively transporting materials into a cell by membrane
engulfment. Traditionally, endocytosis was divided into three forms: phagocytosis
(cell eating), pinocytosis (cell drinking), and the more selective receptor-mediated
endocytosis (clathrin-mediated endocytosis); however, other important endocytic
pathways (e.g., caveolin-dependent endocytosis) contribute to the uptake of
extracellular substances. In each, the plasma membrane changes shape to allow the
ingestion and internalization of materials, resulting in the formation of an intracellular
vesicle. While receptor-mediated endocytosis remains the best understood pathway,
mammalian cells utilize each form of endocytosis to respond to their environment.
Receptor-mediated endocytosis permits the internalization of cell surface receptors
and their ligands through a complex membrane invagination process that is facilitated
by clathrin and adaptor proteins. Internalized vesicles containing these receptor-ligand
cargoes fuse with early endosomes, which can then be recycled back to the plasma
membrane, delivered to other cellular compartments, or destined for degradation by
fusing with lysosomes. These intracellular fates are largely determined by the interaction
of specific cargoes with adaptor proteins, such as the epsins, disabled-homolog 2
(Dab2), the stonin proteins, epidermal growth factor receptor substrate 15, and adaptor
protein 2 (AP-2). In this review, we focus on the role of epsins and Dab2 in controlling
these sorting processes in the context of cardiovascular disease. In particular, we will
focus on the function of epsins and Dab2 in inflammation, cholesterol metabolism, and
their fundamental contribution to atherogenicity.

Keywords: epsin, disabled-homolog 2, endocytic adaptor proteins, atherosclerosis, diabetes, inflammation,
receptor-mediated endocytosis, clathrin

Endocytosis is the method that cells utilize to uptake material from outside of the membrane to
inside of the cells. There are three major forms of endocytosis, phagocytosis, pinocytosis, and
clathrin-mediated endocytosis, each involving its own specific cell machinery.

CLATHRIN-MEDIATED ENDOCYTOSIS

Receptor-mediated endocytosis (i.e., clathrin-mediated endocytosis) is a process by which
cells internalize metabolites, hormones, and proteins to allow them to respond to their local
environment. This form of endocytosis typically consists of the following steps: (1) extracellular
ligand binding to cell surface receptors, (2) the formation of a clathrin cage around the
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receptor-ligand complex resulting from the interaction
with a multitude of molecules and proteins, such as
phosphatidylinositol 4,5-bisphosphate (PIP2), adaptor protein 2
(AP-2), clathrin-coat assembly protein 180 (AP180), and epsin
proteins, (3) lipid bilayer invagination with the aid of membrane
curvature promoting proteins, such as members of the epsin
family, (4) vesicle formation and release from the plasma
membrane, and (5) sorting of the vesicle and receptor-ligand
cargo within the cell (Figure 1). Each of these steps requires a
variety of endocytic adaptor proteins that include the epsins,
epidermal growth factor receptor substrate 15 (Eps15), disabled
homolog 2 (Dab2), AP-2, and PIP2 (Eberhard et al., 1990; Chen
et al., 1998; Pearse et al., 2000; Ford et al., 2002; Polo et al., 2002;
Maurer and Cooper, 2005; Bhattacharjee et al., 2020). In this
review we focus on the epsin and Dab2 proteins, which play
crucial roles in clathrin-mediated endocytosis and are implicated
as important modulators of cardiovascular diseases.

PHAGOCYTOSIS

Phagocytosis, also called “cell eating,” is used by the cells, such as
neutrophils, macrophages and other white blood cells, to engulf
debris, bacteria, or other solid objects through the produced
pseudopodia (Jaggi et al., 2020; Joffe et al., 2020; Reine et al.,
2020; Smirnov et al., 2020). The invagination of cell membrane
produces phagosomes, which later fuse with lysosomes
containing enzymes. Materials in the phagosome are broken
down into simpler substance by these enzymes and degraded.

