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Single-cell sequencing approaches have transformed our understanding of stem cell
systems, including hematopoiesis and its niche within the bone marrow. Recent
reports examined the bone marrow microenvironment at single-cell resolution at
steady state, following chemotherapy treatment, leukemic onset, and aging. These
rapid advancements significantly informed our understanding of bone marrow niche
heterogeneity. However, inconsistent representation and nomenclature among the
studies hinder a comprehensive interpretation of this body of work. Here, we review
recent reports interrogating bone marrow niche architecture and present an integrated
overview of the published datasets.

Keywords: microenvironment, stromal – hematopoietic cells interactions, bone marrow, cell-to cell
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HEMATOPOIESIS

Hematopoiesis is a continuous process of generating blood and immune cells and is one of
the best-studied stem cell systems in modern biology (Weissman, 2000). Since the discovery
of hematopoietic stem cells (HSCs), the field has been driven by technological advances such
as flow cytometry, mass cytometry, high-resolution microscopy, and now single-cell sequencing
approaches. In vitro approaches, such as colony-forming assays, defined the intermediate stages
between a rare population of multipotent hematopoietic stem cells and the terminally differentiated
cell populations. In vivo, early hematopoietic progenitors were further classified as long-term
HSCs (LT-HSCs) capable of self-renewal and unlimited differentiation potential and multipotent
progenitors (MPPs), characterized by limited self-renewal capacity (Reya et al., 2001). The
MPPs have been further separated into myeloid-biased MPP2 and MPP3 as well as lymphoid-
biased MPP4 subsets that differentiate to lineage-restricted common myeloid progenitors
(CMPs), granulocyte/macrophage progenitors (GMPs), and common lymphoid progenitors (CLPs)
(Pietras et al., 2015). Extensive literature continued to define the complexity of hematopoietic
differentiation, incorporating further subpopulations and subdivision of downstream progenitors
(Cabezas-Wallscheid et al., 2014; Liggett and Sankaran, 2020).

The last decade has witnessed the introduction and wide-scale adoption of high-throughput
approaches, including single-cell RNA sequencing (scRNA-seq). Unlike more traditional flow
or mass cytometry methods that are limited by predefined markers, scRNA-seq technologies
simultaneously capture thousands of genes in each cell, providing an unbiased characterization
of their transcriptional diversity even within phenotypically homogenous populations. Notably, a
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major advantage of single-cell transcriptional profiling is the
identification of novel populations and states as well as shifts in
their relevant frequencies (Kowalczyk et al., 2015).

HEMATOPOIETIC DIFFERENTIATION AT
SINGLE-CELL RESOLUTION

In one of the earlier large-scale single-cell studies, Paul et al.
(2015) characterized 2,730 myeloid progenitor cells. Clustering
analysis based on an expectation maximization (EM)-like
procedure resulted in 19 subpopulations, including groups
corresponding to known erythrocyte, monocyte, and neutrophil
progenitors, as well as more transcriptionally heterogeneous
clusters. The data showed that the traditional GMP and CMP
definitions include several subpopulations with distinct lineage
commitment transcriptional profiles.

Nestorowa et al. (2016) comprehensively profiled individually
sorted 1,656 murine hematopoietic stem and progenitor cells
(HSPCs), with an average of 6,558 protein-coding genes detected
per cell. The study utilized the diffusion maps dimensionality
reduction technique (Haghverdi et al., 2015; Angerer et al.,
2016) to visualize and interpret the continuous processes of
early hematopoietic differentiation. The cells were assigned to 12
commonly sorted HSPC phenotypes based on surface markers.
When displayed on the diffusion map, all populations, except
CMPs, localized within defined regions. The relative ordering
of populations within the diffusion map was in agreement with
the established hematopoietic hierarchy and further showed
intermediate transition zones containing transcriptionally similar
cells that traditional gating assigned to differing phenotypes.
Interestingly, the single-cell analysis revealed that the three
broad trajectories defined by the diffusion map begin to diverge
immediately following the LT-HSC stage.

