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Background: O6-methylguanine-DNA methyltransferase (MGMT ) methylation status

affects tumor chemo-resistance and the prognosis of glioblastoma (GBM) patients.

We aimed to investigate the role of MGMT methylation in the regulation of GBM

immunophenotype and discover an effective biomarker to improve prognosis prediction

of GBM patients.

Methods: A total of 769 GBM patients with clinical information from five independent

cohorts were enrolled in the present study. Samples from the Cancer Genome Atlas

(TCGA) dataset were used as the training set, whereas transcriptome data from the

Chinese Glioma Genome Atlas (CGGA) RNA-seq, CGGAmicroarray, GSE16011, and the

Repository for Molecular Brain Neoplasia (REMBRANDT) cohort were used for validation.

A series of bioinformatics approaches were carried out to construct a prognostic

signature based on immune-related genes, which were tightly related to the MGMT

methylation status. In silico analyses were performed to investigate the influence of the

signature on immunosuppression and remodeling of the tumor microenvironment. Then,

the utility of this immune gene signature was analyzed by the development and evaluation

of a nomogram. In vitro experiments were further used to verify the immunologic function

of the genes in the signature.

Results: We found that MGMT unmethylation was closely associated with

immune-related biological processes in GBM. Sixty-five immune genes were more

highly expressed in the MGMT unmethylated than the MGMT-methylated group. An

immune gene-based risk model was further established to divide patients into high

and low-risk groups, and the prognostic value of this signature was validated in

several GBM cohorts. Functional analyses manifested a universal up-regulation of

immune-related pathways in the high-risk group. Furthermore, the risk score was highly

correlated to the immune cell infiltration, immunosuppression, inflammatory activities,

as well as the expression levels of immune checkpoints. A nomogram was developed

for clinical application. Knockdown of the five genes in the signature remodeled the

immunosuppressive microenvironment by restraining M2 macrophage polarization and

suppressing immunosuppressive cytokines production.
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Conclusions: MGMT methylation is strongly related to the immune responses in

GBM. The immune gene-based signature we identified may have potential implications

in predicting the prognosis of GBM patients and mechanisms underlying the role of

MGMT methylation.

Keywords: glioblastoma, MGMT methylation, gene signature, prognosis, immune microenvironment, biomarker

INTRODUCTION

Glioma is a type of central nervous system (CNS) neoplasms
and accounts for the majority of intracranial malignant tumors
in adults. Glioblastoma (GBM), which is defined as the World
Health Organization (WHO) grade IV glioma, shows a highly
aggressive, heterogeneous, and lethal phenotype. Currently, the
etiology of GBM is still largely unknown. Although surgical
resection combined with chemotherapy or radiotherapy has been
widely used as a routine clinical treatment, the prognosis of
patients has even not improved significantly, with a median
overall survival fewer than 15 months (Stupp et al., 2005). Due
to the persistent proliferation of tumor cells and penetration
into the surrounding tissues, total tumor resection is seldom
possible (Zhang et al., 2017). Alkylating agents, such as
temozolomide (TMZ) and procarbazine, are applied as first-
line chemotherapeutic drugs (Hegi et al., 2008). However,
many GBM patients do not respond to alkylating agents or
develop chemo-resistance after a period of chemotherapy (Wick
et al., 2014). Therefore, there is an urgent need to explore the
underlying mechanisms of gliomagenesis and develop reliable
therapeutic approaches.

The intracellular DNA repair enzyme O6-methylguanine-
DNA methyltransferase (MGMT) catalyzes the DNA repair
process by removing the alkylation of the O6 position of
guanine (Pegg, 1990). By generating methylguanine adducts,
DNA-alkylating drugs can trigger base mismatching during DNA
replication, affecting the cell cycle and promoting the death of
tumor cells (Karran and Bignami, 1992; Dolan and Pegg, 1997;
Liu and Gerson, 2006). As a most striking modification form,
methylation of the MGMT promoter can induce a decrease
of MGMT expression and further improve the curative effect
of chemotherapy with alkylating agents (Stupp et al., 2005).
In the case of GBM, clinical trials revealed that patients with
MGMT methylation benefit more than those with unmethylated
tumors when received combined radiochemotherapy (Hegi et al.,
2005). Furthermore, patients withoutMGMT methylation have a
shorter overall survival time (Molenaar et al., 2014). So far, these
underlying molecular mechanisms have not been exhaustively
described, especially about tumor immune microenvironment.

Recently, breakthroughs in tumor immunotherapy
have revolutionized the treatment of several cancer types
(Fukumura et al., 2018). The specific intratumoral immune
microenvironment can facilitate immune escape, drive
tumorigenesis, and promote the malignant progression of
the lesion (Heimberger et al., 2008; Nduom et al., 2015). Immune
checkpoints play an intermediary role in the tumor-immune
system dynamics, and inhibitory immune checkpoints have

been studied intensively as therapeutic targets for multiple
malignant tumors. In non-small cell lung cancer (NSCLC) and
melanoma, the application of immunosuppressive agents has
produced remarkable antitumor effects (Hodi et al., 2010; Rizvi
et al., 2015). The discovery of lymphatic system vessels in the
CNS offered new hope for developing novel immunotherapeutic
methods for GBM (Louveau et al., 2015b). The first large phase
III clinical trial of nivolumab combined with ipilimumab (PD-1
inhibitors) in recurrent GBM (NCT02017717) was launched
in 2014. A recent clinical trial indicated that the neoadjuvant
PD-1 blockade could upregulate the amount of T cells, promote
the expression of interferon-γ-related genes, and further offer a
promising survival benefit in recurrent GBM (Cloughesy et al.,
2019). The previous study has demonstrated that isocitrate
dehydrogenase (IDH) mutation status was closely associated
with immune response in GBM, and a prognostic model
based on IDH mutation was further developed to predict the
clinical outcomes of patients (Qian et al., 2018). However,
the role of MGMT methylation status in regulating tumor
immunity in GBM remains to be discussed, and an MGMT
methylation-related biomarker should be exploited.

Here, we utilized data from a large number of GBM samples
from multiple publicly available datasets to comprehensively
investigate the potential relationship between MGMT status and
the immunological tumor microenvironment. We hypothesized
that the shorter survival of patients with MGMT-unmethylated
GBM is partly due to the pro-tumor immune response. More
importantly, we developed a robust prognostic model based on
MGMT methylation status to predict the clinical outcomes of
GBM patients.

MATERIALS AND METHODS

GBM Patient Datasets
We retrospectively collected a large-scale profile composed
of five independent datasets involving 769 GBM patients
(Supplementary Table 1). The RNA sequencing (RNA-seq) gene
expression data for 165 GBM samples were obtained from
The Cancer Genome Atlas (TCGA) database. The microarray
and RNA-seq transcriptome data for 112 and 113 GBM
patients were downloaded from the Chinese Glioma Genome
Atlas (CGGA) database (www.cgga.org.cn). The microarray
gene expression profile matrix files of the GSE16011 project
(including 159 GBM samples) and the Repository for Molecular
Brain Neoplasia (REMBRANDT) database (including 220
GBM samples) were downloaded from the Gene Expression
Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo/). The
corresponding profiles comprising detailed clinicopathological
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characteristics were also generated from each data source. The
TCGA RNA-seq dataset was used as the training set and the
CGGA RNA-seq dataset as the validation set. Furthermore,
the CGGA microarray profile, as well as the GSE16011 and
REMBRANDT datasets, were used to test the prognostic value
of the risk model developed in the TCGA cohort.

Immune-Related Genes
The 1,039 known immunologically relevant genes were
downloaded from the ImmPort database (www.immport.org),
and 1,100 immune-related genes were extracted from the
“IMMUNE_RESPONSE” gene set (Molecular Signatures
Database V7.0, http://software.broadinstitute.org/gsea/msigdb/
index.jsp). Finally, after combining these two independent gene
sets, 1,763 immune-related genes were selected for the next
analyses (Supplementary Table 2).

Identification of Prognostic MGMT
Methylation-Related Immune Genes
Hundred and thirty-seven GBM patients with data on gene
expression and MGMT methylation status was selected in the
TCGA cohort, and the differentially expressed genes (DEGs)
between MGMT unmethylated and methylated samples were
identified using the “DESeq2” R package (Love et al., 2014).
Before performing the differential gene expression analysis, low-
abundance genes with raw counts <10 in more than 75%
of samples were removed (Bullard et al., 2010). Then, the
differentially expressed immune genes were filtered using the
criterion of log2 fold change > 1 and FDR-adjusted P < 0.05.
Similarly, DEGs (log2 fold change > 0.8 and adjusted P < 0.05)
between different MGMTmethylation status in the CGGA RNA-
seq cohort were identified using the “limma” R package (Ritchie
et al., 2015). The prognostic value of the identified genes in
the TCGA cohort was further investigated using a multivariate
Cox regression model integrating prognostic clinicopathological
information, including age, Karnofsky performance score (KPS),
IDH mutation, and MGMT methylation status. Then, genes
with significant prognostic value (P < 0.05) were screened for
further analyses.

Construction of a Risk Model Based on
Immune-Related Genes
The least absolute shrinkage and selection operator (LASSO)
regression model with 10-fold cross-validation was adopted to
select the most useful prognostic factors for GBM patients. The
optimal lambda value was estimated based on the minimum
criteria. Then, the risk score for each sample was calculated
using the expression levels of genes and corresponding regression
coefficients obtained from the multivariable Cox regression
analysis. The formula of the risk score model was as follows:

Risk score =

N∑

i=1

(expgenei×βgenei)

where N is the number of genes in the signature, βgenei is
the regression coefficient, and expgenei represents the expression

value of a specific gene in a single sample. The cutoff for
classifying GBM patients into high and low-risk groups was
determined using X-title 3.6.1 software (Camp et al., 2004).
Kaplan–Meier survival analysis was used to evaluate the
predictive value of the risk model, and time-dependent receiver
operating characteristic (ROC) curves were drawn to assess the
efficiency of the risk model in predicting the clinical outcomes
at different times. This procedure was completed using the
“timeROC” R package.