PINOCYTOSIS

Pinocytosis is called “cell drinking” that cells, such as hepatocytes,
kidney cells and epithelial cells, engulf extracellular fluid,

including various solutes, such as sugars, ions, amino acids, and
proteins. The cell membrane folds inward to form invagination,
which takes up the extracellular fluid and releases it inside the
cells. Kidney cell can utilize pinocytosis to separate nutrients and
fluid from the urine (Bode et al., 1975). Capillary epithelial cells
can use pinocytosis to engulf the liquid part of blood at its surface
(Orlov, 1988).

EPSINS

Epsins are a family of adaptor proteins associated with clathrin-
coated pits that support lipid bilayer curvature and coordinate
the recruitment of ubiquitinated cargo proteins (Ko et al., 2010).
The first member of this family to be isolated was epsin 1, which
was identified through its interaction with the clathrin-associated
protein Eps15 (Chen et al., 1998). Subsequent investigations
established that there are three classic members of this family
(epsins 1, 2, and 3) in addition to a non-classic isoform named
either epsin 4 or epsin R, which is now more commonly referred
to as clathrin interactor 1 (CLINT1). In mammals, epsins 1 and 2
are ubiquitously expressed and particularly enriched in the brain
(Rosenthal et al., 1999). While epsins 1 and 2 are functionally
redundant, epsin 3 is predominantly expressed in the gastric
parietal cells of the stomach (Spradling et al., 2001).

Epsins 1, 2, and 3 share a structure termed the Epsin
N-terminal Homology (ENTH) domain, which interacts with
PIP2 at the plasma membrane (Chen et al., 1999; De Camilli et al.,
2002; Chen and De Camilli, 2005). Ubiquitin-interacting motifs
(UIMs) that recognize and recruit ubiquitinated surface receptors
to clathrin-coated pits for internalization are situated next to
the ENTH domain (Oldham et al., 2002; Sakamoto et al., 2004;
Chen and De Camilli, 2005). An adjacent region, characterized
by DPW (Asp-Pro-Trp)-rich amino acid motifs flanked by a
clathrin-binding domain, is responsible for binding to AP-2

FIGURE 1 | Clathrin-mediated endocytosis. Extracellular ligands binding to cell surface receptors triggers the recruitment of the adaptor proteins, such as AP-2,
Dab2, and/or members of the epsin family, which induces plasma membrane invagination and formation of clathrin-coated pits that are subsequently released via
dynamin-mediated scission. Clathrin-coated vesicles undergo de-coating and sorting through fusion with early endosomes, late endosomes, and ultimately,
lysosomes, leading to receptor degradation, or sorting back to the cell surface by recycling endosomes.
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and clathrin, respectively (Figure 2). In the COOH-terminal
region, NPF (Asn-Pro-Phe) motifs function to bind Eps15-
homology (EH) domain-containing proteins, such as Eps15 and
the BTB/POZ domain-containing protein POB1 (Salcini et al.,
1999; De Camilli et al., 2002).

DISABLED HOMOLOG 2 (Dab2)

Dab2 is another clathrin- and cargo-binding endocytic adaptor
protein that was first isolated as a mitogen-responsive
phosphoprotein called p96 (Xu et al., 1995). Although the
messenger RNA transcript encoding this protein was initially
named DOC2 (for Differentially expressed in Ovarian Cancer)
because it was differentially expressed in ovarian cancer, the
protein is now referred to as Disabled homolog-2 or Dab2 as
it is transcribed from an ortholog of the Drosophila Dab gene
(Gertler et al., 1989). At the same time, a neuronal-specific
isoform named Dab1 represents an additional protein produced
from a mammalian ortholog of this Drosophila gene (Howell
et al., 1997). Interestingly, several spliced isoforms of Dab2 have
been identified, including p96 and p67 (Xu et al., 1995; Sheng
et al., 2000, 2001) and mammalian Dab2 is expressed in a wide
variety of cells and tissues including macrophages, kidney, white
adipose tissues, the placenta, and the adrenal gland (Xu et al.,
1995; Fazili et al., 1999; Moore R. et al., 2013; Hocevar, 2019).
Aside from Dab1, Dab2 shares sequence similarity to other
endocytic adaptors, such as Numb, Numbl, and Arh.

