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In recent decades, compelling evidence has emerged showing that organelles are
not static structures but rather form a highly dynamic cellular network and exchange
information through membrane contact sites. Although high-throughput techniques
facilitate identification of novel contact sites (e.g., organelle-organelle and organelle-
vesicle interactions), little is known about their impact on cellular physiology. Moreover,
even less is known about how the dysregulation of these structures impacts on
cellular function and therefore, disease. Particularly, cancer cells display altered signaling
pathways involving several cell organelles; however, the relevance of interorganelle
communication in oncogenesis and/or cancer progression remains largely unknown.
This review will focus on organelle contacts relevant to cancer pathogenesis. We will
highlight specific proteins and protein families residing in these organelle-interfaces that
are known to be involved in cancer-related processes. First, we will review the relevance
of endoplasmic reticulum (ER)-mitochondria interactions. This section will focus on
mitochondria-associated membranes (MAMs) and particularly the tethering proteins at
the ER-mitochondria interphase, as well as their role in cancer disease progression.
Subsequently, the role of Ca2+ at the ER-mitochondria interphase in cancer disease
progression will be discussed. Members of the Bcl-2 protein family, key regulators of
cell death, also modulate Ca2+ transport pathways at the ER-mitochondria interphase.
Furthermore, we will review the role of ER-mitochondria communication in the regulation
of proteostasis, focusing on the ER stress sensor PERK (PRKR-like ER kinase), which
exerts dual roles in cancer. Second, we will review the relevance of ER and mitochondria
interactions with other organelles. This section will focus on peroxisome and lysosome
organelle interactions and their impact on cancer disease progression. In this context,
the peroxisome biogenesis factor (PEX) gene family has been linked to cancer. Moreover,
the autophagy-lysosome system is emerging as a driving force in the progression of
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numerous human cancers. Thus, we will summarize our current understanding of the
role of each of these organelles and their communication, highlighting how alterations
in organelle interfaces participate in cancer development and progression. A better
understanding of specific organelle communication sites and their relevant proteins may
help to identify potential pharmacological targets for novel therapies in cancer control.

Keywords: interorganelle communication, cancer, mitochondria, endoplasmic reticulum, lysosome, peroxisome

INTRODUCTION

Higher organisms are characterized by the cooperation between
cell populations, which carry out different, complementary
functions. This entails the existence of various gene expression
programs encoded in the same genome, and processes such as
cell differentiation and proliferation. All these processes must
be dynamic and tightly regulated to maintain homeostasis
in response to the ever-changing external and internal
environments. However, multicellularity comes at a price:
dysregulation of the aforementioned processes can lead to
tumorigenesis and cancer (Trigos et al., 2018).

Cancer cells not only proliferate uncontrollably, but also they
avoid differentiation and attain several special traits, such as
the ability to increase the supply of nutrients, become invisible
to the immune system, change their metabolism and adapt
to surroundings that vary as the tumor progresses, among
others (Fouad and Aanei, 2017). This transformation requires
extensive genetic remodeling, which radically changes the intra
and intercellular landscape.

Within the eukaryotic cell, organelles compartmentalize
specific processes, which determines the cell phenotype and
thus, have an impact on tumorigenesis. Relevant for this review,
mitochondria play a key role in regulating cell death, as well as
providing energy, which is, in turn, a major player in cell adaption
and survival (Bravo-Sagua et al., 2017). The endoplasmic
reticulum (ER), on the other hand, synthesizes large amounts of
proteins and governs intracellular Ca2+ signaling, two activities
crucial for cell viability (Oakes and Papa, 2015). Lysosomes,
in turn, possess lytic enzymes required for the degradation of
damaged organelles and other intracellular structures, serving
as a quality control mechanism (Lawrence and Zoncu, 2019).
This function involves a group of processes collectively termed
autophagy (Lawrence and Zoncu, 2019). Finally, peroxisomes
represent a set of vesicles that participate in lipid and oxidative
metabolism, and are emerging players in cancer development
(Islinger et al., 2018).