Functional Enrichment Analyses
Metascape, an easy-to-use web portal that provides a
comprehensive analysis for the functional annotation of
lists of genes (Zhou et al., 2019), was used to perform gene
ontology (GO) term enrichment and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis for genes
of interest. Gene set enrichment analysis (GSEA) analysis was
conducted using the R package “fgsea” (Sergushichev, 2016).
GSEA gene set (C5 collection) was downloaded from the
Molecular Signatures Database (v7.0). To obtain robust results,
we performed gene-set permutations for 10,000 times during
GSEA. Enriched terms with FDR-adjusted P < 0.05 were deemed
as statistically significant.

Quantification of Immune-Cell Infiltration
by Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
The estimation of overall immune cell type fractions in GBM
samples was performed using the ssGSEA algorithm in the
“GSVA” R package (Subramanian et al., 2005), which uses 24
different types of immune cell marker genes derived from
previous research to analyze each GBM sample (Bindea et al.,
2013). Markers associated with cells of the innate immune
system, including natural killer (NK) cells, NK CD56dim cells,
NKCD56bright cells, dendritic cells (DCs), immature DCs (iDCs),
activated DCs (aDCs), neutrophils, mast cells, eosinophils, and
macrophages, as well as those associated with cells of the adaptive
immune system, including B, T central memory (Tcm), CD8+

T, T effector memory (Tem), T follicular helper (Tfh), Tγδ,
Th1, Th2, Th17, and Treg cells, were included in the gene list.
A numeric matrix consists of the enrichment score of each
immune cell type in a single sample was obtained via ssGSEA.
For the specific macrophage subtype (M2macrophage), the xCell
algorithm, a novel gene signature-based method, was performed
to infer the contents (Aran et al., 2017).

Prediction of Clinical Responses to
Immune Checkpoint Blockade
We used the computational method of Tumor Immune
Dysfunction and Exclusion (TIDE) (Jiang et al., 2018) to predict
the likelihood of response to immune checkpoint blockade
therapy for GBM patients. Due to a lack of sufficient data from
normal brain tissues in the TCGA dataset, the TCGA TARGET
GTEx dataset from UCSC Toil RNA-seq Recompute project
(Vivian et al., 2017), which includes a conjoint analysis of three
independent datasets in order to make the gene expression
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of samples from different datasets or batches comparable, was
adopted for subsequent studies. The gene expression values
of GBM patients were normalized toward the corresponding
average values of normal brain tissues [cortex, frontal cortex
(Ba9), and anterior cingulate cortex (Ba24)] from the GTEx
project before subjecting the data to the TIDE algorithm. Next,
the subclass mapping method (SubMap) (Hoshida et al., 2007)
was used to compare the gene expression matrices of different
risk groups with the expression profile of melanoma patients who
received immunotherapy targeting CTLA-4 and PD-1 (Roh et al.,
2017). This step was performed using the default parameters
in the SubMap module on the GenePattern website (http://
genepattern.broadinstitute.org/).

Construction and Validation of a
Nomogram
Multivariable Cox proportional hazards regression analysis was
applied with the following clinical-relevant covariates: gender,
age, MGMT methylation status, Karnofsky Performance Status
(KPS) score, IDH mutation status, and risk score. A combined
nomogram was generated as a quantitative tool for predicting
the likelihood to die of each patient using the “regplot” R
package. The concordance index (C-index) was calculated to
assess the consistency between model prediction and actual
clinical outcomes of patients. The calibration plot was generated
to evaluate the accuracy of the prediction for 1-, 2-, and 3-year
overall survival using this nomogram by the “rms” R package.

Clinical Specimens
Archival paraffin-embedded GBM tissues were collected from 15
patients who underwent surgery at the First Affiliated Hospital
of Nanjing Medical University. The diagnosis of GBM was
confirmed by two experienced pathologists. This study was
approved by the ethics committee of the First Affiliated Hospital
of Nanjing Medical University. All samples were collected under
protocols approved by the institutional review boards of Nanjing
Medical University, and all donors provided informed consent.

The methylation status of the MGMT promoter of these
samples was assessed using the pyrosequencing (PSQ)
assay. Briefly, genomic DNA was extracted from the tumor
tissues using the QIAamp DNA Mini Kit according to
the manufacturer’s instructions (Qiagen, Germany), and
then DNA was treated with the EpiTect bisulfite kit to
convert cytosine to uracil (Qiagen, Germany). Bisulfite-
treated DNA was amplified using the specific PSQ primer
5′-YGTTTTGYGTTTYGAYGTTYGTAGGTTTTYGYGGTGY
GTA-3′ and then treated with the PyroMark Q24 MGMT kit
(Qiagen, Germany). The methylation status was determined by
themean value of themethylated alleles percentage, and the value
over 10% was regarded asMGMT methylation (Xie et al., 2015).

Cell Culture
Human monocyte THP-1 cells and glioblastoma cell lines
U87 and U251 were purchased from the National Collection
of Authenticated Cell Cultures (Shanghai, China). U87 and
U251 cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco, United States) supplemented with 10% fetal

bovine serum (FBS; Gibco, United States), 2mM L-glutamine,
and 1% penicillin–streptomycin. THP-1 cells were maintained
in RPMI-1640 (Gibco, United States) supplemented with 10%
FBS. All cells were cultured with 5% CO2 at 37◦C in a
humidified atmosphere.

Macrophage Induction and M2 Phenotype
Polarization
THP-1 cells were treated with 100 ng/mL phorbol 12-myristate
13-acetate (PMA; Sigma-Aldrich, United States) for 24 h
to simulate a macrophage-like (M0) phenotype. Following
treatment, the M0 macrophages were polarized into M2
macrophages by incubating with 20 ng/mL IL-4 (PeroTech,
United States) for 24 h.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
Total RNA from cells was extracted using TRIzol reagent
(Invitrogen, United States), and complementary DNA (cDNA)
was synthesized using a reverse transcription-PCR Kit (Roche,
Switzerland). RT-PCR was performed using SYBR qPCR Master
Mix (Vazyme, China) and operated with LightCycler 480
System (Roche, Switzerland). The primer sequences used in
this study were listed as follows: GAPDH primers, forward: 5′-
AGAACATCATCCCTGCCTCTACTG-3′, reverse: 5′-ACGCCT
GCTTCACCACCTTC-3′; CD68 primers, forward: 5′-GGAAAT
GCCACGGTTCATCCA-3′, reverse: 5′-TGGGGTTCAGTACAG
AGATGC-3′; CD14 primers, forward: 5′-ACGCCAGAACCT
TGTGAGC-3′, reverse: 5′-GCATGGATCTCCACCTCTACTG-
3′; CD206 primers, forward: 5′-TCCGGGTGCTGTTCTCCT
A-3′, reverse: 5′-CCAGTCTGTTTTTGATGGCACT-3′; CD163
primers, forward: 5′-TTTGTCAACTTGAGTCCCTTCAC-3′,
reverse: 5′-TCCCGCTACACTTGTTTTCAC-3′; IL-10 primers,
forward: 5′-GACTTTAAGGGTTACCTGGGTTG-3′, reverse: 5′-
TCACATGCGCCTTGATGTCTG-3′; VDR primers, forward:
5′-GTGGACATCGGCATGATGAAG-3′, reverse: 5′-GGTCGT
AGGTCTTATGGTGGG-3′; GATA3 primers, forward: 5′-GCG
GGCTCTATCACAAAATGA-3′, reverse: 5′-GCCTTCGCTTGG
GCTTAAT-3′; TNFSF9 primers, forward: 5′-GGCTGGAGTCTA
CTATGTCTTCT-3′, reverse: 5′-ACCTCGGTGAAGGGAGTC
C-3′; TNFRSF9 primers, forward: 5′-AGCTGTTACAACATA
GTAGCCAC-3′, reverse: 5′-GGACAGGGACTGCAAATCTG
AT-3′; LILRA5 primers, forward: 5′-TCACGGCTGAGATTC
GACAG-3′, reverse: 5′-CCTGCGAGAGCCATAGCATC-3′.

RNA Interference
The VDR, GATA3, TNFSF9, TNFRSF9 siRNA reagents, and a
pool of three LILRA5-targeting siRNAs (GenePharma, China),
were transfected into U87, U251 cells, and polarized M2
macrophage at the concentration of 50 nM with Lipofectamine
3000 reagent (Invitrogen, United States). The target sequences
were as follows: GATA3, 5′-GGGCUCUACUACAAGCUU
CTT-3′; VDR, 5′-CCCACCUGGCUGAUCUUGUCAGUUA-3′;
TNFSF9, 5′-UAUUCCGACCUCGGUGAAGGG-3′; TNFRSF9,
5′-AAGCAGTTACTACAAGGATCC-3′; LILRA5-siRNA1,
5′-GUCCUUGGGAUUCUGAUAUTT-3′; LILRA5-siRNA2,
5′-GGAAUACCGUCUGGUUAAATT-3′; LILRA5-siRNA3,
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5′-GUGACAGGAUUCUACAACATT-3′. Cells were harvested
for the next assay after incubated for 48 h.

Immunofluorescence (IF) and
Immunohistochemistry (IHC)
The polarized M2 macrophages were treated with VDR, GATA3,
TNFSF9, TNFRSF9, and LILRA5 siRNA for 48 h, blocked with
5% BSA and 0.01% Triton-X 100 before incubation with primary
antibodies. The cells were treated with primary antibodies
at 4◦C overnight and then incubated with fluorescence-
conjugated secondary antibodies. DAPI (Invitrogen) was applied
to stain the nuclei before capturing by a fluorescence confocal
microscope (LSM-710; CarlZeiss Microscopy, Germany). The
primary antibodies used in the IF assay were listed as
follows: CD68 (Abcam, United Kingdom, 1:100 dilution), CD163
(Proteintech, China, 1:200), CD206 (Proteintech, China, 1:200).
For IHC staining, the assay was conducted by following
the manufacturer’s protocol as previously published (Zhao
et al., 2020a). Antibodies used in the IHC assay were list as
follows: GATA3 (Proteintech, China, 1:100), VDR (Santa Cruz,
United States, 1:100), TNFSF9 (R&D Systems, United States,
10µg/mL), TNFRSF9 (R&D Systems, United States, 15µg/mL),
LILRA5 (Biorbyt, United Kingdom, 1:100). IHC staining of GBM
tissues for individual target protein was assessed by measuring
the ratio of the integrated optical density (IOD) using Image-
pro plus software (version 6.0). Images were captured from six
random fields, and the final score was set as an average per field.