The findings were extended to the human system. Velten et al.
(2017) combined transcriptomic and functional single-cell data
to investigate the dynamics of lineage commitment of individual
cells. Healthy human HSPCs were defined by the absence
of lineage markers and CD34 expression (Lin−CD34+). 1,413
HSPCs from the bone marrow of two individuals were profiled by
scRNA-seq and 2,038 cells individually cultured ex vivo were used
to determine lineage potential. The transcriptomic and functional
datasets were integrated based on surface marker expression.
Clustering within the Lin−CD34+CD38− compartment that
includes HSCs and their immediate progeny, such as MPPs,
was unstable and the cells formed a continuously connected
unit. In contrast, more differentiated Lin−CD34+CD38+
progenitors formed clusters corresponding to defined progenitor
populations. The scRNA-seq data separated the cells into a
continuum of low-primed undifferentiated (CLOUD)-HSPCs
and discrete populations of restricted progenitors associated
with increased CD38 expression. Analysis of the discrete
Lin−CD34+CD38+ sub-populations identified the major
branches of hematopoiesis, including B-cell progenitors,
megakaryocyte/erythrocyte committed progenitors, neutrophil-
primed progenitors, monocyte/dendritic cell progenitors,
and eosinophil/basophil/mast cell progenitors. The authors

developed a dimensionality reduction technique STEMNET to
view the transformation from HSCs to the lineage-restricted
progenitors by placing each cell along a trajectory from the
least-primed HSCs in the center toward one of the six restricted
progenitor populations in the corners of a simplex. The authors
proposed a model in which distinct lineages emerge from
CLOUD-HSPCs rather than a series of discrete progenitors.
Zheng et al. (2018) profiled 21,306 CD34+ progenitor cells
from human cord blood across five biological replicates without
enrichment or depletion for specific lineages. The analysis
revealed previously defined progenitor populations in addition
to the intermediate continuous states. The authors additionally
integrated the data with the previous bone marrow dataset
from Velten et al. to show the high concordance between
the two systems.

Pellin et al. (2019) transcriptionally mapped the fates
of the early human hematopoietic progenitors using 6,011
CD34+ and 15,401 Lin− single cells profiled with the inDrops
protocol. The hierarchical continuum of states that branch
out toward cells expressing established lineage signatures
was visualized using SPRING (Weinreb et al., 2018a). This
two-dimensional force-directed graph layout generates a
graph of nodes representing cells connected to their nearest
neighbors in high-dimensional gene expression space. The
organization of the data broadly segregated the cells into known
immunophenotypic subpopulations and detected extensive
transcriptional heterogeneity among HSPCs. The analysis
suggested a structured hierarchy of fate decisions rather than a
single step transition from undifferentiated HSPCs to committed
states. This organizational structure was confirmed by inferred
transcriptional trajectories as well as by population balance
analysis (PBA) (Tusi et al., 2018), which in addition to providing
a static continuum description of cell states aims to infer
dynamic properties such as fate potential. This work confirmed
a continuous hierarchical organizational structure from HSPCs
to lineage-committed states not fully defined by traditional
immunophenotyping. Importantly, the authors compared the
human and mouse HSPCs, revealing a comparable branching
structure within the two species despite differences in cell surface
markers commonly used to isolate the various subpopulations.

Collectively these studies were able to isolate and define
highly granular HSPC populations. They highlighted the
transitional phases of hematopoietic differentiation, building on
the traditional tree-like model of hematopoiesis toward a more
fluid path of stem cell differentiation (Laurenti and Göttgens,
2018; Watcham et al., 2019).

BONE MARROW NICHE

Postnatally, HSCs reside in the bone marrow. While substantial
progress has been made in understanding the hematopoietic
hierarchy, the extrinsic factors guiding HSC self-renewal and
differentiation are less defined. The bone marrow is a complex
organ composed of numerous cell types that regulate HSC
function through physical and biochemical interactions (Pinho
and Frenette, 2019). The discovery that SLAM family surface
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receptors CD150, CD244, and CD48 were differentially expressed
among HSPC populations in a way that can track developmental
potential made it possible to image and localize those populations
within the bone marrow (Kiel et al., 2005). Many HSCs were
found associated with sinusoidal endothelial cells (ECs) and the
endosteum (Kiel et al., 2005) as well as in contact with Cxcl12-
abundant reticular (CAR) cells surrounding ECs (Sugiyama et al.,
2006). An extensive network of sinusoids in the central marrow
allows the hematopoietic cells to transport in and out of the
bone marrow. In addition to serving as a barrier, EC-specific
deletion of Scf (Kitl), Cxcl12, Jag1, and Dll4 impacted HSC
quiescence, differentiation, and localization (Ding et al., 2012;
Ding and Morrison, 2013; Poulos et al., 2013). Stromal cells
make up another major constituent and multiple sub-populations
have been previously described, including Lepr+ MSPCs, NG2+
(CSPG4, a pericyte marker) cells, and CAR cells. NG2+ cells
unsheathe arterioles have been previously proposed to maintain
HSC quiescence (Kunisaki et al., 2013). Osteoblasts derived from
the bone marrow MSPCs were previously shown to support early
lymphoid progenitors (Ding and Morrison, 2013).