Dab2, Numb, Numblike, and Arh are similar in structure and
share an N-terminal phosphotyrosine-binding domain (PTB) or

FIGURE 2 | Epsin domain structure. Epsin interacting regions for binding
partners. PIP2, phosphatidylinositol-4,5-bisphosphate; ENTH, epsin
N-terminal homology; UIM, Ubiquitin-interacting motifs; AP-2, Adaptor protein
2; EH, Eps 15 homology domain.

phosphotyrosine-interacting domain (PID) for cargo recognition
(Bork and Margolis, 1995; Howell et al., 1999). The PID/PTB
domain of Dab2 can interact with transmembrane proteins, such
as the LDL and EGF receptors as well as integrins through a
NPXY (Asn-Pro-x-Tyr) motif (Morris and Cooper, 2001; Tao
et al., 2016a). The interaction between Dab2 and the endocytic
proteins clathrin and α-adaptin is mediated by the middle and
C-terminal portions of this motif (Traub, 2003). The C-terminus
also binds to the motor protein myosin IV (Inoue et al., 2002;
Morris et al., 2002a), which facilitates its role in clathrin-mediated
endocytosis and trafficking (Figure 3).

EPSIN-DEFICIENT ANIMAL MODELS

Epsins 1 and 2 are expressed in most vertebrates, contribute to
clathrin-mediated endocytosis, and are located near the plasma
membrane. Given their ubiquitous expression, their function
is strictly cell-type and tissue dependent. Epsins 1 and 2 are
widely expressed (Rosenthal et al., 1999), whereas epsin 3 is
predominantly expressed in the gastric parietal cells of the
stomach (Spradling et al., 2001). As discussed above, epsins
are multi-functional proteins that act as endocytic adapters and
sort ubiquitinated cargoes. Several studies show that epsins sort
ubiquitinated proteins, such as vascular endothelial growth factor
receptor-2 (VEGFR2) (Pasula et al., 2012; Dong et al., 2015,
2017), the linear ubiquitin chain assembly complex (LUBAC)
(Song et al., 2020), the receptor tyrosine-protein kinase ErbB3
(Szymanska et al., 2016), Notch ligands (Tian et al., 2004; Wang
and Struhl, 2004; Chen et al., 2009; Xie et al., 2012; Langridge
and Struhl, 2017), and low-density lipoprotein receptor-related
protein 1 (LRP1) (Brophy et al., 2019), in addition to playing a
role in establishing cell polarity (Li L.et al., 2016). Because epsins
are involved in the Notch signaling pathway, which is essential for
normal embryonic development, the deficiency of both epsins 1
and 2 results in embryonic lethality. As a result, the study of these
proteins in adulthood has relied on inducible knock-out models
(Chen and De Camilli, 2005; Chen et al., 2009).

Inducible deficiency of epsins 1 and 2 in endothelial cells
in a tumor angiogenesis mouse model revealed the regulatory
role of these proteins in vascular development (Song et al.,