Enzyme-Linked Immunosorbent Assay
(ELISA)
U87 and U251 cells were seeded in six-well plates and treated
with siRNAs-targeting GATA3, VDR, TNFSF9, TNFRSF9, and
LILRA5 for 48 h. The culture supernatants were collected, and
then the protein expression levels of VEGFA, TGF-β , and CCL2
were detected using the ELISA kits. All the ELISA kits were
purchased from Proteintech. The procedures were performed
according to the supplier’s protocol.

Statistical Analysis
The LASSO Cox regression analysis was carried out using the
“glmnet” R package. Restricted mean survival (RMS) represents
the loss in average life expectancy for patients, and the RMS,
as well as time ratio for the risk model in each dataset,
were calculated using the “survRM” R package. Tumor purity,
which represents the heterogeneity of each tumor sample, was
estimated by the “ESTIMATE” R package (Yoshihara et al., 2013).
Univariate and multivariate Cox regression analyses were used
to identify the risk-score-based signature as an independent
prognostic factor for GBM patients. R software (version 3.6.1,
www.r-project.org) was used for all statistical analyses.

Fisher’s exact test was used to compare the differences of
clinicopathologic features as well as immunotherapy response
between high- and low-risk groups, and was implemented using
the “fisher.test” function in R software. Mann–Whitney U test
was used to assess the statistical significance of differences
between the means of continuous data. All hypothetical tests

were two-sided, and P values < 0.05 were considered to indicate
statistical significance.

RESULTS

Association Between MGMT Methylation
and the Immunological Phenotype of GBM
There is a large body of work implicating that MGMT
methylation can affect the prognosis as well as the effectiveness
of chemotherapy in GBM. However, the influence of MGMT
promoter status on the immunological phenotype of GBM had,
to our best knowledge, not been investigated prior to this study.
Here, we utilized the RNA-seq gene expression profiles and
clinical information of GBM patients from both the TCGA and
CGGARNA-seq databases to explore themolecular differences in
underlying immunological mechanisms according to theMGMT
methylation status. Patients were divided intoMGMTU (MGMT-
unmethylated) and MGMTM (MGMT methylated) groups in
these two cohorts, respectively. GSEA analysis showed that
immune-related biological processes, such as humoral immune
response [normalized enrichment score (NES) = 1.95, FDR <

0.001], T cell activation involved in immune response (NES
= 1.75, FDR < 0.001), adaptive immune response (NES =

1.72, FDR < 0.001), cytokine production involved in immune
response (NES = 1.65, FDR < 0.001), and regulation of
innate immune response (NES = 1.30, FDR < 0.01), were
significantly enriched in theMGMTU group in the TCGA cohort
(Figure 1A). Notably, all immune-related GO terms with NES
> 1 were only enriched in the MGMTU group in the TCGA
cohort (Supplementary Table 3). In another independent GBM
dataset (CGGA RNA-seq cohort), immune-related biological
processes were also highly enriched in the MGMTU samples
(Figure 1B, Supplementary Table 3). Top-enriched gene terms
were all implicated in regulating immune activities in these two
GBM datasets. GO and KEGG analyses showed that MGMT-
unmethylation-specific upregulation of genes associated with
the immune-related biological processes and signaling pathways
(Figures 1C,D). Genes with roles in the activation and migration
of different immune cells, cytokine and chemokine signaling
axes, and IL-17 pathway were characterized by enrichment of
genes associated with immunological functions. These findings
suggested that the MGMT promoter methylation status may
affect the prognosis of GBM patients by mediating the immune
response in the malignant tumor environment.

Construction of an Immune Risk Model
Based on MGMT Methylation Status
To further investigate the potential immune pathways
and key immune-related genes driving this phenomenon,
differentially expressed genes between the MGMTU and
MGMTM groups in the TCGA database were identified
(Figure 2A, Supplementary Table 4). Sixty-five immune-related
genes were found to be more highly expressed in the MGMTU

than the MGMTM group (log2 fold change > 1, FDR-adjusted
P < 0.05), such as CXC motif chemokine ligand (CXCL1, 2,
6, 12, 13), immunoglobulin kappa variable family (IGKV1-27,
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FIGURE 1 | Functional annotation of MGMT methylation status in the TCGA and CGGA RNA-seq datasets. Gene set enrichment analyses showing genes

upregulated in MGMT-unmethylated samples evaluated in the gene sets representative for immune-related biological processes and pathways in both TCGA (A) and

CGGA RNA-seq (B) GBM cohorts. Normalized enrichment score (NES) and FDR were generated for each term. GO and KEGG analyses showing the enriched

biological processes and signaling pathways in MGMT-unmethylated samples of the TCGA (C) and CGGA RNA-seq (D) datasets.

IGKV2-28, IGKV3-11, and IGKV3-15), and immunoglobulin
heavy constant gamma cluster (IGHG1, 2, 3).

The prognostic effect of the differentially expressed immune
genes was investigated by applying multivariate Cox regression
adjusted for other survival-related clinicopathological covariates,
including gender, age, MGMT methylation status, KPS score,
and IDHmutation status. TNF superfamily member 9 (TNFSF9),
TNF receptor superfamily member 9 (TNFRSF9), interleukin
1 receptor type 1 (IL1R1), vitamin D receptor (VDR), CD70,
leukocyte immunoglobulin-like receptor A5 (LILRA5), GATA-
binding protein 3 (GATA3), and CXC motif chemokine
ligand 13 (CXCL13) were selected as independent factors
associated with the overall survival of GBM patients (Figure 2B,
Supplementary Table 5). All these immune genes were regarded
as risk factors with a hazard ratio (HR) > 1. Among these
candidates, LASSO Cox regression identified five highly relevant
immune-related genes: LILRA5, TNFSF9, GATA3, VDR, and
TNFRSF9 (Figures 2C,D). The robustness of the result was
confirmed using 10-fold cross-validation. Circos plots (Gu et al.,
2014) were generated to delineate the correlations between
these genes in both the TCGA and CGGA RNA-seq datasets

(Supplementary Figures 1A,B). It is worth noting that the
relationships of these genes were quite similar in different
datasets indicating that the identified relevant immune genes had
a stable positive correlation in GBM.

A schematic view of MGMT methylation related immune
gene selection and prognostic gene signature development is
delineated in Supplementary Figure 2. The risk score of each
GBM patient was calculated by combining the expression
level of genes and corresponding coefficients derived from the
multivariate Cox regression analysis. Patients were split into
high- and low-risk populations according to the optimal cutoff
value estimated using X-title software. The relationship between
the expression patterns of these five prognostic immune genes
and the increasing risk score in the TCGA cohort were shown
(Figure 2E). More older and IDH wild-type patients were found
in the high-risk group compared with those with low-risk score,
while no difference in the proportion of MGMT methylation
between these groups was found. Kaplan–Meier survival analysis
further showed that patients from the high-risk group had
shorter overall survival than those with low risk in the TCGA
cohort [HR = 2.6, 95% confidence interval (CI): 1.75–3.87,
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FIGURE 2 | Construction and prognostic analysis of the immune gene-based signature. (A) Volcano plot of fold changes of genes in groups with different MGMT

methylation status in the TCGA dataset. Overexpressed genes in MGMT-unmethylated group were plotted as red dots while blue dots represent downregulated

genes. The x- and y-axis represent fold-change and the P-values estimated by DESeq2. (B) Results of multivariate Cox regression analysis using differentially

expressed immune genes in different MGMT methylation status. Genes with p-values < 0.05 were obtained. (C) The partial likelihood deviance was plotted using

vertical lines with the red dot, and the dotted vertical lines represent values based on minimum criteria and 1-SE criteria, respectively. (D) LASSO coefficient profiles of

the candidate prognostic immune genes by 10-fold cross-validation. (E) The relationship between the expression patterns of five candidate immune genes and the

increasing risk score, as well as other clinicopathological features. Kaplan–Meier analysis of overall survival based on high vs. low risk in different cohorts (F–J). The

prognostic value of this model was further validated in subgroups with MGMT methylation (K) and unmethylation (L) from the TCGA dataset. P values were obtained

from the log-rank test. Time-dependent ROC curves analysis of this signature in the TCGA (M), CGGA RNA-seq (N), CGGA microarray (O), GSE16011 (P), and

REMBRANDT (Q) datasets.
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TABLE 1 | Univariate and multivariate analyses of clinicopathological characteristics and immune gene-based signature with overall survival in GBM cohorts.

Variable Univariate analysis Multivariate analysis

HR (95 % CI) P HR (95 % CI) P

TCGA (n = 137)

Age

>=60 vs. <60 1.62 (1.09–2.408) 0.017 1.398 (0.921–2.121) 0.116

Gender

Male vs. female 1.165 (0.783–1.735) 0.451

KPS

>=80 vs. <80 0.846 (0.519–1.379) 0.503

IDH status

Wild-type vs. mutation 4.544 (1.656–12.467) 0.003 2.444 (0.848–7.047) 0.098

MGMT methylation

Unmethylated vs. methylated 1.861 (1.23–2.815) 0.003 1.715 (1.125–2.613) 0.012

Risk score

High vs. low 3.107 (2.005–4.816) <0.001 2.476 (1.581–3.878) <0.001

CGGA RNA-seq (n = 105)

Age

>=60 vs. <60 1.99 (1.21–3.273) 0.007 1.657 (0.983–2.793) 0.058

Gender

Male vs. female 1.142 (0.744–1.752) 0.545

IDH status

Wild-type vs. mutation 1.082 (0.636–1.839) 0.772

MGMT methylation

Unmethylated vs. methylated 0.996 (0.654–1.518) 0.987

Chemotherapy

Yes vs. no 0.481 (0.303–0.765) 0.002 0.528 (0.33–0.845) 0.008

Radiotherapy

Yes vs. no 0.923 (0.511–1.669) 0.792

Risk score

High vs. low 1.896 (1.246–2.886) 0.003 1.644 (1.05–2.573) 0.03

Bold italics indicate statistically significant values (P < 0.05).