Since organelles harbor distinct and fundamental activities,
they are meticulously modulated to preserve tissue physiology
and avoid perturbations in homeostasis. Furthermore, organelles
communicate with each other to coordinate stress responses,
which entails damage-sensing at the ER surface by ER stress
sensors, and increased ATP generation by mitochondria, fueled
by metabolites generated through lysosome- and peroxisome-
mediated degradation processes. One means of communication
between them are interorganelle contacts, which permit direct
exchange of signaling molecules and scaffolding of key regulatory
complexes, thereby avoiding the fusion of their membranes

and luminal continuity as a result (Lopez-Crisosto et al.,
2015). Such is the importance of these contacts that their
alteration is associated with various pathologies, especially
cardiometabolic diseases (Lopez-Crisosto et al., 2017). ER-
mitochondria contacts are the most widely studied organelle
contacts, and, interestingly decline in most pathologies. This
is consistent with the notion that lacking a coordinated
response leads to maladaptation and, ultimately, cell dysfunction
(Lopez-Crisosto et al., 2015).

Processes associated with cancer development and
progression correlate with alterations in organelle
communication (Boroughs and Deberardinis, 2015), although
the nature of such dysregulation is far more complex and, in
some cases, contradictory. This ambiguity in cancer may arise
because its cause is not the lack of cell adaptation, but rather
the opposite, namely the exacerbated capacity to overcome
adversities at any cost (Fouad and Aanei, 2017). Thus, it follows
that cancer cells have altered organelle interfaces, especially
those regulating cell death and survival, adjustment to stress
and removal, or even preservation of dysfunctional structures.
However, while an intriguing concept, the evidence available
supporting this notion is still rather scarce. Here, we provide a
revision of the current literature, with the objective of revealing
the relevance of organelle (mis)communication in the genesis
of cancer disease.

ER-MITOCHONDRIA INTERACTIONS

Mitochondria are double-membrane bound organelles,
responsible for oxidative cell metabolism and reactive oxygen
species (ROS) generation, Ca2+ homeostasis and apoptosis,
among others (Wallace, 2012). Besides their own regulation,
mitochondria interact and communicate with other organelles
(Nunnari and Suomalainen, 2012). However, dysregulation
in such communication may trigger aberrant mitochondrial
function resulting in impaired energy metabolism and ion
buffering. As a result, mitochondrial dysfunction plays an
important role in cancer (Doghman-Bouguerra and Lalli, 2019).

Mitochondria interact with the ER mainly through membrane
structures referred to as mitochondria-associated ER membranes
(MAMs). MAMs are well-characterized, 10–30 nm organelle
contact sites (Bernhard and Rouiller, 1956; Wieckowski et al.,
2009) that are rich in Ca2+ transporters, enzymes participating
in lipid synthesis and transport, as well as tumor suppressors
and proteins encoded by oncogenes that regulate cell signaling
pathways (Lee and Min, 2018). Thus, MAM-associated protein
dysfunction is involved in tumorigenesis and tumor progression.
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Tethering Proteins and Proteins at the
ER-Mitochondria Interphase and Their
Role in Cancer Disease Progression
Mitofusins (MFN) are GTPases embedded in the ER surface
and outer mitochondrial membrane (OMM), with a key role
in mitochondrial dynamics. MFN regulates ER-mitochondria
contacts between Ca2+-transfer sites (De Brito and Scorrano,
2008; Filadi et al., 2015; Naon et al., 2016). ER-resident MFN2
interacts with mitochondrial MFN1/MFN2 and regulates cell
survival by playing anti-proliferative and pro-apoptotic roles
(Ma et al., 2015; Wang et al., 2018b; Liu et al., 2019), as well
as by participating in autophagy (Xue et al., 2018). MFN2 is
considered a tumor suppressor (Figure 1) and is silenced in many
malignant tumors (Zhang et al., 2013; Li et al., 2018). Thus,
dysregulation of MFN2 function as a tethering protein at the ER-
mitochondria interphase (De Brito and Scorrano, 2008, 2009) is
likely to participate in cancer progression.

Caveolin-1 (CAV1), a membrane-associated scaffolding
protein, that acts both as a tumor suppressor and a promoter of
metastasis depending on the type of cancer and stage (Campos
et al., 2019; Simon et al., 2020), is enriched in MAMs (Sala-Vila
et al., 2016; Bravo-Sagua et al., 2019; Figure 1). There CAV1
plays a controversial role; on the one hand, CAV1 reportedly
limits the adaptation to stress in tumor cells through impairment
of ER-mitochondria contacts (Bravo-Sagua et al., 2019); on the

other hand, using livers from wild-type and CAV1-deficient
mice, it was shown that CAV1 promotes ER-mitochondria
contacts, thereby contributing to the recruitment and regulation
of intracellular steroids and lipoprotein metabolism (Sala-Vila
et al., 2016). Whether these opposite effects may be related to the
subcellular localization of CAV1 or the specific tumor cell-type,
remains to be explored.