FIGURE 3 | Dab2 domain structure and isoforms. Dab2 has two splice variants called p96 and p67. The NH2-terminal phosphotyrosine-binding domain (PTB) or
phosphotyrosine-interacting domain (PID) interacts with receptors, such as the LDL receptor or LDL receptor-related protein (LRP) via the NPXY (Asn-Pro-x-Tyr)
motif. The middle region of p96 interacts with endocytic proteins clathrin and α-Adaptin. The COOH-terminal of Dab2 contains a Proline-Rich Domain (PRD) that can
bind to Src homology 3 (SH3)-containing proteins. The Dab2 COOH-terminus can also bind myosin VI to mediate endocytic trafficking.
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2017; Dong et al., 2018). More recent studies showed that epsins
are involved in regulating Notch signaling to modulate murine
embryonic stem cells exit from pluripotency (Cardano et al.,
2019). In addition, epsin-mediated Notch signaling has also been
reported in another study where the lethality of epsins 1 and
2 double knockout mice die at embryonic day 9.5–10 (E9.5-
10), owing to defects in organogenesis, which included failure of
blood vessel and heart tube formation and insufficient yolk sac
circulation (Chen et al., 2009). Using cell-type and tissue-specific
epsin mutant mouse models, the regulatory role of these proteins
in development (Chen et al., 2009), tumor angiogenesis (Pasula
et al., 2012; Dong et al., 2015), developmental and physiological
angiogenesis (Tessneer et al., 2014; Rahman et al., 2016), lymph
angiogenesis (Liu et al., 2014; Wu et al., 2018), atherosclerosis
(Brophy et al., 2019; Dong et al., 2020), diabetes (Wu et al.,
2018), and cancer progression (Pasula et al., 2012; Tessneer et al.,
2013a,b; Chang et al., 2015; Dong et al., 2015; Song et al., 2017)
have become better understood.

EPSINS IN CARDIOVASCULAR DISEASE

Atherosclerosis, a leading cause of morbidity and mortality
in cardiovascular diseases, is a multi-factorial and chronic
inflammatory disease (Lusis, 2000; Falk, 2006; Yin et al., 2013;
Fang et al., 2014). It is characterized by low-density lipoprotein
(LDL) cholesterol deposition and macrophage accumulation in
the arterial wall (Charo and Taubman, 2004; Zhang et al.,
2012; Hilgendorf et al., 2015; Bobryshev et al., 2016). Excessive
oxidized LDL (oxLDL) and cholesterol esterification result
in the formation of foam cells, which subsequently generate
atheromatous plaques (Moore K. J. et al., 2013; Yu et al.,
2013; Chistiakov et al., 2016). These plaques can rupture
and hemorrhage, which leads to severe conditions including
myocardial infarction, peripheral artery disease, stroke, and
kidney dysfunction (Swirski and Nahrendorf, 2013). Further,
this complex process involves the interaction of pathological
mediators (e.g., oxLDL) with arterial wall constituents, such as
endothelial cells (Mai et al., 2013; Yin et al., 2015; Li X. et al., 2016;
Xi et al., 2016; Li et al., 2017, 2018a; Shao et al., 2020), monocyte-
derived macrophages, immune cells (including T cells) (Pastrana
et al., 2012; Li et al., 2018b), and vascular smooth muscle cells
(Galkina and Ley, 2009). Consequently, atherosclerosis has been
defined as a metabolic and immune disease that involves multiple
cell types (Paoletti et al., 2006; Galkina and Ley, 2009; Sun et al.,
2020; Zhong et al., 2020), as well as the liver (Liu and Czaja, 2013;
Fargion et al., 2014; Palmal et al., 2014).

Numerous studies indicate that macrophages are crucial
for the development of atherosclerotic lesions because they
participate in all stages of plaque formation and progression
(Yang et al., 2014; Bories and Leitinger, 2017; Groh et al.,
2018). In the early stages, circulating monocytes migrate
from the blood stream to the arterial intima. Locally
polarized macrophage subsets engulf accumulated oxidized
lipids, and become foam cells, which accumulate at the
lesion sites and, eventually, cause the failure of plaque
resolution. Therefore, monocytes/macrophages are central

to lesion formation and the progression of atherosclerosis
(Shapiro and Fazio, 2017).