P < 0.001] (Figure 2F). We also applied this computational
formula to the CGGA RNA-seq, CGGA microarray, GSE16011,
and REMBRANDT datasets to explore the prognostic value of the
identified immune-genetic signature. Consistent with the results
of the TCGA cohort, high-risk patients had significantly worse
outcomes than those with low risk (Figures 2G–J). Significant
RMS time ratios ranging from 1.465 to 1.854 were observed
in the five datasets (P < 0.05, Supplementary Table 6). In the
TCGA dataset, we also checked the efficiency of this model in
patients with or without MGMT methylation (Figures 2K,L).
The results showed that low-risk patients had a significant
survival advantage over the high-risk group in these two
counterparts (P < 0.05). Time-dependent ROC curves were
generated to evaluate the efficiency of this risk signature in
predicting 1-, 2-, and 3-year survival of GBM patients, and the
risk model showed considerable predictive potential in different
cohorts (Figures 2M,Q).

To confirm whether the risk model can be used as
an independent prognostic tool for GBM, univariate and
multivariate Cox regression analyses were applied to the TCGA
dataset. The risk score signature was adjusted using prognostic

information of clinical factors that had been deemed statistically
significant in univariate analysis (P < 0.05). The HRs for the
signature in the univariate and multivariate analyses were 3.107
(P < 0.001, 95% CI: 2.005–4.816) and 2.476 (P < 0.001, 95% CI:
1.581–3.878), respectively. The risk model was further validated
in the CGGA RNA-seq cohort, with HRs of 1.896 (P = 0.003,
95% CI: 1.246–2.886) and 1.644 (P = 0.03, 95% CI: 1.05–
2.573), respectively (Table 1). Thus, the gene signature based on
immune-related molecules can be used independently to predict
the overall survival of GBM patients.

Functional Analysis of the MGMT

Methylation-Based Signature
To further identify the potential biological processes and
signaling pathways associated with the immune gene signature,
GO and KEGG functional analyses were performed, and the
results were graphed using Metascape online tool. Firstly,
we selected a list of genes that were strongly correlated
with the risk score [|Pearson correlation coefficient| (|R|)
> 0.4, P < 0.05] in the TCGA and CGGA RNA-seq
cohorts (Supplementary Table 7). Heatmaps for these genes and
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FIGURE 3 | Biological functions of the immune gene signature in GBM in the TCGA dataset. (A) Bar plot showing the top 20 terms derived from the gene set

enrichment of risk score. The x-axis represents statistical significance. (B) The enrichment network plot visualizing the relationship between a set of representative

terms. Each term is assigned with a unique color.

corresponding detailed clinicopathological features were plotted,
as depicted in Supplementary Figures 3A,B. Functional analysis
demonstrated that these genes were significantly enriched in
immune processes, such as lymphocyte activation, cytokine
production, cytokine-mediated signaling pathway, leukocyte
migration, activation of the immune response, regulation of
the inflammatory response, and interferon-gamma production
(P < 0.05) (Figures 3A,B). Similarly, immune-related terms
such as cytokine-mediated signaling pathway, myeloid leukocyte
activation, cytokine production, leukocyte migration, TNF
signaling pathway, and NF-kappa B signaling pathway were also
enriched in genes derived from the CGGA RNA-seq cohort (P <

0.05) (Supplementary Figures 4A,B).

Association of the Risk Score With Tumor
Purity and Immune Cell Infiltration in the
GBM Microenvironment
The intratumoral niche is a complex microenvironment that
consists of the tumor and non-tumor cells, such as stromal and
immune cells (Golebiewska et al., 2013). It is now clear that a
mass of non-tumor cells plays an important role in the initiation
and progression of various human cancers (Mao et al., 2013;
Bussard et al., 2016; Wang M. et al., 2017). Tumor purity is
defined as the proportion of cancer cells in the mixed tumor
tissues (Zhang et al., 2015) and has been identified as an effective
prognostic index in glioma (Zhang et al., 2017). To clarify the
relationship between the immune gene-based risk score and the
tumor purity, we used the ESTIMATE algorithm to calculate
the purity of GBM samples based on the transcriptomic gene
expression data. In both the TCGA and CGGA RNA-seq cohorts,
the risk score was negatively correlated with the tumor purity (R
=−0.6, P< 0.0001 in TCGA, and R=−0.4, P<0.0001 in CGGA
RNA-seq) (Figures 4A,B).

We then used the ssGSEA algorithm to evaluate the immune
cell populations in the tumors from the two independent datasets.

The contents of different types of immune cells varied as the risk
score increased. The results showed that samples from the high-
risk group in the TCGA cohort exhibited a higher abundance
of pro-tumor immune cells, such as plasmacytoid dendritic cells
(pDCs), immature dendritic cells (iDCs), CD56dim natural killer
cells, macrophages, neutrophils, regulatory T cells (Tregs), and
mast cells (P < 0.05) (Figures 4C,E). At the same time, B cells,
which indicate a favorable prognosis of GBM patients (Li et al.,
2016), were highly abundant in the tumor samples from the
low-risk group (P < 0.05). Similarly, high-risk patients in the
CGGA RNA-seq cohort had significantly higher quantities of
pro-tumor immune cells, except for pDCs and mast cells (P <

0.05) (Figures 4D,F). Therefore, we concluded that the immune-
related biological processes and pathways associated with the risk
score might result from the observed significant differences in
differentiation or recruitment of various immune cell types.

The Risk Score Is Correlated With
Immunosuppressive Processes and the
Inflammatory Responses
To investigate the potential mechanisms underlying the
correlation between the genes related to the immune response
and the risk score, we assessed the relationship between
the risk score and glioma-associated immunosuppressors.
The gene list of glioma-related immunosuppressors,
including immunosuppressive cytokines and checkpoints,
tumor-supportive macrophage chemotactic and skewing
molecules, immunosuppressive signaling pathways, and
immunosuppressors were obtained from the published literature
(Doucette et al., 2013; Cai et al., 2018). The expression
of immunosuppressive genes in tumors from the two
GBM cohorts was plotted against the increasing risk score
(Supplementary Figures 5A,B). Following ssGSEA analysis, the
score of each immunosuppression-related term was calculated
for each tumor sample. Interestingly, the risk score was positively
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FIGURE 4 | The risk signature is associated with tumor purity and immune infiltration in the microenvironment of GBM. Correlation of risk score and tumor purity in

GBM samples in the TCGA (A) and CGGA RNA-seq (B) cohorts. The coefficient and P-value were obtained from Pearson correlation analysis. Heatmaps delineate

the relationship between risk score and the contents of 24 types of immune cells infiltrated in the tumor tissues in the TCGA (C) and CGGA RNA-seq (D) cohorts. Box

plots showing significantly different immune cells among high- and low-risk patients in the TCGA (E) and CGGA RNA-seq (F) datasets. *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001, with Mann–Whitney U test.

correlated with the identified immunosuppression-related terms
in both the TCGA and CGGA RNA-seq cohorts (Figures 5A,B).
This finding further corroborated that the immune gene
signature is related to immunological suppression in GBM via
changes in the expression of immunosuppressors.

As demonstrated above, genes correlated with the risk
score were found to be significantly enriched in the category
inflammatory response. Metagenes, i.e., expression patterns
of various inflammation-related genes, were used to depict
the relationship between the risk score and inflammatory
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FIGURE 5 | The risk signature is associated with immunosuppression and inflammatory activities in GBM. Scatterplots showing the correlation between risk score

and each immunosuppressive activity in the TCGA (A) and CGGA RNA-seq (B) cohorts. The coefficients and P-values were calculated from Pearson correlation

analyses. Corrplots showing the correlation between risk score and seven types of inflammatory activities in the TCGA (C) and CGGA RNA-seq (D) cohorts. The black

cross indicates no statistical significance. Corrplots showing the correlation between risk score and the expression levels of several immune checkpoint molecules in

the TCGA (E) and CGGA RNA-seq (F) cohorts. The black cross indicates no statistical significance.
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activities in GBM. Except for interferon, most metagenes
(HCK, IgG, LCK, MHC-I, MHC-II, and STAT1) were found
to be positively associated with the risk score in both the
TCGA and CGGA RNA-seq cohorts (P < 0.05) (Figures 5C,D,
Supplementary Figures 6A,B). These results revealed that the
risk score was intimately tied to the B- and T-cell mediated
immune response, as well as macrophage activation, but not
to genes regulated by interferon during the remodeling of the
immune microenvironment.

Pioneering investigations revealed that immunotherapy
targeting immune checkpoints offered great hope for the clinical
treatment of human cancers (Sharma and Allison, 2015). We
investigated the correlation between the risk score and the
expression levels of several well-known immune checkpoints,
both in the TCGA and CGGA RNA-seq datasets. Following
Pearson correlation analysis, the risk score was found to be
tightly associated with the expression of immune checkpoint
molecules, including TIM-3, TIGIT (except in the CGGA
RNA-seq cohort), LAG-3, PD-1, CTLA-4, CD80, PD-L1, PD-L2,
B7-H3, and IDO1 (P < 0.05; Figures 5E,F). In conclusion, these
findings implied a potential correlation of the risk score with the
regulation of immunosuppression in GBM.

High-Risk Patients Are Likely to Be More
Sensitive to Immunotherapy,
Chemotherapy, and Radiotherapy
Given that the immune checkpoint blockade has not been used as
a routine treatment for GBM, we modeled the potential response
of patients in the different risk groups to immunotherapy,
including antibodies against PD-1 and CTLA-4. Following the
TIDE instructions, normal specimens from the GTEx database
were used to adjust the gene expression matrix of GBM. The
analysis indicated that the high-risk group (53.164%, 42/79) was
significantly more likely to benefit from treatment with immune
checkpoint inhibitors than the low-risk group (20.690%, 12/58)
(P < 0.001) (Figure 6A, Supplementary Table 8). SubMap is
an unsupervised clustering method that can match subclasses
in two independent gene expression data sets (Hoshida et al.,
2007). Here, SubMap analysis further indicated that patients in
the high-risk group are more likely to respond to anti-PD-1
immunotherapy (Bonferroni corrected P = 0.024) (Figure 6B).