Recent studies extended single-cell transcriptomic profiling
to the non-hematopoietic compartment of the murine bone
marrow to further understand the combination of signals and
their cellular source responsible for HSC maintenance and
differentiation. As the frequencies of bone marrow cell types
vary by orders of magnitude (Gomariz et al., 2018), some groups
utilized an approach of depleting abundant hematopoietic cell
types to isolate the niche populations in an unbiased manner
while others devised a positive selection approach to focus on
previously identified subsets (Table 1).

Our group took advantage of lineage-specific Cre-labeling to
profile 9,622 cells representing major niche subsets previously
shown to play a role in hematopoiesis using the 10× Genomics
platform (Tikhonova et al., 2019). Clustering analysis detected
two endothelial, four perivascular, and three osteo-lineage
subpopulations, validated using orthogonal approaches such

as immunofluorescence or flow cytometry-based on the
identified biomarkers. The vascular endothelial subset marked by
expression of Cdh5 (VE-Cadherin) contained cells representing
Stab2+ and Flt4+ sinusoidal capillaries and a smaller (12% of
ECs) fraction of Ly6a+ and Cd34+ arterial cells. The Lepr+
perivascular compartment consisted primarily of adipo-primed
mesenchymal cells characterized by high expression of Cxcl12
and adipogenic markers such as Adipoq and Lpl as well as
osteo-primed cells defined by gradually increasing expression of
osteogenic genes such as Bglap and Spp1. This was a surprising
finding, given that the bone of young animals contains few
adipocytes. The osteo-lineage subset was comprised of three
transcriptionally distinct clusters representing osteoblasts,
chondrocytes, and fibroblasts. To infer the relationship between
the mesenchymal lineage cells, the developmental trajectory was
reconstructed using Monocle (Trapnell et al., 2014). Pseudotime
ordering of the perivascular and terminally differentiated
osteo-lineage cells revealed a continuum of cellular states with
progressively increasing levels of expression of adipogenic
markers toward one endpoint and osteogenic markers toward
the opposite end. The adipo-primed sub-populations were
enriched for previously identified human bone marrow
mesenchymal stem cell gene signature (Ghazanfari et al., 2016),
and functional studies showed higher activity of fibroblastic
colony-forming units. In contrast to osteo-rimed progenitors
that were tdTomato+ but expressed lower levels of Lepr, adipo-
primed progenitors were both high in Lepr expression and
tdTomato+. Taken together these findings indicate that early
mesenchymal progenitors reside within adipo-gene expressing
Lepr+ MSPC fraction.

Wolock et al. (2019) examined the mesenchymal lineage cells
to determine the relations and hierarchies of stromal progenitors
as they differentiate toward the mature bone, fat, and cartilage
cells. 2,847 sorted non-hematopoietic (CD45−Ter119−) and
non-endothelial (CD31−) cells were profiled by 3′ droplet-based
inDrop scRNA-seq with a median of 736 detected genes per

TABLE 1 | Recent scRNA-seq studies profiling the non-hematopoietic compartment of the murine bone marrow.

Publication Isolation approach Source Digestion Enzymes Library platform Analyzed cells

Baccin et al.,
2020

- Negative selection approach.
- Bone marrow and bone fractions.

Femurs, tibiae,
hips and spines

Undigested and
enzymatically digested

Collagenase II and
Dispase

10× Genomics,
FACS-indexed, LCM-seq

7,497 (2,540
non-hematopoietic)

Baryawno
et al., 2019

- Negative selection approach.
- Ter119LOW,CD71LOW, CD45−, CD3−,
B220−, CD19−, Gr-1−, Cd11b−.
- Bone marrow and bone fractions.

Femurs and tibia Enzymatic digestion STEMxyme1 and
Dispase II

10× Genomics 20,896

Tikhonova
et al., 2019

- Positive selection approach.
- VEcad-tdT, Lepr-tdT, and Col2.3-tdT
animals.
- Sorted tdT+CD45LOWTER119LOW.
- Lepr-tdT/VEcad-tdT—Bone marrow
and Col2.3-tdT—Bone marrow and
bone fractions.

Femurs, tibias,
and ileums

Enzymatic digestion Liberase and
DNaseI

10× Genomics 9,622

Wolock et al.,
2019

- Negative selection approach.
- CD45LOW, Ter119LOW, CD31−

- Bone marrow and bone fractions.

Femurs, tibiae,
and pelvic bones

Enzymatic digestion Collagenase/
Dispase

inDrops 2,847

Zhong et al.,
2020

- Positive Selection approach.
- Col2-tdT
Bone marrow.