Genome wide-association studies have reported several
genes related to cancer biology that are also associated with
cardiovascular diseases—suggesting the involvement of epsins in
both cancer and atherosclerosis (Holdt and Teupser, 2012). In
addition, it has been reported that epsin 1 binds to LDLR to
facilitate LDLR internalization through an FxNPxY-independent
mechanism in Caenorhabditis elegans (Kang et al., 2013). Studies
from our laboratory show that epsins are upregulated in lesional
macrophages. Using engineered myeloid cell-specific epsin 1 and
2 knock-out mice (LysM-DKO) on an ApoE−/− background
and fed a “Western Diet,” these mice display a dramatic
reduction in atherosclerotic plaque size and lesion number as
well as decreased immune cell infiltration in the aorta and
reduced necrotic core formation with an increase in smooth
muscle cell number in the aortic root (Brophy et al., 2019).
In vitro studies demonstrate the absence of epsins inhibited
foam cell formation and reduced M1 phenotype macrophages,
but increased M2 phenotype macrophages. We also observed
a pro-atherogeneic role for myeloid-specific epsins that was
resulted from a downregulation of LRP-1. LRP-1 is known to
have anti-atherosclerotic and anti-inflammatory functions, which
is mediated by the interaction of the epsin UIM domain with
LRP-1. With the treatment of oxLDL, the ubiquitination of LRP-
1 was markedly increased, resulting in the enhanced interaction
between LRP-1 and epsins 1/2. Genetic reduction of LRP-1
in ApoE−/−/LysM-DKO-LRP1fl/+ mice restored atherosclerosis
and confirmed the interaction between LRP1 and epsins in
atherosclerosis (Brophy et al., 2019). These findings suggest that
myeloid-epsin-mediated LRP-1 downregulation plays a vital role
in promoting atherogenesis.

In another study, we found that the inducible deletion of
epsins 1 and 2 in endothelial cells significantly attenuated
atherosclerosis (Dong et al., 2020). Using cultured aortic
endothelial cells from double knock-out (DKO) mice treated with
atherogenic cholesterol, we discovered that epsins interact with
ubiquitinated inositol 1,4,5-trisphosphate receptor type 1 (IP3R1)
to promote the degradation of this calcium release channel (Dong
et al., 2020). Furthermore, we confirmed that the binding of
epsin to IP3R1 in atherogenic conditions occurred through the
UIM and N-terminal suppressor domain (SD) of these proteins,
respectively. These findings established the role of epsins in
endothelial cell dysfunction and the initiation and progression of
atherosclerosis.

Dab2-DEFICIENT ANIMAL MODELS

Dab2 is a multi-functional adaptor protein and plays roles
in many cell functions, including endocytosis (Morris and
Cooper, 2001), cell signaling (Drahos et al., 2009; Schutte-
Nutgen et al., 2019), lipid uptake (Morris and Cooper, 2001),
cholesterol homeostasis (Eden et al., 2007), and cell adhesion
(Rosenbauer et al., 2002). Dab2 is also important in embryonic
development as deletion of the Dab2 gene in mice leads
to early embryonic lethality prior to gastrulation (Morris
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et al., 2002b). Interestingly, conditional deletion of Dab2
in embryonic stem cells did not affect the development of
embryos, but showed reduced clathrin-coated pits, decreased
transport mediated by the lipoprotein receptor in kidney
proximal tubule, and increased serum cholesterol levels, which
suggest a regulatory role for Dab2 in embryonic development
and lipoprotein receptor trafficking (Morris et al., 2002b).
In addition, the endocytosis of megalin (also known as low
density lipoprotein-related protein 2) is mediated by Dab2
by binding to NPXY motifs on the receptor (Maurer and
Cooper, 2005). Studies showing the rescue of embryonic viability
also indicates that Dab2-mediated endocytosis is critical for
embryonic development (Maurer and Cooper, 2005).