The Role of Ca2+ at the ER-Mitochondria
Interphase in Cancer Disease
Progression
Ca2+ enters the mitochondria from the ER through MAMs
where it regulates bioenergetics and metabolism by controling
the activity of key enzymes of the tricarboxylic acid cycle
and fatty acid (FA) oxidation (Glancy and Balaban, 2012). In
addition, Ca2+ is important in mitochondrial fission and control
of apoptosis. The low-affinity mitochondrial Ca2+ uniporter
(MCU) receptor on the inner mitochondrial membrane (IMM)
participates in Ca2+ uptake from the mitochondrial matrix and
Ca2+ permeates to the OMM through the voltage-dependent
anion channel 1 (VDAC1) (Baughman et al., 2011; Chaudhuri
et al., 2013; Morciano et al., 2018). To do so, high local
concentrations of Ca2+ need to be generated at MAMs, which
are enriched in the Ca2+-sensitive inositol 1,4,5-trisphosphate
receptor (IP3R). Ca2+ in the ER is rapidly released to the

FIGURE 1 | ER-mitochondria contacts and cancer development. Many proteins present at MAMs determine the outcome of tumorigenesis. VDAC1, GRP75, IP3R,
and SERCA play a dual role, as they are essential for cell viability by mediating ER-to-mitochondria Ca2+ transfer; but, paradoxically, a decrease in their function
prevents apoptosis in some cancer types. Many other MAM-residing proteins regulate IP3R-VDAC1 interplay, tilting the balance to one side or the other. Additional
subsets of proteins are shown that either reside in or translocate to MAMs, thereby controlling signaling networks that modulate cell fate.
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surrounding cytoplasm through IP3Rs, exposing mitochondria
to higher concentrations of Ca2+ (Csordas et al., 2006, 2010).
Alterations in the expression and/or function of these Ca2+-
transport/binding systems have been implicated in oncogenesis
and cancer progression (Marchi and Pinton, 2016; Bultynck and
Campanella, 2017).

Several types of cancer cells undergo extensive reorganization
of Ca2+ signaling to promote tumor progression. This
reorganization of Ca2+-dependent mechanisms (i.e., Ca2+

transport pathways, Ca2+-dependent signaling) has a direct
impact on cell survival by altering proliferation, migration,
invasion, and metastasis (Chen et al., 2013; Monteith et al.,
2017). Tumor cells display a dependency on constitutive Ca2+

transfer to maintain viability (Cardenas et al., 2016). For
instance, the chaperone glucose regulatory protein 75 (GRP75),
a protein expressed at MAMs, allows efficient IP3R-mediated
Ca2+ transfer into mitochondria through VDAC on the OMM.
However, upregulation of GRP75 in cancer cells has been
associated with increased susceptibility to cell death (Wadhwa
et al., 2006; Deocaris et al., 2007; Figure 1).

Factors that increase Ca2+ concentrations have been reported
to upregulate VDAC expression and subsequently, the release of
cytochrome C and Smac/Diablo, leading to apoptosis (Shoshan-
Barmatz et al., 2017). Mcl-1, an anti-apoptotic member of the
Bcl-2 family, binds with high affinity to VDAC1 and promotes
lung cancer cell migration by a mechanism that involves Ca2+-
dependent ROS production (Huang et al., 2014; Figure 1).
Moreover, the BH4 domain of Bcl-XL, selectively targets VDAC1
and inhibits apoptosis by decreasing VDAC1-mediated Ca2+

influx into the mitochondria (Monaco et al., 2015; Figure 1).
These reports underscore the relevance of highly regulated MAM
proteins in ER-mitochondrial Ca2+ transfer, and implicate their
dysregulation in tumorigenesis.

The activity of the sarco/ER Ca2+-ATPase (SERCA) pump
is, among others, regulated by proteins encoded by oncogenes
and tumor suppressor proteins in MAMs (Vandecaetsbeek et al.,
2011). Particularly, the SERCA2b subtype is highly abundant
in MAMs (Lynes et al., 2012; Chemaly et al., 2018) and the
tumor suppressor p53 controls SERCA2b activation to promote
Ca2+-dependent apoptosis (Mcdonnell et al., 2019). Thus, the
ER releases increased amounts of Ca2+, which enters the
mitochondria causing Ca2+ overload and apoptosis. However, in
cancer cells, p53 at MAMs is mutated or inactivated, and thus, the
ER cannot maintain elevated Ca2+ levels, which allows cancer
cells to escape apoptosis contributing to tumor progression
(Giorgi et al., 2015; Figure 1).