Long bones Enzymatic digestion Not indicated 10× Genomics 13,759
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a cell. Spectral clustering identified 7 clusters labeled as MSC,
adipocyte progenitors, pre-adipocytes, osteoblast/chondrocyte
progenitors, pre-osteoblast/chondrocytes, pro-osteoblasts,
and pro-chondrocytes. SPRING visualization exposed a
transcriptional continuum across the adipogenic and osteogenic
branches. Differentiation trajectories were inferred with
Velocyto (La Manno et al., 2018), a method to quantify the
relationship between the abundance of precursor and mature
mRNA, predicting individual cells’ future state. RNA velocity
analysis suggested that the MSC subpopulation was atop the
differentiation hierarchy with branches toward the pre-adipocyte,
pro-osteoblast, and pro-chondrocyte endpoints. PBA was utilized
as an independent methodology to resolve each of the three
lineages’ average transcriptional trajectory and order genes based
on their expression pattern along those trajectories.

Utilizing a negative selection approach, Baryawno et al.
(2019) profiled 20,896 bone marrow Lin- cells and identified
17 clusters originating from bone and bone marrow, including
endothelial cells, MSCs, osteolineage cells, chondrocytes,
fibroblasts, and pericytes. Multiple methods were utilized to
resolve differentiation relationships between the populations,
including the correlation of expression profiles between clusters
and diffusion map analyses. The clusters’ connectivity was
evaluated with partition-based graph abstraction (PAGA)
that generates a graph-like map of data maintaining both its
continuous and disconnected structure. Three endothelial
clusters were identified, spanning a transcriptional continuum
from Flt4 + sinusoidal to Ly6a + arteriolar sub-populations.
The latter additionally had a sub-population of cells from
endosteal and bone marrow arteries, marked by expression
of Vwf and Kitl. Mesenchymal cells, classified based on the
expression of Lepr and Cxcl12, were further divided into four
subsets with varying levels of expression of those markers.
One was characterized by osteo-lineage markers Sp7 and Alpl,
indicating differentiation toward that lineage. This relationship
was further profiled by analyzing the two osteolineage
clusters, one covering a range of differentiation states and a
transcriptionally distinct subset of mostly cells from the bone
fraction. An additional distinct subpopulation of perivascular
mesenchymal stromal cells and pericytes was identified with low
levels of Lepr but high levels of Nes and NG2 (Cspg4) as well as
pericytes markers Acta2, Myh11, and Mcam.

Baccin et al. (2020) combined single-cell with spatially
resolved transcriptomics. To compensate for the highly variable
abundance of cell types within the bone marrow, undigested
bone marrow or enzymatically digested bones were depleted
or enriched for populations of interest. The final dataset
included 7,497 cells grouped into 32 clusters. The total bone
marrow yielded hematopoietic populations. Those populations’
depletion resulted in primarily erythroid progenitors with low
expression of Cd45 and 2% non-hematopoietic cells. These rare
populations were captured by depleting cells expressing CD45
or an erythroid marker CD71. The identified non-hematopoietic
populations included Schwann cells, smooth muscle cells,
myofibroblasts, Pdgfra+mesenchymal cells, and endothelial cells.
The endothelial subset was split into arterial and sinusoidal
cells. The mesenchymal subset comprised nine sub-populations,

including chondrocytes, osteoblasts, three fibroblast clusters,
Ng2+Nestin+ MSCs, and two populations similar to Cxcl12-
abundant reticular (CAR) cells. The two CAR sub-populations
differed primarily in their expression of adipocyte (Adipoq) and
osteo-lineage (Sp7, Bglap) genes. RNA velocity analysis of the
mesenchymal lineage cells assigned the Ng2+ MSCs atop the
differentiation hierarchy.