There is a large body of work implicating the influence of
MGMT methylation status on the chemosensitivity to TMZ
in GBM patients. Since the immune-gene-based signature was
built based on the MGMT methylation status, we investigated
whether this risk model can be used as an effective indicator
for stratifying patients into different subgroups which may show
distinct sensitivities to TMZ treatment. In both the TCGA and
CGGA RNA-seq cohorts, whole GBM samples were divided
into two groups according to their TMZ-based chemotherapy
history, and then survival analyses for patients with high and
low risk were carried out. In the TCGA cohort, patients who
received TMZ treatment showed significantly better prognosis
than those without chemotherapy in the high-risk group (HR
= 0.47, 95% CI: 0.26–0.85, P = 0.003) (Figure 6C), while no
significant difference was found in the low-risk group (P >

0.05) (Figure 6D). As we mentioned above, no difference in
the proportion of MGMT methylation status between high- and
low-risk groups suggested that the immune gene signature may
serve as an effective biomarker for predicting the response of
chemotherapy independent of MGMT methylation. The similar
finding was also observed in the CGGA RNA-seq cohort that
patients showed satisfactory responses to TMZ treatment in the
high-risk group (HR = 0.51, 95% CI: 0.25–1.04, P = 0.027)
(Figure 6E), while no difference was found between TMZ treated
and non-TMZ treated subgroups in the low-risk group (P> 0.05)
(Figure 6F). As for the role of this immune gene signature in
regulating the sensitivity to radiotherapy in GBM patients, the
same methods were performed as we described above. Patients
with high risk can benefit more from radiotherapy both in
the TCGA (HR = 0.4, 95% CI: 0.2–0.82, P < 0.001) and
CGGA RNA-seq (HR = 0.21, 95% CI: 0.05–0.98, P < 0.001)
cohorts (Figures 6G,I), while no difference existed in the low-
risk group (Figures 6H,J). These findings indicated that the five-
gene signature might serve as an effective biomarker for directing
the applications of immunotherapy as well as routine treatment,
including chemotherapy and radiotherapy.

Development of a Nomogram Based on
MGMT Methylation-Related Signature
To develop a quantitative tool for predicting the prognosis of
GBM patients in the TCGA cohort, we established a nomogram
by integrating clinicopathological risk factors and immune gene
signature based on the multivariable Cox proportional hazards
model (Figure 7A). The point scale in the nomogramwas utilized
to generate point to these variables, and the risk of death of each
GBM patient was qualified by accumulating total points of all
variables. The risk score was found to have the most excellent
weight among all these variables, which was consistent with the
result of the previous multivariable Cox regression analysis. The
C-index of this nomogram reached 0.704 (95% CI: 0.672–0.736).
The development of the calibration plots further confirmed the
significant consistency between predicted and observed actual
clinical outcomes of GBM patients (Figure 7B). We additionally
constructed a nomogram for the CGGA GBM cohort based on
the risk model and other available clinicopathological features,
and the feasibility of this nomogram was confirmed using the
calibration plots (Figures 7C,D).

Validation of the Five Key Genes in Clinical
Specimens
In silico analysis revealed that all these five key genes in the
risk signature were more highly expressed in the MGMTU GBM
samples. Here, we further validated the protein expression levels
of these genes in our clinical specimens. Fifteen GBM samples
were divided into MGMTM (n = 8) and MGMTU (n = 7)
groups according to the MGMT promoter methylation status.
The detailed PSQ results of the samples were illustrated in
Supplementary Figure 7. All these proteins were significantly
upregulated in MGMTU groups compared with the MGMTM

samples (Figures 8A,B).
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FIGURE 6 | The risk signature may be tightly associated with the responses of immunotherapy, chemotherapy, and radiotherapy. (A) Comparison of the predicted

immunotherapeutic responses in different risk groups using the TIDE algorithm. P-value was obtained from Fisher’s exact test. (B) The SubMap analysis concluded

that high-risk patients might be more sensitive to anti-PD-1 immunotherapy. Patients from the high-risk group can benefit more from TMZ-based chemotherapy

(C,D) and radiotherapy (G,H) in the TCGA GBM cohort, compared with those of the low-risk group. Similar responses to chemotherapy and radiotherapy were found

in the CGGA RNA-seq GBM cohort (E,F,I,J).

Genes in the Signature Promote
Immunosuppressive Microenvironment by
Facilitating M2 Macrophage Polarization
and Immunosuppressive Cytokines
Production
The M2-type macrophage has been proved to promote the
progression of glioma by reducing antitumor functions
and inducing the immunosuppressive mediators (Kennedy
et al., 2013). We further explored the content of M2
macrophages in the GBM tumors using xCell analysis. M2

macrophage score of the high-risk group was significantly
higher compared with the low-risk group in TCGA-
GBM cohort (Figure 9A). Meanwhile, we found a positive
correlation between the risk scores and M2 macrophage
scores (R = 0.4, P < 0.001) (Figure 9B). These results
suggested that the genes in the risk signature may mediate
the immunosuppression of the tumor microenvironment
by directly regulating the M2 macrophage polarization. The
expression levels of VDR, TNFSF9, TNFRSF9, and LILRA5
were also positively correlated with the M2 macrophage scores
(Supplementary Figure 8).
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FIGURE 7 | Developed nomogram to predict the probability of survival in GBM patients. Nomogram built with clinicopathological factors incorporated estimating 1-,

2- and 3-year overall survival for GBM patients in the TCGA (A) and CGGA RNA-seq (C) cohorts. The calibration curves describing the consistency between

predicted and observed overall survival at different time points in the TCGA (B) and CGGA RNA-seq (D) cohorts. The estimated survival was plotted on the x-axes,

and the actual outcomes were plotted on the y-axes. The gray 45-degree dotted line represents an ideal calibration mode.

Human THP-1 cells were differentiated into M0 macrophages
by incubating with PMA reagent. The induced macrophage
was confirmed by the cell morphology and the expression of
macrophage markers, such as CD68 and CD14 (Figures 9C,D).

Then, M0 macrophages were polarized into M2 macrophages
using IL-4, and this process was evaluated by detecting the
expression changes of M2 macrophage markers, including
CD206, CD163, IL-10, and TGF-β . The M2 markers expression
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FIGURE 8 | The protein expression levels of the genes in the risk signature were higher in MGMT-unmethylated GBM tissues. (A) Representative photographs of IHC

staining for GATA3, VDR, TNFSF9, TNFRSF9, and LILRA5 in clinical GBM samples with MGMT methylation and unmethylation. Scale bar = 50µm. (B) Boxplots

showing the quantification of IHC staining intensity for each protein in the tumor samples. U represents MGMT-unmethylation, and M represents MGMT-methylation.

*p < 0.05, **p < 0.01.

increased when macrophages were treated with IL-4 compared
with the control group (Figure 9E). The silencing efficiency
of the siRNAs for the five genes was determined by qRT-
PCR (Supplementary Figure 9). The ELISA revealed that
the immunosuppressive cytokines secreted by siRNA-treated
GBM cells decreased when compared with untreated cells
(Figure 9F). The IF assays also showed that macrophages
cultured with siRNAs expressed less M2-type markers (CD163
and CD206) than those of the control group (Figure 9G). These
findings demonstrated that the genes in the risk signature
promote immunosuppressive microenvironment by facilitating
M2 macrophage polarization and immunosuppressive
cytokines production.

DISCUSSION

In GBM, MGMT promoter methylation status is an essential
determinant of the aggressiveness of the tumor. Malignant
gliomas often show resistance to alkylating drugs due
to the increased expression of MGMT, which remains a

significant obstacle to clinical treatment (Sarkaria et al., 2008).
Previously, considerable efforts have been made to exploit
the mechanisms of chemo-resistance induced by MGMT
promoter demethylation. Over the past few years, the promising
outcomes of immunotherapy in malignant tumors have attracted
enormous attention. However, whether tumor immunity can
be affected by the methylation status of the MGMT promoter
has, to our best knowledge, not been explored before. Here, we
sought to investigate the potential immunological mechanisms
associated with the methylation status of MGMT in GBM by a
comprehensive bioinformatic analysis. We addressed the critical
role of MGMT methylation in regulating the remodeling of the
tumor microenvironment of GBM.

The solid tumor mass of GBM is composed of both
cancer cells and non-cancerous cells, such as immune cells,
endothelial cells, fibroblasts, as well as some CNS-specific
cell types such as astrocytes and microglia (Quail and Joyce,
2017; Wang Q. et al., 2017). The discovery that multiple
immune cell types can infiltrate the blood-brain barrier and
the presence of reactivity against antigens derived from the
CNS has made the view of the brain as an immunologically
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FIGURE 9 | The immune-gene based signature promotes the polarization of M2 macrophage in the tumor microenvironment of GBM. (A) A higher proportion of M2

macrophages was found in the high-risk group compared with the low-risk group. (B) The risk scores of TCGA-GBM samples were positively correlated with the

(Continued)
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FIGURE 9 | contents of the M2 macrophage. The coefficient and P-value were calculated from the Pearson correlation analysis. (C) The morphological change implies

the THP-1 cells differentiated into M0 macrophages after treated with PMA for 24 h. Magnification, ×100, and ×200. (D) The mRNA expression of macrophage

markers (CD68, CD14) increased after PMA treatment. (E) The mRNA expression of M2 macrophage markers (CD163, CD206, IL-10, and TGF-β) increased after the

induced macrophage treated with IL-4 for 24 h. (F) ELISA showing the level changes of the secreted immunosuppressive proteins (CCL2, VEGFA, and TGF-β) in the

supernatant from GBM cells (U87, U251) after knocking down GATA3, VDR, TNFSF9, TNFRSF9, and LILRA5. (G) Immunofluorescence confocal microscopy of CD68,

CD206, and CD163 in M2 macrophages. Red fluorescence indicates CD206 and CD163, green fluorescence indicates CD68, and blue fluorescence indicates DAPI

staining of nuclear DNA. Scale bar = 50µm. The data were presented as the mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

privileged site obsolete (Weiss et al., 2009; Louveau et al.,
2015a). The most abundant immune cells, macrophages,
comprise up to 30% of the total cells inside a glioma tumor
(Graeber et al., 2002). Tumor-associated macrophages suppress
T cell responses due to insufficient expression of molecules
associated with T cell co-stimulation (Hussain et al., 2006).
M2 polarization of microglia in the tumor niche can remodel
the GBM immunosuppressive microenvironment (Meng et al.,
2019). Neutrophil infiltration and neutrophil extracellular traps
formation mediate the crosstalk between glioma progression
and the tumor microenvironment by promoting IL-8 secretion
(Zha et al., 2020). Dendritic cells are responsible for presenting
antigens to T cells to induce immune responses in the CNS. The
application of dendritic cell-based vaccination in GBM patients
has produced survival benefits due to enhanced stimulated
T-cell responses (Prins et al., 2011). Additionally, several
studies demonstrated that reprogramming immunosuppressive
T-cell subsets can stimulate antitumor immunity in glioma
(Fecci et al., 2006; Hussain et al., 2006). In this study, we
discovered that genetic signatures of immune-related biological
processes and signaling pathways were highly enriched in
MGMT-unmethylated specimens. Then, we filtered differentially
expressed immune-related genes according to the MGMT
promoter status and generated a signature based on six genes that
can predict the clinical outcomes of GBM patients. At the same
time, we investigated the contents of immune cells in the bulk
tumor to predict immune infiltration using a marker gene-based
approach based on transcriptomic data. Notably, we found that
the infiltrating immune cell types differed significantly between
the high- and low-risk groups. In agreement with our hypothesis,
the tumors in the high-risk group were severely infiltrated by
immune cells characterized as belonging to pro-tumor subsets.
Thus, this risk model provides an immunological interpretation
of the effect of MGMT methylation status on the prognosis of
GBM patients.