The complete inhibition of IP3R activity results in markedly
compromised mitochondria bioenergetics and increased
vulnerability to cell death and reduced melanoma tumor growth
(Cardenas et al., 2016). Moreover, proteins encoded by oncogenes
and tumor suppressors modulate ER IP3R activity in MAMs,
thus altering Ca2+ signaling in cancer cells (Fan et al., 2017).

For instance, IP3R phosphorylation is markedly increased in
cancer cells by hyperactive Akt (Szado et al., 2008), thereby
reducing Ca2+ release from the ER to mitochondria, and
promoting tumor survival (Szado et al., 2008). Other studies
have shown that promyelocytic leukemia protein (PML), a

tumor suppressor which localizes to MAMs (Giorgi et al.,
2010), forms a complex with Akt, and decreases binding of
protein phosphatase 2A (PP2A) to IP3Rs, suggesting that PP2A
no longer dephosphorylates and inactivates Akt. This leads to
phosphorylation of Akt and IP3Rs, decreasing Ca2+ release
and further protecting the mitochondria from Ca2+-mediated
apoptosis (Marchi et al., 2012). Moreover, PML physically
interacts and synergizes with tumor suppressor protein p53
during apoptosis (Bernardi et al., 2008; Figure 1). Deletion
of PML is associated with pleural mesothelioma and breast
cancer, among others (Plevova et al., 2007a,b; Wang et al.,
2018c). Additionally, Bcl-2 family members in the ER regulate
IP3R activity (Lian et al., 2018) and, consequently apoptosis,
by controlling the release of cytochrome C, the integrity of
mitochondrial membranes and the activation of caspases (Youle
and Strasser, 2008). Other evidence indicates that Bcl-2 binds
to and inhibits IP3Rs, which reduces Ca2+ release, leading
to decreased apoptosis (Rong et al., 2009). In summary, the
dysregulation of proteins involved in Ca2+ transport at MAMs
or in oncogenes and tumor suppressor proteins in cancer, alters
Ca2+ transfer from the ER to the mitochondria, and, whether
the outcome is the inhibition of Ca2+ transfer or Ca2+ overload,
it will contribute directly to cancer disease progression by
modulating cell death and/or survival.

The Role of ER Stress at the
ER-Mitochondria Interphase in Cancer
Disease Progression
ER stress is emerging as an important modulator of different
pathologies and as a mechanism contributing to cancer cell death
(Oakes and Papa, 2015). PERK (PRKR-like ER kinase), a key ER
stress sensor of the unfolded protein response (UPR), is uniquely
enriched at MAMs (Verfaillie et al., 2012). As a large number of
molecular chaperones assist in the folding of unfolded proteins
during the UPR, they consume large amounts of ATP. In order
to increase ATP generation, cells usually increase the contact
area between ER and mitochondria, which in turn increases
Ca2+ release from the ER to the mitochondria (Bravo et al.,
2012). However, if ER stress becomes chronic, ER-mitochondrial
contacts and ER Ca2+ release increases, which, together with
mitochondrial Ca2+ influx, leads to apoptosis. Moreover in
cancer cells, the UPR is constitutively activated. It has been
reported that PERK plays a critical role in tumor invasion and
metastasis (Jamison et al., 2015; Pytel et al., 2016; Rozpedek
et al., 2016; Feng et al., 2017). PERK signaling, which is activated
downstream of the UPR and the integrated stress response (ISR),
is triggered in response to a range of pathophysiological changes,
and enables cancer cells to survive the adverse conditions
typically observed in the tumor microenvironment. The ISR
can be induced by both, intrinsic (i.e., ER stress) and extrinsic
factors. The latter include hypoxia, amino acid and glucose
deprivation, among others (Pakos-Zebrucka et al., 2016). Within
the ISR, different protein kinases phosphorylate the α-subunit of
eukaryotic initiation factor-2 (eIF2α), including heme-regulated
eIF2α kinase (HRI), general control non-depressible protein 2
(GCN2), double stranded RNA dependent protein kinase (PKR)
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and PERK (Pakos-Zebrucka et al., 2016; Wang et al., 2018a).
Phosphorylation of eIF2α inhibits global protein translation and
synthesis, thereby reducing the number of proteins entering the
ER (Baird and Wek, 2012), but increasing the cap-independent
translation of other mRNAs, such as activating transcription
factor 4 (ATF4) (Vattem and Wek, 2004). In addition to enabling
cell survival, PERK-ATF4 signaling triggers multiple steps in the
metastatic cascade, including angiogenesis, migration, survival,
and colonization of secondary organ sites (Feng et al., 2017).
PERK is also required for the metastatic dissemination of cancer
cells that have undergone epithelial-to-mesenchymal transition
(Feng et al., 2017; Figure 1). Thus, while PERK contributes to
tighter MAMs during ER stress-induced apoptosis (Verfaillie
et al., 2012), other roles of MAM resident-PERK and their
contribution to cancer disease progression remain unclear.