Baccin et al. (2020) additionally developed a laser-capture
microdissection protocol coupled with sequencing (LCM-seq) to
overcome spatial transcriptomic approaches that have not been
successful in the bone marrow due to dependence on high RNA
quality or unfixed tissue material. The method yielded full-length
transcriptomic data from bone marrow sections containing 200-
300 cells in a layer. LCM-seq was applied to 76 micro-dissected
regions from the diaphyseal bone marrow to localize the bone
marrow populations to endosteal, sinusoidal, arteriolar, and
non-vascular niches. The frequencies of scRNA-seq populations
within the spatially resolved transcriptomic data were estimated
with CIBERSORT to determine the bone marrow cell types’
localization to candidate niches. Osteoblasts and chondrocytes
localized to the endosteal niches. Arterial endothelial cells
and smooth muscle cells were found in the arteriolar niches.
Sinusoidal cells localized to the sinusoidal niches but were also
detected in the (sub)-endosteal niches. Adipo-CAR cells were
associated with high sinusoidal areas, but the Osteo-CAR cells
were found in arteriolar or non-vascular niches. Additionally,
to predict these cell types’ spatial relationships exclusively based
on scRNA-seq, the RNA-Magnet method was developed, taking
advantage of known cellular adhesion receptors and cognate
ligands. The inferred adhesiveness of the identified populations
to distinct niches correlated with the localization as measured
by spatial transcriptomics. RNA-Magnet was also applied to
signaling mediators, such as cytokines and growth factors,
expressed by all cells in the dataset. The analysis suggested
that the HSPCs were more likely to receive signals from
non-hematopoietic populations than the mature immune cells,
indicating a shift from mesenchymal to immune signaling. Both
Adipo-CAR and Osteo-CAR cells were the primary sources of
signals recognized by progenitor populations.

Zhong et al. (2020) performed additional profiling of
mesenchymal lineage cells in young, adult, and aging mice.
The study used a Col2-Cre mouse model as a strategy to
capture the most primitive mesenchymal lineage cells. 13,759
cells with a median of 2,686 detected genes were captured
from young (1-1.5-month-old) animals. Clustering analysis
identified 22 populations, of which 9 were mesenchymal,
11 hematopoietic, 1 endothelial, and 1 mural. The 7,585
mesenchymal linage cells contained osteoblast, osteocyte,
adipocyte, and chondrocyte populations as well as four
progenitor subsets. Early mesenchymal progenitors (EMPs)
were determined as the most primitive cells in the dataset based
on the expression of stemness markers Sca1, Cd34, and Thy1.
Intermediate mesenchymal progenitors and late mesenchymal
progenitors expressed progressively higher levels osteo-lineage
genes such as Sp7 and Col1a1. Differentiation trajectory inference
with Monocle placed EMPs at the terminal end of one of the
three branches, with terminally differentiated osteocytes and
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adipocytes at the other ends. Lineage committed progenitors
were placed at the point of bifurcation. Pseudotemporal
reconstruction was additionally performed with Slingshot,
which builds minimum spanning trees from clusters as
opposed to single cells with Monocle. UMAP cell embeddings
were used for trajectory inference, resulting in an analogous
branching structure.

INTEGRATED OVERVIEW OF THE BONE
MARROW NICHE DATASETS

The single-cell studies have been able to reveal extensive
heterogeneity in the populations thought to be homogeneous.
One of the challenges associated with the rapid flow of this

new information is an understanding of how the populations
described in these studies are related. Furthermore, inconsistent
nomenclature further complicates one’s ability to compare and
contrast the data. To address this gap, we reanalyzed the
five discussed scRNA-seq datasets combined (Table 1). We
calculated the cluster markers for the populations identified
within each dataset and performed hierarchical clustering
based on the scaled expression correlation distances of those
genes (Figure 1A). To better assess the heterogeneity of the
described populations and their transcriptional relationships,
we additionally performed a joint analysis of 32,743 cells
from the three datasets encompassing the most diverse subsets.
Using the Seurat anchor-based data integration pipeline (Stuart
et al., 2019), we were able to overlay them and visualize
the populations using a consistent representation (Figure 1B).

FIGURE 1 | Integrated analysis of the bone marrow niche datasets. (A) Hierarchical clustering of the populations profiled in the discussed studies based on the
scaled expression correlation distances of cluster marker genes. (B) UMAP visualization of all 32,743 cells from the integrated analysis, color-coded based on the
harmonized population labels. (C) UMAP visualization of each of the datasets, color-coded based on the original population labels. Cells from the non-represented
datasets are shown in light gray.
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Despite distinct sample preparation strategies (enzyme cocktails,
digestion time, sorting and sorting strategies), assayed fraction
(bone marrow or a combination of bone marrow and bone),
and computational analysis approaches (summarized in Table 2),
the findings are largely in agreement among the experiments
carried out by independent groups. Expectantly, the relative
abundances of various subpopulations fluctuated across the
datasets (Figure 1C). For example, Baryawno dataset contained
a large fraction of chondrocytes and fibroblasts, whereas Baccin
subset uniquely captured myofibroblasts and Schwann cells.