There is a large body of work that confirms the immunity-
related roles of the genes identified in this study. For example,
the transcription factor GATA3 has been characterized as a
critical regulator in the development of T, B, NK, and innate-
like lymphoid cells (Wan, 2014). GATA3 is responsible for
maintaining the function of mature T and Treg cells via the IL-
7 and IL-2 signaling pathways, respectively (Ma et al., 2006).
Additionally, ectopic expression ofGATA3was found to promote
the function of human type-2 innate lymphoid cells (Mjösberg
et al., 2012). TNSRSF9, also known as CD137, is a member of
the TNF-receptor family that can activate cytokine production
in cytotoxic T lymphocytes (CTLs) and Th1 cells by binding to
its native ligand TNFSF9 (Ascierto et al., 2010). Recently, clinical
trials with antibodies targeting CD137 have been launched with
the expectation to improve cancer immunotherapy (Yonezawa

et al., 2015). VDR negatively regulates Forkhead box M1
(FOXM1) signaling and further suppresses the development
of pancreatic ductal adenocarcinoma (Li et al., 2015). In the
immune system, VDR expression regulates the proliferation,
differentiation, and function of CTLs (Sarkar et al., 2016).
Stromal VDR activation reduces tumor-associated fibrosis and
inhibits tumor-supportive signaling events in pancreatic cancer
(Sherman et al., 2014).

Immune suppression has been recognized as a hindrance
to successful antitumor immunotherapy. Tumors create a
microenvironment that sustains tumor growth as well as reduces
adaptive immunity to tumor-derived antigens (Hurwitz and
Watkins, 2012). As for glioma, several genes were proved as
critical molecules to contribute to the immune heterogeneity and
immunosuppression in the tumor microenvironment (Cai et al.,
2018; Chen et al., 2019). We found a strong correlation between
the risk score and immunosuppressive cytokines, tumor-
supportive macrophages, as well as immunosuppressive signaling
pathways. This finding implied that the risk score reflects the
immunosuppressive microenvironment of GBM. Both in silico
analysis and in vitro experiments confirmed that the five genes
in the signature could promote the immunosuppression by
mediating the M2 macrophage polarization and infiltration.
Furthermore, monoclonal antibodies that block immune
checkpoint signaling have shown clinical benefits in several
malignant tumors, including melanoma, NSCLC, Hodgkin
lymphoma, and urothelial carcinoma. Such antibodies include
pembrolizumab, nivolumab, and pidilizumab, which target PD-1,
ipilimumab and tremelimumab for CTLA-4, or atezolizumab
and durvalumab for PD-L1. Additionally, many clinical
trials have been launched to evaluate the application of
checkpoint inhibitors in GBM. A randomized phase III study
(NCT02017717) was carried out to test the efficacy and
safety of nivolumab alone vs. bevacizumab (Sampson et al.,
2014). Clinical treatment of newly diagnosed GBM patients
with ipilimumab and nivolumab is still under investigation
(NCT02311920) (Binder et al., 2016). Therefore, we explored
the relationship between the risk score and the expression levels
of several well-known immune checkpoint molecules. The
strong positive correlation implied that the identified signature
mediates immune escape mechanisms in GBM, which provides a
foundation for identifying novel therapeutic targets.

It is noteworthy that not all probands will respond to immune
checkpoint blockade effectively in most cancer types (Sharma
et al., 2017). Various factors were reported as predictors for
evaluating immunotherapy effectiveness, such as the mutation
burden (Snyder et al., 2014), tumor infiltration by cytotoxic T
cells (Van Allen et al., 2015), PD-L1 expression (Nishino et al.,
2017), and tumor aneuploidy (Davoli et al., 2017). The known
mechanisms of tumor immune evasion include infiltration by
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CTLs and the prevention of T cell infiltration (Gajewski et al.,
2013; Joyce and Fearon, 2015). The TIDE method underscores
these two distinct aspects and can predict the outcome of
melanoma patients receiving immunotherapy more accurately
than other factors (Jiang et al., 2018). We demonstrated that
more patients could benefit from immune checkpoint blockade
in the high than in the low-risk group. Under a strict criterion
of adjusted P-values, SubMap analysis further confirmed that
anti-PD-1 therapy might produce favorable outcomes in high-
risk patients.

In summary, our study revealed that MGMT promoter
methylation status is correlated with immunological processes
and the remodeling of the tumor microenvironment in GBM.
The developed immune-related gene signature could serve as
a useful prognostic tool for GBM patients as well as for
predicting which patients would benefit from immunotherapy.
These findings may provide new insights into fundamental
aspects of the critical role of MGMT methylation status
in GBM.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These
data can be found here: TCGA (https://portal.gdc.cancer.gov/),
CGGA (http://www.cgga.org.cn/), and GEO database (https://
www.ncbi.nlm.nih.gov/geo/).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics committee of the First Affiliated Hospital

of Nanjing Medical University. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

PZ, LZ, and JZ: conception and design. PZ: administrative
support. LZ, SX, and YW: provision of study materials
or patients. LZ, SX, JZ, and ZL: collection and assembly
of data. LZ and JZ: data analysis and interpretation. All
authors: contributed manuscript writing and final approval
of manuscript.

FUNDING

This work was supported by the National Natural
Science Foundation of China under (Grant
Number 81673210).

ACKNOWLEDGMENTS

All authors would like to thank all contributors to the TCGA and
CGGA project, especially. This manuscript has been released as a
pre-print at biorxiv (Zhao et al., 2020b).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.
600506/full#supplementary-material

REFERENCES

Aran, D., Hu, Z., and Butte, A. J. (2017). xCell: digitally portraying

the tissue cellular heterogeneity landscape. Genome Biol. 18, 1–14.

doi: 10.1186/s13059-017-1349-1

Ascierto, P. A., Simeone, E., Sznol, M., Fu, Y.-X., and Melero, I. (2010). Clinical

experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin.

Oncol. 37, 508–516. doi: 10.1053/j.seminoncol.2010.09.008

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf,

A. C., et al. (2013). Spatiotemporal dynamics of intratumoral immune cells

reveal the immune landscape in human cancer. Immunity 39, 782–795.

doi: 10.1016/j.immuni.2013.10.003

Binder, D. C., Davis, A. A., and Wainwright, D. A. (2016). Immunotherapy

for cancer in the central nervous system: current and future directions.

Oncoimmunology 5:e1082027. doi: 10.1080/2162402X.2015.1082027

Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010). Evaluation of

statistical methods for normalization and differential expression in mRNA-Seq

experiments. BMC Bioinformatics 11, 1–13. doi: 10.1186/1471-2105-11-94

Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C., and Marini, F.

C. (2016). Tumor-associated stromal cells as key contributors to the tumor

microenvironment. Breast Cancer Res. 18:84. doi: 10.1186/s13058-016-0740-2

Cai, J., Chen, Q., Cui, Y., Dong, J., Chen, M., Wu, P., et al. (2018). Immune

heterogeneity and clinicopathologic characterization of IGFBP2 in 2447 glioma

samples. Oncoimmunology 7:e1426516. doi: 10.1080/2162402X.2018.1426516

Camp, R. L., Dolled-Filhart, M., and Rimm, D. L. (2004). X-

tile: a new bio-informatics tool for biomarker assessment and

outcome-based cut-point optimization. Clin. Cancer Res. 10, 7252–7259.

doi: 10.1158/1078-0432.CCR-04-0713

Chen, Q., Han, B., Meng, X., Duan, C., Yang, C., Wu, Z., et al. (2019).

Immunogenomic analysis reveals LGALS1 contributes to the immune

heterogeneity and immunosuppression in glioma. Int. J. Cancer 145, 517–530.

doi: 10.1002/ijc.32102

Cloughesy, T. F., Mochizuki, A. Y., Orpilla, J. R., Hugo, W., Lee, A. H., Davidson,

T. B., et al. (2019). Neoadjuvant anti-PD-1 immunotherapy promotes a

survival benefit with intratumoral and systemic immune responses in recurrent

glioblastoma. Nat. Med. 25, 477–486. doi: 10.1038/s41591-018-0337-7

Davoli, T., Uno, H., Wooten, E. C., and Elledge, S. J. (2017). Tumor aneuploidy

correlates with markers of immune evasion and with reduced response to

immunotherapy. Science 355:eaaf8399. doi: 10.1126/science.aaf8399

Dolan, M. E., and Pegg, A. E. (1997). O6-benzylguanine and its role in

chemotherapy. Clin. Cancer Res. 3, 837–847.

Doucette, T., Rao, G., Rao, A., Shen, L., Aldape, K., Wei, J., et al. (2013).

Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer

genome atlas. Cancer Immunol. Res. 1, 112–122. doi: 10.1158/2326-6066.CIR-1

3-0028

Fecci, P. E., Sweeney, A. E., Grossi, P. M., Nair, S. K., Learn, C. A., Mitchell, D. A.,

et al. (2006). Systemic anti-CD25 monoclonal antibody administration safely

enhances immunity in murine glioma without eliminating regulatory T cells.

Clin. Cancer Res.12, 4294–4305. doi: 10.1158/1078-0432.CCR-06-0053

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G., and Jain, R. K. (2018).