ER AND MITOCHONDRIA
INTERACTIONS WITH OTHER
ORGANELLES

Peroxisomes are metabolic organelles that carry out vital
cell functions in lipid metabolism and synthesis, as well as
maintenance of the redox balance (Islinger et al., 2018).
Furthermore, non-metabolic roles of peroxisomes have been
discovered, relating to cellular stress responses and the regulation
of immune responses (Dahabieh et al., 2018). Disturbances
between membrane contact sites (MCSs), areas of close proximity
between the membranes of two organelles, can cause diseases
(Scorrano et al., 2019). Most of the pathways that involve
peroxisomes require communication with other organelles,
such as the ER, mitochondria, lipid droplets and lysosomes,
whereby close proximity represents a prerequisite for the
efficient transport of metabolites (Sargsyan and Thoms, 2020).
The main metabolic pathways shared between peroxisomes
and the ER are: peroxisomal β-oxidation, implicated in the
degradation of FA and biosynthesis of docosahexaenoic acid
and the bile acids, ether lipid synthesis; and membrane lipid
transfer (Ferdinandusse et al., 2018). Those shared between
peroxisomes and mitochondria are: glyoxylate detoxification,
redox exchange, ROS metabolism (Meo-Evoli et al., 2015) and
α-oxidation (Michiels et al., 2016). Other MCSs exist that are
implicated in the transfer of hydrophobic molecules, such as
FA, between lipid droplets and peroxisomes (Valm et al., 2017),
as well as cholesterol from or to lysosomes (Chu et al., 2015).
The interaction of peroxisomes with the surrounding organelles
begins with their biogenesis. Peroxisome formation involves
generating a lipid membrane, followed by the acquisition of
peroxisome membrane proteins, and subsequently organelle
expansion (Farre et al., 2019). The peroxisomes originate from
ER-derived vesicles containing the biogenesis factors (PEX)
PEX3 and PEX16, or by fusion of PEX-bound vesicles from
both, mitochondria (PEX3 and PEX14 factors), and the ER
(Sugiura et al., 2017).

In recent years, considerable information has emerged
suggesting that dysregulation of peroxisomes is implicated in
tumorigenesis (Dahabieh et al., 2018). Enzymes implicated in

peroxisomal metabolic processing are dysregulated in numerous
neoplasms, including gastric adenocarcinoma (Jindal et al., 2016),
cervical cancer (Wu et al., 2018), prostate cancer (Valenca et al.,
2015), ovarian cancer (Sun et al., 2018), colorectal neoplasia
(Shukla et al., 2017), liver cancer (Chen et al., 2018) and
glioblastomas (Ruokun et al., 2016). A recent study reports
that silencing PEX2, a peroxin involved in autophagosomal
degradation of peroxisomes (pexophagy), reduced tumor growth
in liver cancer (Cai et al., 2018). These results suggest that PEX2
and other peroxins, such as PEX5, 10 and 12, are essential for the
viability of tumor cells and, thus, represent potential therapeutic
targets for the treatment of cancer (Islinger et al., 2018; Figure 2).
Another study revealed that PEX3, PEX16, and PEX19 protect
lymphoma cells against histone deacetylase inhibitor induced-cell
death, thereby promoting tumorigenesis (Dahabieh et al., 2017;
Figure 2). These findings highlight a possible contribution of
peroxisomes in chemotherapy resistance. Moreover, peroxisomes
participate in the secretion of immune system modulators (e.g.,
interleukin-1, tumor necrosis factor) and lipids with pro- and
anti-inflammatory characteristics, all of which are connected to
tumor-promoting inflammation (Di Cara et al., 2019).