Dab2 IN INFLAMMATION AND
CHOLESTEROL METABOLISM

Recent studies from Norbert Leitinger’s laboratory found that
the expression of Dab2 was increased in M2 macrophages
and suppressed in M1 macrophages in both mice and humans
(Adamson et al., 2016). Deletion of Dab2 results in a pro-
inflammatory M1 phenotype, which suggests that Dab2 regulates
macrophage phenotypic polarization and inflammatory signaling
by inhibiting the NF-κB pathway by binding to TNF receptor
associated factor (TRAF) 6 (Adamson et al., 2016). In other
studies, analysis of Dab2-deficient bone marrow revealed
increased systemic inflammation and cytokine expression, which
led to liver injury; however, the effect of Dab2 deletion in
atherosclerosis has yet to be determined (Adamson et al.,
2018). Moreover, whether the decreased serum lipids as a
result of liver injury could counter the elevated inflammation
resulted in pro-inflammatory macrophage accumulation in
atherogenesis and whether atherosclerotic lesion formation is
impacted because of a myeloid deficiency in Dab2 are poorly
understood. Consistent with its role in regulating inflammation,
Dab2 was also markedly reduced by toll like receptor (TLR)
ligands in a TRIF- and MyD88-dependent manner, resulting
in a switch in mucosal dendritic cells from a tolerogenic to
a pro-inflammatory phenotype (Figliuolo da Paz et al., 2019).
Nevertheless, whether Dab2-mediated modulation of aforesaid
inflammation by regulating endocytosis of the plasma membrane
cargo is unclear.

On the contrary, Dab2 has been shown to potentially regulate
LDL receptor (LDLR) endocytosis, and consequently, LDL
uptake and cholesterol metabolism as the PTB/PID domain of
Dab2 can bind to the NPXY (Asn-Pro-X-Tyr) motif expressed on
LDLR. Lipid uptake is mediated by the LDLR through clathrin-
dependent endocytosis and the adaptor proteins Arh and Dab2
can specifically interact with the NPXF motif of LDLR and recruit
clathrin/AP-2 to facilitate internalization (Tao et al., 2016b). The
latter studies suggest that the deletion of both Dab2 and Arh
in liver endothelial cells dramatically elevates serum LDL and
cholesterol levels, which is different from a single knockout of
either Dab2 or Arh. The authors conclude that Arh and Dab2
work together to regulate hepatic cholesterol synthesis through
LDLR endocytosis (Tao et al., 2016b).

It is notable that despite the multiple physiological roles of
endocytic adaptor proteins in governing cell signaling, adhesion,
nutrient uptake, and synaptic transmission, malfunction of
these proteins cause a suite of endocytic defects that perturb
cholesterol homeostasis and inaugurate cardiovascular disease,
and produce developmental defects, cancer and neurological
disorders (Figure 4). There are numerous molecular mechanisms
that remain to be uncovered to determine how these adaptor
proteins function. In particular, more work is required to
understand how epsins and Dab2 act in a cell context-dependent
manner as well as elucidate their interacting partners, post-
translational modifications, and their role in the development
and progression of diseases.

TARGETING EPSINS AND Dab2 TO
TREAT ATHEROSCLEROSIS

Statins remain the most commonly used drugs to treat or prevent
atherosclerosis by lowering cholesterol levels in the circulation
(Endo et al., 1976; Goldstein and Brown, 2015); although,
anti-hypertensive drugs, such as anti-platelet medications,
beta blockers, angiotensin-converting enzyme (ACE) inhibitors,
and calcium channel blockers are also used to reduce the
symptoms of this disease. Unfortunately, due to their potential
side effects in multiple organ systems combined with an
increased risk for developing diabetes and cancer (Ramkumar
et al., 2016), the safety of wide-spread use of statins remains
questionable. Consequently, the identification of new therapeutic
targets is warranted.