Based on the expression patterns of cluster markers and
visualization of integrated datasets, we harmonized the various
sub-populations identified in the original studies using a
consistent nomenclature (Figure 1B). Bone marrow vascular ECs
were represented by sinusoidal (blue) and arteriolar (orange). By
sampling a higher number of cells, Baryawno et al. identified an
additional smaller sub-population of cells from endosteal and
bone marrow arteries (dark orange). The mesenchymal stem
cells give rise to a diverse range of cells such as adipocytes,
osteoblasts, and chondrocytes. Previous studies took advantage
of either Cxcl12 or Lepr to isolate perivascular cells, but the extent
of the overlap of the two populations was not clear. The scRNA-
seq work revealed a broad transcriptional heterogeneity within
these subsets. Bone marrow mesenchymal progenitors split
into adipo-MSPCs (red) and osteo-MS (brown). Adipogenesis-
primed mesenchymal cells were characterized by high expression
of both Lepr and Cxcl12. These key markers were gradually
decreased as the cells progressed toward osteogenesis-primed

subpopulations. Osteoblasts (olive), chondrocytes (cyan) and a
variety of fibroblast populations (gray) were represented across
different dataset. Single cell studies are limited by the efficiency of
digestion protocols and rare populations may not be sufficiently
sampled. A more granular deconvolution of smaller bone subsets
will require focused functional studies. To resolve transcriptional
relationships between distinctly labeled clusters, the readers can
refer to Figure 1A. To confirm that the gene expression of the
integrated dataset corresponded to the populations identified in
the individual studies, we assessed most differentially expressed
marker genes (Figures 2A,B) and mapped expression patters of
key pro-hematopoietic factors in the bone (Figure 2C). Indeed,
we found the expression of Cxcl12 and Kitl to be enriched
in adipo-MSCPs progenitors and arteriolar ECs, while Il7 and
Il34 were expressed primarily in adipo-MSPCs (Figure 2C).
Collectively, our brief survey highlights a concordance between
five different bone marrow niche single-cell datasets and resolves
inconsistent nomenclature offered by distinct scientific groups.

ZOOMING INTO THE VASCULAR NICHES

Vascular ECs comprise a highly organized network throughout
the body, facilitating the distribution of oxygen and nutrients.
In addition to their delivery function, ECs enable immune cell
trafficking allowing for cell migration and immune surveillance.
Vascular ECs display tissue-specific morphology and have
been shown in some cases to carry organ-specific functions.

TABLE 2 | Computational approaches utilized by scRNA-seq studies profiling the bone marrow.

Operation Tool/Algorithm Description

Normalization, batch
correction, clustering

Seurat (Butler et al., 2018; Stuart
et al., 2019)

An R package for quality filtering, normalization, dimensionality reduction, and visualization of scRNA-seq
data. It additionally includes a method for integrated analysis of multiple datasets by identifying pairwise
correspondences between single cells across those datasets.

Visualization t-SNE (van der Maaten and
Hinton, 2008)

Non-linear dimensionality reduction technique based on Student-t distribution for converting data in a
high-dimensional space to a low-dimensional one while avoiding overcrowding.

SPRING (Weinreb et al., 2018a) Force-directed graph layout for visualizing continuous topologies that generates a graph of nodes
representing cells connected to their nearest neighbors in high-dimensional gene expression space.

UMAP (Becht et al., 2018;
McInnes et al., 2018)

Approximates a manifold and a constructs its fuzzy topological representation with the goal of preserving
more of the global structure.

Pseudotime or
trajectory inference

DPT/Destiny (Haghverdi et al.,
2015; Angerer et al., 2016)

Uses diffusion maps to identify the low-dimensional structure, then identifies a pseudotime metric based
on transition probabilities of differentiating toward various cell fates.

Monocle (Trapnell et al., 2014;
Qiu et al., 2017)

Constructs a minimum-spanning tree (MST) through the dimension-reduced space created by
independent component analysis. Cells are ordered along the longest path through the MST. Monocle
was later modified to use DDRTree for dimensionality reduction and ordering.

PAGA (Wolf et al., 2019) A partition-based graph abstraction tool that provides a coarse-grained representation by placing edges
between cluster nodes with similar cells. Unlike many trajectory inference methods, it is able to account
for disconnected topologies.

PBA (Tusi et al., 2018; Weinreb
et al., 2018b)

Uses nearest neighbor graph cell densities to predict fate probabilities and the direction of differentiation.

Slingshot (Street et al., 2018) Uses a cluster-based MST to identify the lineages and where they branch, then uses simultaneous
principal curves to fit a smooth representations of each lineage.

STEMNET (Velten et al., 2017) Uses hierarchical clustering to define the most differentiated cell populations and then uses those
populations as a training set for classifying priming in the less mature populations.

Velocity Velocyto (La Manno et al., 2018) Predicts the future state of single cells based on the relative abundance of unspliced precursor and
spliced mature mRNA.