Another relevant role of peroxisomes in malignancy is
attributable to their crosstalk with mitochondria. Following
peroxisomal β-oxidation, the final products, acyl-CoA and
acetyl CoA, can enter the mitochondrial pathway and
activate peroxisome proliferator-activated receptors, which
are implicated in tumorigenesis (Dahabieh et al., 2018; Figure 2).
In addition, dysfunction of peroxisomes leads to other metabolic
alterations, through deficiency of peroxins (Faust and Kovacs,
2014). PEX2-depleted cells show elevated oxidative stress
and elevated ROS causing inhibition of mechanistic target of
rapamycin complex 1 (mTORC1) signaling, thereby promoting
autophagy (Cai et al., 2018). This mechanism limits cancer
initiation in some neoplasms; but in others, cancer cells use
recycled metabolites to preserve organelle function and energy
homeostasis to meet increased metabolic requirements. Thus,
in these cells, autophagy is an essential survival mechanism to
maintain cellular growth and proliferation (White et al., 2015).

Lysosomes, together with the ER and Golgi apparatus,
are members of a network of intracellular membranous
organelles whose functions are essential to maintain cell
homeostasis (Buratta et al., 2020). Lysosomes degrade and
recycle macromolecules via endocytosis, phagocytosis, and
autophagy (Piao and Amaravadi, 2016; Lawrence and Zoncu,
2019). Moreover, they participate in extracellular events by
secreting their contents through fusion with the plasma
membrane (Davidson and Vander Heiden, 2017). Thus,
lysosomes are extremely dynamic organelles, essential in a
variety of cellular processes, such as cell signaling, death,
immunity, and stress responses (Piao and Amaravadi, 2016).
The dysregulation of these functions plays an important role
in tumorigenesis, suggesting that lysosomal function is critical
in this context. In fact, numerous hallmarks of cancer may
be acquired as a result of lysosomal dysfunction (Hanahan
and Weinberg, 2011). Specifically, the release of lysosomal
proteases may activate caspases and lead to cell death; however,
inhibition of lysosomal function, which hinders clearance
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FIGURE 2 | Peroxisome and lysosome interactions and cancer development. Peroxisomes derive from ER and mitochondrial membranes, and the proteins involved
in peroxisome biogenesis and their regulation reportedly have tumorigenic potential. Moreover, peroxisome-mitochondria metabolic coupling favors cell proliferation
and tumorigenesis through fatty acid transfer. Lysosomes form contacts with mitochondria, orchestrated by proteins, such as Rab7. Lysosomes play an ambiguous
role in cancer. For instance, cathepsins, the proteolytic lysosomal enzymes, promote tumorigenesis when released to the extracellular milieu, but trigger
Bid-mediated apoptosis upon accessing the cytoplasm. Also, dysregulation of either V-ATPase, the complex that acidifies lysosomes, or Rab7, the GTPase that
orchestrates mitochondria-lysosome contact sites, both promote tumor progression (PPAR, Peroxisome proliferator-activated receptor).

of dead cells, contributes to inflammation and promotes
tumorigenesis (Davidson and Vander Heiden, 2017). In
addition, changes in the interactions between lysosomes and
other organelles can limit organellophagy, thereby affecting
the recycling of macromolecules and consequently, altering
cellular energetics (Boroughs and Deberardinis, 2015). These
changes include, the dysregulation of specific receptors, such
as members of the FAM134 reticulon protein family in the
ER (Hanahan and Weinberg, 2011; Khaminets et al., 2015).
Overall, numerous hallmarks of cancer may be acquired
as a result of lysosomal dysfunction and changes in the
communication between lysosomes and other organelles
(Hanahan and Weinberg, 2011).