Promising alternatives to reduce atherosclerosis include
targeted therapies for the renin-angiotensin system (RAS)
and administration of CD47 blocking antibodies to target
macrophages (Lu et al., 2008; Kojima et al., 2016). Targeted

FIGURE 4 | The role of endocytic adaptor proteins in physiological and
pathophysiological processes. Physiological processes are depicted by words
in black color. Pathological consequences of endocytic defects are depicted
by words in red color.
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therapy of PCSK9 in the liver to manage cholesterol levels is
another recent alternative (Rader and Daugherty, 2008; Goldstein
and Brown, 2015) and Amgen has recently been marketing
an antibody to this protein. In addition, anti-inflammatory
therapies are being developed to combat atherosclerosis (Rader
and Daugherty, 2008; Tabas and Glass, 2013; Li et al., 2019, 2020).
In particular, the CANTOS trial clearly suggests that reducing
inflammation in patients with prior cardiovascular events using
anti-Interleukin-1β antibodies (i.e., Canakinumab) significantly
diminishes the risk of recurrent myocardial infarction (Ridker
et al., 2017). At the same time, selectively targeting the activated
aortic endothelium has proven more difficult despite its obvious
potential for treating atherosclerosis.

In our studies, we have shown that endothelial and
macrophage epsins are possible therapeutic targets for the
treatment of atherosclerosis (Brophy et al., 2019; Dong et al.,
2020). Based on the molecular mechanism that we have
uncovered, it may be possible to treat this disease by: (1) targeting
atheroma-specific epsins using lipid nanoparticle-based delivery
of siRNAs to mitigate inflammatory signaling, (2) blocking epsin
binding of IP3R1 or LRP1 using UIM-containing peptides in
both the endothelium and macrophages, and (3) using an adeno-
associated virus gene therapy approach to downregulate epsin
expression in lesions.

While several studies show that Dab2 plays an important
role in cellular trafficking of LDLR, the relationship between
Dab2 and the development of atherosclerosis remains somewhat
obscure. A recent study shows that a Dab2 gene variant
is associated with increased coronary artery disease risk
(Wang et al., 2020). In another study, quercetin attenuated
the progression of atherosclerosis by regulating dendritic
cell maturation by upregulating Dab2 expression (Lin et al.,
2017). Giving the important role of epsins and Dab2 in
endocytosis and the regulation of LDLR and LRP trafficking,
fully uncovering the regulatory roles of these proteins in different
cells and tissues may result in the development of new anti-
atherosclerotic therapeutics.

PERSPECTIVE

Because of the complexity of atherosclerosis, there have been
few effective drugs developed to treat this disease despite

decades-long relentless efforts (Weber and Noels, 2011; Libby,
2012; Ridker et al., 2017). As epsins are ubiquitin-binding
proteins that play important roles in the vascular system as
well as the initiation and progression of atherosclerosis, these
endocytic adaptors could represent an important therapeutic
target for this disease. Using genetically modified mice, we have
demonstrated that the loss of epsins in the aortic endothelium
or macrophages inhibits atherosclerosis (Brophy et al., 2019;
Dong et al., 2020). Mechanistically, epsins bind IP3R1 in the
endothelium and LRP-1 in macrophages via their UIM domain
to potentiate atherosclerosis. Targeting epsins in atherosclerotic
plaques using liposome nanoparticles containing epsins siRNAs,
UIM-containing peptides as competitive inhibitors, or by
using a gene therapy approach, may open new avenues to
treat atherosclerosis. At the same time, a detailed knowledge
of Dab2-receptor interactions in atherosclerosis may identify
additional, therapeutically relevant avenues of investigation. In
addition, as other endocytic adaptor proteins, such as Numb and
Arh, have been implicated in regulating the uptake of cholesterol
or cholesterol synthesis (Tao et al., 2016a; Azarnia Tehran et al.,
2019). Modulating levels of these endocytic adaptor proteins in
cell-restrictive manner would offer equally inspiring opportunity
to intervene diseased conditions including dyslipidemia. Thus,
developing novel class of drugs that potentially target these
endocytic adaptors should offer great promise to circumvent the
challenge for the management of dyslipidemia and to reduce
cardiovascular diseases.
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