Enhancing cancer immunotherapy using antiangiogenics: opportunities and

challenges. Nat. Rev. Clin. Oncol. 15:325. doi: 10.1038/nrclinonc.2018.29

Frontiers in Cell and Developmental Biology | www.frontiersin.org 18 February 2021 | Volume 9 | Article 600506

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fcell.2021.600506/full#supplementary-material
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1053/j.seminoncol.2010.09.008
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1080/2162402X.2015.1082027
https://doi.org/10.1186/1471-2105-11-94
https://doi.org/10.1186/s13058-016-0740-2
https://doi.org/10.1080/2162402X.2018.1426516
https://doi.org/10.1158/1078-0432.CCR-04-0713
https://doi.org/10.1002/ijc.32102
https://doi.org/10.1038/s41591-018-0337-7
https://doi.org/10.1126/science.aaf8399
https://doi.org/10.1158/2326-6066.CIR-13-0028
https://doi.org/10.1158/1078-0432.CCR-06-0053
https://doi.org/10.1038/nrclinonc.2018.29
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zhao et al. MGMT Methylation-Based Prognostic Immune Signature

Gajewski, T. F., Schreiber, H., and Fu, Y.-X. (2013). Innate and adaptive

immune cells in the tumor microenvironment. Nat. Immunol. 14:1014.

doi: 10.1038/ni.2703

Golebiewska, A., Bougnaud, S., Stieber, D., Brons, N. H., Vallar, L., Hertel,

F., et al. (2013). Side population in human glioblastoma is non-

tumorigenic and characterizes brain endothelial cells. Brain 136, 1462–1475.

doi: 10.1093/brain/awt025

Graeber, M. B., Scheithauer, B. W., and Kreutzberg, G. W. (2002). Microglia in

brain tumors. Glia 40, 52–259. doi: 10.1002/glia.10147

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize implements

and enhances circular visualization in R. Bioinformatics 30, 2811–2812.

doi: 10.1093/bioinformatics/btu393

Hegi, M. E., Diserens, A.-C., Gorlia, T., Hamou, M.-F., De Tribolet, N., Weller,

M., et al. (2005). MGMT gene silencing and benefit from temozolomide in

glioblastoma. N. Engl. J. Med. 352, 997–1003. doi: 10.1056/NEJMoa043331

Hegi, M. E., Liu, L., Herman, J. G., Stupp, R., Wick, W., Weller, M.,

et al. (2008). Correlation of O6-methylguanine methyltransferase (MGMT)

promoter methylation with clinical outcomes in glioblastoma and clinical

strategies to modulate MGMT activity. J. Clin. Oncol. 26, 4189–4199.

doi: 10.1200/JCO.2007.11.5964

Heimberger, A. B., Abou-Ghazal, M., Reina-Ortiz, C., Yang, D. S., Sun, W.,

Qiao, W., et al. (2008). Incidence and prognostic impact of FoxP3+

regulatory T cells in human gliomas. Clin. Cancer Res. 14, 5166–5172.

doi: 10.1158/1078-0432.CCR-08-0320

Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J.

B., et al. (2010). Improved survival with ipilimumab in patients with metastatic

melanoma. N. Engl. J. Med. 363, 711–723. doi: 10.1056/NEJMoa1003466

Hoshida, Y., Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2007).

Subclass mapping: identifying common subtypes in independent disease data

sets. PLoS ONE 2:e1195. doi: 10.1371/journal.pone.0001195

Hurwitz, A. A., and Watkins, S. K. (2012). Immune suppression in the tumor

microenvironment: a role for dendritic cell-mediated tolerization of T cells.

Cancer Immunol. Immunother. 61, 289–293. doi: 10.1007/s00262-011-1181-5

Hussain, S. F., Yang, D., Suki, D., Aldape, K., Grimm, E., and Heimberger,

A. B. (2006). The role of human glioma-infiltrating microglia/macrophages

in mediating antitumor immune responses. Neuro-oncology 8, 261–279.

doi: 10.1215/15228517-2006-008

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell

dysfunction and exclusion predict cancer immunotherapy response. Nat. Med.

24, 1550–1558. doi: 10.1158/2326-6074.CRICIMTEATIAACR18-B077

Joyce, J. A., and Fearon, D. T. (2015). T cell exclusion, immune privilege, and the

tumor microenvironment. Science 348:74–80. doi: 10.1126/science.aaa6204

Karran, P., and Bignami, M. (1992). Self-destruction and tolerance in resistance

of mammalian cells to alkylation damage. Nucleic Acids Res. 20:2933.

doi: 10.1093/nar/20.12.2933

Kennedy, B. C., Showers, C. R., Anderson, D. E., Anderson, L., Canoll, P., Bruce,

J. N., et al. (2013). Tumor-associated macrophages in glioma: friend or foe? J.

Oncol. 2013:486912. doi: 10.1155/2013/486912

Li, B., Severson, E., Pignon, J. C., Zhao, H., Li, T., Novak, J., et al.

(2016). Comprehensive analyses of tumor immunity: implications for cancer

immunotherapy. Genome Biol. 17:74. doi: 10.1186/s13059-016-1028-7

Li, Z., Jia, Z., Gao, Y., Xie, D., Wei, D., Cui, J., et al. (2015). Activation of vitamin

D receptor signaling downregulates the expression of nuclear FOXM1 protein

and suppresses pancreatic cancer cell stemness. Clin. Cancer Res. 21, 844–853.

doi: 10.1158/1078-0432.CCR-14-2437

Liu, L., and Gerson, S. L. (2006). Targeted modulation of

MGMT: clinical implications. Clin. Cancer Res. 12, 328–331.

doi: 10.1158/1078-0432.CCR-05-2543

Louveau, A., Harris, T. H., and Kipnis, J. (2015a). Revisiting the

mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577.

doi: 10.1016/j.it.2015.08.006

Louveau, A., Smirnov, I., Keyes, T. J., Eccles, J. D., Rouhani, S. J.,

Peske, J. D., et al. (2015b). Structural and functional features of central

nervous system lymphatic vessels. Nature 523, 337–341. doi: 10.1038/nature

14432

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.

doi: 10.1186/s13059-014-0550-8

Ma, A., Koka, R., and Burkett, P. (2006). Diverse functions of IL-2, IL-15,

and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24, 657–679.

doi: 10.1146/annurev.immunol.24.021605.090727

Mao, Y., Keller, E. T., Garfield, D. H., Shen, K., and Wang, J. (2013). Stromal

cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32,

303–315. doi: 10.1007/s10555-012-9415-3

Meng, X., Duan, C., Pang, H., Chen, Q., Han, B., Zha, C., et al. (2019). DNA damage

repair alterations modulate M2 polarization of microglia to remodel the tumor

microenvironment via the p53-mediatedMDK expression in glioma. EBioMed.

41, 185–199. doi: 10.1016/j.ebiom.2019.01.067

Mjösberg, J., Bernink, J., Golebski, K., Karrich, J. J., Peters, C. P., Blom,

B., et al. (2012). The transcription factor GATA3 is essential for the

function of human type 2 innate lymphoid cells. Immunity 37, 649–659.

doi: 10.1016/j.immuni.2012.08.015

Molenaar, R. J., Verbaan, D., Lamba, S., Zanon, C., Jeuken, J.W., Boots-Sprenger, S.

H., et al. (2014). The combination of IDH1 mutations and MGMTmethylation

status predicts survival in glioblastoma better than either IDH1 or MGMT

alone. Neuro-oncology 16, 1263–1273. doi: 10.1093/neuonc/nou005

Nduom, E. K., Weller, M., and Heimberger, A. B. (2015). Immunosuppressive

mechanisms in glioblastoma. Neuro-oncology 17(Suppl. 7), vii9–vii14.

doi: 10.1093/neuonc/nov151

Nishino, M., Ramaiya, N. H., Hatabu, H., and Hodi, F. S. (2017). Monitoring

immune-checkpoint blockade: response evaluation and biomarker

development. Nat. Rev. Clin. Oncol. 14:655. doi: 10.1038/nrclinonc.2017.88

Pegg, A. E. (1990). Mammalian O6-alkylguanine-DNA alkyltransferase: regulation

and importance in response to alkylating carcinogenic and therapeutic agents.

Cancer Res. 50, 6119–6129.

Prins, R. M., Soto, H., Konkankit, V., Odesa, S. K., Eskin, A., Yong,

W. H., et al. (2011). Gene expression profile correlates with T-cell

infiltration and relative survival in glioblastoma patients vaccinated

with dendritic cell immunotherapy. Clin. Cancer Res. 17, 1603–1615.

doi: 10.1158/1078-0432.CCR-10-2563

Qian, Z., Li, Y., Fan, X., Zhang, C., Wang, Y., Jiang, T., et al. (2018). Molecular and

clinical characterization of IDH associated immune signature in lower-grade

gliomas. Oncoimmunology 7:e1434466. doi: 10.1080/2162402X.2018.1434466

Quail, D. F., and Joyce, J. A. (2017). The Microenvironmental Landscape of Brain

Tumors. Cancer Cell 31, 326–341. doi: 10.1016/j.ccell.2017.02.009

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). limma

powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rizvi, N. A., Mazières, J., Planchard, D., Stinchcombe, T. E., Dy, G. K., Antonia,

S. J., et al. (2015). Activity and safety of nivolumab, an anti-PD-1 immune

checkpoint inhibitor, for patients with advanced, refractory squamous non-

small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet

Oncol. 16, 257–265. doi: 10.1016/S1470-2045(15)70054-9

Roh, W., Chen, P.-L., Reuben, A., Spencer, C. N., Prieto, P. A., Miller, J. P., et al.

(2017). Integrated molecular analysis of tumor biopsies on sequential CTLA-4

and PD-1 blockade reveals markers of response and resistance. Sci. Transl. Med.

9:eaah3560. doi: 10.1126/scitranslmed.aah3560

Sampson, J. H., Vlahovic, G., Desjardins, A., Friedman, H. S., Baehring, J. M.,

Hafler, D., et al. (2014). Randomized phase IIb study of nivolumab (anti-PD-

1; BMS-936558, ONO-4538) alone or in combination with ipilimumab versus

bevacizumab in patients (pts) with recurrent glioblastoma (GBM). Am. Soc.