Lysosomal and mitochondrial functions are connected
(Plotegher and Duchen, 2017), since damaged mitochondria
are engulfed by autophagosomes (Lazarou et al., 2015),
which then fuse with the lysosome/late endosome to
produce autolysosomes where the mitochondria are degraded
(mitophagy) (Wong et al., 2019). In addition, mitochondria-
derived vesicles may fuse with lysosomes to eliminate
their contents (Plotegher and Duchen, 2017). In doing so,
toxic accumulation of damaged proteins, especially in the
mitochondria, which augment oxidative stress and activate
oncogenic signaling, can be avoided (White, 2015). On
the other hand, lysosome-mitochondria interactions may
also contribute to cancer initiation (Ferguson, 2015). Cell
transformation results in an elevated demand for nutrients,
associated with the increased production of cell mass, and
lysosomes may provide the required molecules together with
autophagy, to preserve mitochondrial functions and energy

homeostasis (White et al., 2015). Additionally, lysosomes and
mitochondria are connected via non-degradative processes
involving the formation of dynamic interorganelle MCSs
(Wong et al., 2019). These processes are regulated by Rab7,
which controls this organelle network, as well as processes
including mitochondrial fission (Yamano et al., 2018; Figure 2).
Changes in interorganelle transfer of metabolites may alter
cell homeostasis and, consequently, favor the development
of diseases linked to dysfunction of both organelles, such
as cancer (Wong et al., 2019). For instance, it has been
reported that cytosolic cathepsins (lysosomal hydrolases) may
repress tumor growth by activation of an intrinsic apoptotic
pathway. Contrarily, extracellular cathepsins (e.g., B, S, and
E) may stimulate tumor growth, progression and metastasis
in different neoplasms by aiding in permeating the basement
membrane and activating pro-tumorigenic proteins (Piao
and Amaravadi, 2016; Figure 2). Additionally, the V-ATPase
(lysosomal membrane protein), a proton pump that modulates
intravesicular acidification in lysosomes, is an important
regulator of endocytic trafficking (Plotegher and Duchen,
2017). A recent study reveals that V-ATPase is a master effector
of transcription factor E2F1-mediated lysosomal trafficking,
essential in mTORC1 activation and suppression of autophagy,
which promotes tumor progression (Meo-Evoli et al., 2015;
Figure 2).

Furthermore, lysosomal membrane permeabilization (LMP;
loss of membrane integrity), causes the release of lysosomal
enzymes into the cytosol, triggering apoptosis, autophagy and
necroptosis (Piao and Amaravadi, 2016). LMP can accelerate
apoptosis through cathepsin-mediated cleavage of Bid, to
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promote the release of cytochrome C via Bax (intrinsic pathway
activation) (Wang, 2015; Piao and Amaravadi, 2016; Figure 2).

A number of cellular processes in which lysosomes participate
have been identified as potential therapeutic targets in cancer.
These include drugs that permeabilize lysosomal membranes,
cathepsin inhibitors, and molecules that become protonated in
order to increase the concentration of specific drugs inside the
organelle. However, until now, related clinical data is scarce
(Davidson and Vander Heiden, 2017). Thus, future studies on
lysosomes and their interaction with other organelles will be
critical to understanding the role that lysosome-communication
plays in cancer genesis and progression.

CONCLUSION

Organelles are the major players in intracellular communication
networks. Multiple diseases have been studied by analyzing
organelles individually, as is the case for mitochondria or the ER.
Advances in microscopy have provided further insights to the
nature of organelle communication; revealing both, physical and
functional interactions at MCSs (Csordas et al., 2010; Valm et al.,
2017; Shai et al., 2018).

Currently there is a consensus that organelles contact one
another and communicate in a dynamic fashion. Over the
last decade, evidence highlighting the importance of organelle
communication in disease has become available (Bravo-Sagua
et al., 2014; Lopez-Crisosto et al., 2015, 2017; Plotegher
and Duchen, 2017; Torres et al., 2017). Moreover, organelle
communication impacts on various cancer hallmarks and
therefore plays a critical role in oncogenesis. This is the case
of CAV1, a protein located at MAMs that acts both as a tumor
suppressor and a promoter of metastasis (Campos et al., 2019;

Simon et al., 2020). On the other hand, the ER stress sensor
PERK, also present in MAMs, has been associated with apoptotic
cell death and the promotion of more aggressive/migratory
phenotypes. Additionally, the main peroxisome-organelle
interactions so far studied involve peroxins, which also behave
as tumorigenic factors. Lastly, cathepsins have been described
in lysosomes as proteins that contribute to tumor progression
and cell death. Overall, the details of how such communication
between organelles contributes to cell homeostasis often still
remain poorly understood.

The development of molecules that target organelle
interactions at a sub-cellular level, represents a promising field
in cancer treatment (Piao and Amaravadi, 2016; Kerkhofs et al.,
2018). However, to exploit this potential a better understanding
of the differences between interorganelle contacts in healthy and
tumor cells is required.
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