Cell-cell interactions RNA-Magnet (Baccin et al., 2020) Estimates the likelihood of physical interactions between single cells based on the expression of
cell-surface receptors and their binding partners.
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FIGURE 2 | Expression patterns of marker genes and pro-hematopoietic factors. (A) Relative expression levels of the markers of the combined clusters within the
populations defined in the original studies. (B) Expression levels of population marker genes Cdh5 (ECs), Lepr (perivascular cells), Myh11 (pericytes/smooth muscle),
Plp1 (Schwann cells) overlaid on the UMAP. (C) Expression levels of pro-hematopoietic factors Cxcl12, Kitl, Il7, and Il34 overlaid on the UMAP.

Blood-brain barrier and kidney glomeruli vasculature have been
areas of active research, but the specifics of vascular cells in other
tissues are less understood. High-throughput transcriptional
profiling studies compared molecular architecture of ECs across
various organs, revealing a marked transcriptional heterogeneity
(Chi et al., 2003; Nolan et al., 2013). In addition to variability
driven by tissues, each organ contains several vessel types,
including arteries, veins, and capillaries. Recent single-cell RNA-
seq analysis of > 32,000 ECs isolated from 11 different mouse
tissues at the steady-state showed that vascular heterogeneity is
largely dictated by the anatomical location of ECs rather than
the vessel type (Kalucka et al., 2020), suggesting tissues-mediated
molding of the vasculature and tissues specific functions.

In the bone marrow, ECs serve multiple roles, including
HSC maintenance and leukocyte trafficking. Highly branched
sinusoidal capillaries (SECs) carry venous blood and make up
the vast majority of vascular cells. Arteriole vessels (AECs) carry
arterial blood into the bone, have few branches, and constitute
around ∼10% of the total bone marrow vasculature (Xu et al.,
2018; Tikhonova et al., 2019). Here, we specifically focused on
the vascular subset from the combined single-cell bone marrow
niche datasets (Figure 3A). We calculated module scores for ECs
based on the sinusoidal and arterial gene expression signatures
obtained from the bulk tissue analysis (Xu et al., 2018) and found
that 67.3% of cells were enriched for sinusoidal and 23.5% for the
arterial signatures (Figure 3B). To further confirm the identity
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FIGURE 3 | Analysis of the EC subset. (A) UMAP visualization of 10,578 ECs from the integrated analysis, color-coded based on the harmonized population labels.
(B) Module scores for sinusoidal and arterial gene signatures overlaid on the UMAP. Dashed outline highlights the population not enriched for sinusoidal or arterial
signatures. Expression of sinusoidal (C) and arteriolar (D) marker genes as well as adhesion molecules (E) overlaid on the UMAP representation. (F) Expression of
transitional H vessel cell-surface markers within the populations defined by sinusoidal and arterial EC signatures. (G) Expression of marker genes within the
populations defined by sinusoidal and arterial EC signatures.
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of the cells, we assessed the expression levels of population
marker genes and found Flt4, Tfpi, Stab2, and Vcam1 to be
highly specific to sinusoids (Figure 3C) and Cxl12, Kitl, Gja4,
Vegfc to arterioles (Figure 3D). Previous studies indicated that
sinusoids and arterioles possess different permeability properties
(Itkin et al., 2016). Notably, hematopoietic stem cell adhesion,
rolling and trans-endothelial events were reported exclusively
in SECs (Itkin et al., 2016). Indeed, sinusoids are enriched for
expression of adhesion molecules such as E-selectin (Sele), Vcam-
1 (Vcam1), ICAM-1 (Icam1), while arterioles expressed ICAM-2
(Icam2) (Figure 3E), consistent with the idea of differential trans-
endothelial migration. It is not clear if all sinusoids can support
trans-endothelial migration and it is tempting to speculate
that there might be specialized sinusoid subtypes facilitating
leukocyte trafficking.

Within the bone marrow, transitional zone vessels connect
bone marrow sinusoids and arterioles. Based on the cell-surface
marker expression and phenotypic characteristics, Kasumbe
et al. identified two subtypes of SECs: CD31lowEMCNlow