Clin. Oncol. 37. doi: 10.1200/jco.2014.32.15_suppl.tps2101

Sarkar, S., Hewison,M., Studzinski, G. P., Li, Y. C., Kalia, V. (2016). Role of vitamin

D in cytotoxic T lymphocyte immunity to pathogens and cancer.Crit. Rev. Clin.

Lab. Sci. 53, 132–145. doi: 10.3109/10408363.2015.1094443

Sarkaria, J. N., Kitange, G. J., James, C. D., Plummer, R., Calvert, H., Weller, M.,

et al. (2008). Mechanisms of chemoresistance to alkylating agents in malignant

glioma. Clin. Cancer Res. 14, 2900–2908. doi: 10.1158/1078-0432.CCR-07-1719

Sergushichev, A. (2016). An algorithm for fast preranked gene set

enrichment analysis using cumulative statistic calculation. bioRxiv 060012.

doi: 10.1101/060012

Sharma, P., and Allison, J. P. (2015). The future of immune checkpoint therapy.

Science 348, 56–61. doi: 10.1126/science.aaa8172

Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017). Primary,

adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723.

doi: 10.1016/j.cell.2017.01.017

Frontiers in Cell and Developmental Biology | www.frontiersin.org 19 February 2021 | Volume 9 | Article 600506

https://doi.org/10.1038/ni.2703
https://doi.org/10.1093/brain/awt025
https://doi.org/10.1002/glia.10147
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1200/JCO.2007.11.5964
https://doi.org/10.1158/1078-0432.CCR-08-0320
https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1007/s00262-011-1181-5
https://doi.org/10.1215/15228517-2006-008
https://doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-B077
https://doi.org/10.1126/science.aaa6204
https://doi.org/10.1093/nar/20.12.2933
https://doi.org/10.1155/2013/486912
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1158/1078-0432.CCR-14-2437
https://doi.org/10.1158/1078-0432.CCR-05-2543
https://doi.org/10.1016/j.it.2015.08.006
https://doi.org/10.1038/nature14432
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1146/annurev.immunol.24.021605.090727
https://doi.org/10.1007/s10555-012-9415-3
https://doi.org/10.1016/j.ebiom.2019.01.067
https://doi.org/10.1016/j.immuni.2012.08.015
https://doi.org/10.1093/neuonc/nou005
https://doi.org/10.1093/neuonc/nov151
https://doi.org/10.1038/nrclinonc.2017.88
https://doi.org/10.1158/1078-0432.CCR-10-2563
https://doi.org/10.1080/2162402X.2018.1434466
https://doi.org/10.1016/j.ccell.2017.02.009
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/S1470-2045(15)70054-9
https://doi.org/10.1126/scitranslmed.aah3560
https://doi.org/10.1200/jco.2014.32.15_suppl.tps2101
https://doi.org/10.3109/10408363.2015.1094443
https://doi.org/10.1158/1078-0432.CCR-07-1719
https://doi.org/10.1101/060012
https://doi.org/10.1126/science.aaa8172
https://doi.org/10.1016/j.cell.2017.01.017
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zhao et al. MGMT Methylation-Based Prognostic Immune Signature

Sherman, M. H., Ruth, T. Y., Engle, D. D., Ding, N., Atkins, A. R., Tiriac,

H., et al. (2014). Vitamin D receptor-mediated stromal reprogramming

suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159,

80–93. doi: 10.1016/j.cell.2014.08.007

Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard,

A., et al. (2014). Genetic basis for clinical response to CTLA-4 blockade

in melanoma. N. Engl. J. Med. 371, 2189–2199. doi: 10.1056/NEJMoa

1406498

Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M.

J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide

for glioblastoma. N. Engl. J. Med. 352, 987–996. doi: 10.1056/NEJMoa0

43330

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B.

L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a

knowledge-based approach for interpreting genome-wide expression

profiles. Proc. Natl. Acad. Sci. 102, 15545–15550. doi: 10.1073/pnas.05065

80102

Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L.,

et al. (2015). Genomic correlates of response to CTLA-4 blockade in metastatic

melanoma. Science 350, 207–211. doi: 10.1126/science.aad0095

Vivian, J., Rao, A. A., Nothaft, F. A., Ketchum, C., Armstrong, J., Novak, A., et al.

(2017). Toil enables reproducible, open source, big biomedical data analyses.

Nat. Biotechnol. 35, 314–316. doi: 10.1038/nbt.3772

Wan, Y. Y. (2014). GATA3: a master of many trades in immune regulation. Trends

Immunol. 35, 233–242. doi: 10.1016/j.it.2014.04.002

Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., et al. (2017). Role of tumor

microenvironment in tumorigenesis. J. Cancer 8:761. doi: 10.7150/jca.17648

Wang, Q., Hu, B., Hu, X., Kim, H., Squatrito, M., Scarpace, L., et al. (2017).

Tumor evolution of glioma-intrinsic gene expression subtypes associates with

immunological changes in the microenvironment. Cancer Cell 32, 42–56.e6.

doi: 10.1016/j.ccell.2017.06.003

Weiss, N., Miller, F., Cazaubon, S., and Couraud, P.-O. (2009). The blood-

brain barrier in brain homeostasis and neurological diseases. Biochim.

Biophys. Acta Biomembr. 1788, 842–857. doi: 10.1016/j.bbamem.2008.

10.022

Wick, W., Weller, M., van den Bent, M., Sanson, M., Weiler, M., von Deimling,

A., et al. (2014). MGMT testing—the challenges for biomarker-based glioma

treatment. Nat. Rev. Neurol. 10:372. doi: 10.1038/nrneurol.2014.100

Xie, H., Tubbs, R., and Yang, B. (2015). Detection ofMGMT promoter methylation

in glioblastoma using pyrosequencing. Int. J. Clin. Exp. Pathol. 8, 636–642.

Yonezawa, A., Dutt, S., Chester, C., Kim, J., and Kohrt, H. E. (2015). Boosting

cancer immunotherapy with anti-CD137 antibody therapy. Clin. Cancer Res.

21, 3113–3120. doi: 10.1158/1078-0432.CCR-15-0263

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H.,

Torres-Garcia, W., et al. (2013). Inferring tumour purity and stromal

and immune cell admixture from expression data. Nat. Commun. 4:2612.

doi: 10.1038/ncomms3612

Zha, C., Meng, X., Li, L., Mi, S., Qian, D., Li, Z., et al. (2020). Neutrophil

extracellular traps mediate the crosstalk between glioma progression and the

tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol. Med.

17:154–168. doi: 10.20892/j.issn.2095-3941.2019.0353

Zhang, C., Cheng, W., Ren, X., Wang, Z., Liu, X., Li, G., et al. (2017). Tumor

purity as an underlying key factor in glioma. Clin. Cancer Res. 23, 6279–6291.

doi: 10.1158/1078-0432.CCR-16-2598

Zhang, N., Wu, H.-J., Zhang, W., Wang, J., Wu, H., and Zheng, X. (2015).

Predicting tumor purity from methylation microarray data. Bioinformatics 31,

3401–3405. doi: 10.1093/bioinformatics/btv370

Zhao, L., Zhang, J., Liu, Z., and Zhao, P. (2020a). Identification of biomarkers

for the transition from low-grade glioma to secondary glioblastoma by an

integrated bioinformatic analysis. Am. J. Transl. Res. 12:1222.

Zhao, L., Zhang, J., Xuan, S., Liu, Z., Wang, Y., and Zhao, P. (2020b).

Molecular and clinicopathological characterization of a prognostic immune

gene signature associated with MGMT methylation in glioblastoma.

bioRxiv:2020.07.16.206318. doi: 10.1101/2020.07.16.206318

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk,

O., et al. (2019). Metascape provides a biologist-oriented resource

for the analysis of systems-level datasets. Nat. Commun. 10:1523.

doi: 10.1038/s41467-019-09234-6

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Zhao, Zhang, Xuan, Liu, Wang and Zhao. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 20 February 2021 | Volume 9 | Article 600506

https://doi.org/10.1016/j.cell.2014.08.007
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1126/science.aad0095
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1016/j.it.2014.04.002
https://doi.org/10.7150/jca.17648
https://doi.org/10.1016/j.ccell.2017.06.003
https://doi.org/10.1016/j.bbamem.2008.10.022
https://doi.org/10.1038/nrneurol.2014.100
https://doi.org/10.1158/1078-0432.CCR-15-0263
https://doi.org/10.1038/ncomms3612
https://doi.org/10.20892/j.issn.2095-3941.2019.0353
https://doi.org/10.1158/1078-0432.CCR-16-2598
https://doi.org/10.1093/bioinformatics/btv370
https://doi.org/10.1101/2020.07.16.206318
https://doi.org/10.1038/s41467-019-09234-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles

	Molecular and Clinicopathological Characterization of a Prognostic Immune Gene Signature Associated With MGMT Methylation in Glioblastoma
	Introduction
	Materials and Methods
	GBM Patient Datasets
	Immune-Related Genes
	Identification of Prognostic MGMT Methylation-Related Immune Genes
	Construction of a Risk Model Based on Immune-Related Genes
	Functional Enrichment Analyses
	Quantification of Immune-Cell Infiltration by Single-Sample Gene Set Enrichment Analysis (ssGSEA)
	Prediction of Clinical Responses to Immune Checkpoint Blockade
	Construction and Validation of a Nomogram
	Clinical Specimens
	Cell Culture
	Macrophage Induction and M2 Phenotype Polarization
	Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
	RNA Interference
	Immunofluorescence (IF) and Immunohistochemistry (IHC)
	Enzyme-Linked Immunosorbent Assay (ELISA)
	Statistical Analysis

	Results
	Association Between MGMT Methylation and the Immunological Phenotype of GBM
	Construction of an Immune Risk Model Based on MGMT Methylation Status
	Functional Analysis of the MGMT Methylation-Based Signature
	Association of the Risk Score With Tumor Purity and Immune Cell Infiltration in the GBM Microenvironment
	The Risk Score Is Correlated With Immunosuppressive Processes and the Inflammatory Responses
	High-Risk Patients Are Likely to Be More Sensitive to Immunotherapy, Chemotherapy, and Radiotherapy
	Development of a Nomogram Based on MGMT Methylation-Related Signature
	Validation of the Five Key Genes in Clinical Specimens
	Genes in the Signature Promote Immunosuppressive Microenvironment by Facilitating M2 Macrophage Polarization and Immunosuppressive Cytokines Production

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