L-vessels form highly branched capillary networks throughout
the bone marrow and represent the majority of the SECs.
CD31highEMCNhigh H-vessels were found in the metaphysis,
organized as vessel columns, and in transitional zones bridging
arterioles with the sinusoids (Kusumbe et al., 2014). H-vessels
are of a substantial clinical interest, as they were shown to
regulate osteogenesis (Kusumbe et al., 2014, 2016; Ramasamy
et al., 2014). We were not able to clearly identify transitional
vessels with our own transcriptional dataset (Tikhonova et al.,
2019). However, exploring the combined analysis based on the
three studies allowed us to pinpoint a subset of ECs that were
not enriched for either arterial or sinusoidal signatures. Further
examination revealed that these transition cells expressed higher
levels of Emcn and Cd31 compared to sinusoids, suggesting
that they might represent transitional H vessels (Figure 3F).
We found this population to be enriched for arterial-associated
genes Cd34 and Ly6c1 but also express unique markers such
as Cotl1 and Sox4 (Figure 3G). Collectively, this integrated
analysis allows for deeper exploration of BM EC heterogeneity.
Although transitional EC population was not clearly revealed by
each individual analysis, combining the datasets allowed for their
further exploration, underscoring the utility of publicly available
data to the community.

A recent study reports even further specification among bone
marrow SECs. Chen and Liu et al. demonstrated that Apelin+
(Apln) bone marrow ECs control vascular regeneration following
irradiation-induced vascular damage. These specialized SECs
make up approximately 0.03% of the total bone marrow and
are located in the metaphysis, endosteum, and the transition
area between the metaphysis and diaphysis. Bulk RNA-seq of
Apln+ cells revealed an enrichment of pathways related to
angiogenesis and vascular endothelial growth factor (VEGF)
signaling. Importantly, irradiation triggers the expansion of
Apln+ ECs and vascular regeneration. Spatial organization of
hematopoietic differentiation is another open question. Elegant
work by Zhang et al. revealed that following acute systemic
infection, monocyte–dendritic cell progenitors localize to a
subset of blood vessels expressing colony-stimulating factor 1
(Csf1), known to be a key regulator of myelopoiesis. Indeed,

EC-specific deletion of Csf1, results in a loss of non-classical
monocytes and dendritic cells during steady-state and following
infection (Zhang et al., 2021). It remains to be elucidated
if specialized ECs also support progenitors of lymphoid and
erythroid lineages. Further mining of single-cell bone marrow
niche datasets, single-cell sequencing of ECs following stress
scenarios, combined with receptor-ligand interaction analysis
(Browaeys et al., 2019; Cabello-Aguilar et al., 2020; Efremova
et al., 2020) and clever functional studies will reveal further
specialization of vascular ECs.

The precise identity of the vascular cells that support
HSCs continues to be debated. Combining computational
modeling with whole-mount confocal immunofluorescence
imaging techniques, Kunisaki et al. found quiescent HSCs to be
closely associated with AECs (Kunisaki et al., 2013). Optically
clearing studies of the bone marrow, that allowed to perform
deep confocal imaging, demonstrate that independently of their
cycling status, approximately 80% of HSCs are closely associated
with SECs, with another 10% of HSCs being adjacent to AECs,
and 10% being adjacent to transition zone vessels (Acar et al.,
2015). In contrast, Kunisaki et al., using whole-mount confocal
immunofluorescence imaging, showed that quiescent HSCs
associate specifically with small arterioles that are preferentially
found in endosteal bone marrow. Furthermore, Itkin et al.
demonstrated that arterioles maintain hematopoietic stem cells
in a low reactive species oxygen state (Itkin et al., 2016),
perpetuating the debate regarding the precise identity of vascular
cells that support quiescent HSCs. Just as novel technologies
have been driving forward our understanding of hematopoietic
differentiation, further advances combining multi-modal single-
cell approaches, such as pairing gene expression data with spatial
tissue context, and in vivo imaging will shape our understanding
of hematopoietic cell interactions with their niches and resolve
standing questions.

CONCLUSION

In a span of less than two years, our understanding
of the hematopoietic differentiation and bone marrow
microenvironment has made a major leap forward. Despite
these advances, key questions remain unanswered (Tikhonova
et al., 2020). For example, cellular identity of the bone marrow
mesenchymal stem cells remains to be elucidated. Despite highly
comparable data, pseudo-temporal ordering revealed conflicting
differential MSPC hierarchies and led to distinct conclusions.
We believe that scRNA-seq analyses are able to guide our
understanding of MSPC biology and their exploration can
inspire creativity in our scientific inquiry. However, they cannot
replace functional experiments required to answer complex
biological questions.

Single-cell profiling of hematopoietic hierarchy highlighted
a fluidic nature of differentiation. Although we understand
some of the intrinsic signals implementing these decisions, we
do not yet grasp which extrinsic factors mediate hematopoietic
differentiation. We speculate that specific temporospatial
combinations of bone marrow niche signals guide hematopoietic
progenitors toward gradual commitment to a lineage choice.
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Novel computational approaches and genetic strategies are
required to connect these dots.
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