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Deciphering the functional impact of genetic variation is required to understand
phenotypic diversity and the molecular mechanisms of inherited disease and cancer.
While millions of genetic variants are now mapped in genome sequencing projects,
distinguishing functional variants remains a major challenge. Protein-coding variation
can be interpreted using post-translational modification (PTM) sites that are core
components of cellular signaling networks controlling molecular processes and
pathways. ActiveDriverDB is an interactive proteo-genomics database that uses more
than 260,000 experimentally detected PTM sites to predict the functional impact of
genetic variation in disease, cancer and the human population. Using machine learning
tools, we prioritize proteins and pathways with enriched PTM-specific amino acid
substitutions that potentially rewire signaling networks via induced or disrupted short
linear motifs of kinase binding. We then map these effects to site-specific protein
interaction networks and drug targets. In the 2021 update, we increased the PTM
datasets by nearly 50%, included glycosylation, sumoylation and succinylation as new
types of PTMs, and updated the workflows to interpret inherited disease mutations. We
added a recent phosphoproteomics dataset reflecting the cellular response to SARS-
CoV-2 to predict the impact of human genetic variation on COVID-19 infection and
disease course. Overall, we estimate that 16-21% of known amino acid substitutions
affect PTM sites among pathogenic disease mutations, somatic mutations in cancer
genomes and germline variants in the human population. These data underline the
potential of interpreting genetic variation through the lens of PTMs and signaling
networks. The open-source database is freely available at www.ActiveDriverDB.org.

Keywords: post-translational modifications (PTM), genome variation, disease genes, cancer drivers, cell
signaling, protein interaction networks, databases
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INTRODUCTION

Genome-wide sequencing and association studies are rapidly
increasing the catalog of human genetic variation such as
single-nucleotide variants (SNVs) responsible for phenotypic
traits and disease risks (Claussnitzer et al., 2020; Karczewski
et al., 2020; The 1000 Genomes Project Consortium, 2015).
Sequencing of cancer genomes reveals a complex landscape
of somatic variation where a minority of driver mutations
enable the oncogenic properties of cells by altering the
activity of cancer genes and molecular pathways (Bailey et al.,
2018; ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium., 2020; Reyna et al., 2020). Extensive somatic
variation found in healthy cells in normal tissues (Blokzijl
et al., 2016; Martincorena et al., 2015) adds another dimension
of genetic complexity and suggests that populations of cells
with distinct genetic makeups are present in every individual.
Characterizing the implications of genome variation to cellular
and physiological function and disease pathogenesis remains a
difficult computational and experimental challenge (Gonzalez-
Perez et al., 2013; MacArthur et al., 2014).

Post-translational modifications (PTMs) are core components
of signaling networks that expand the functional range of
proteins by controlling protein activation, degradation, and
protein–protein interactions. PTMs are chemical or polypeptide
modifications of amino acids that act as molecular switches.
Various enzymes add or remove modifications on substrate
proteins or read the modified sites to carry out cellular programs
(Pawson, 1995). Signaling networks of PTMs are a major focus
of therapy development (Gharwan and Groninger, 2016; Hoeller
and Dikic, 2009; Jones et al., 2016). Phosphorylation, acetylation,
methylation, and ubiquitination are among the most commonly
occurring PTMs in human cells whereas hundreds of classes
of PTMs are known (Mann and Jensen, 2003; Montecchi-
Palazzi et al., 2008). These PTMs are now routinely mapped
using high-throughput techniques and consequently, large public
datasets for human proteins are available. Major databases such
as PhosphoSitePlus (Hornbeck et al., 2015), UniProt (UniProt
Consortium, 2019) and others maintain consistently updated
collections of PTM sites derived from high-throughput and
focused experimental studies.

PTM sites in human proteins are known to be enriched in
somatic driver mutations in cancer genomes (Creixell et al., 2015;
Radivojac et al., 2008; Reimand and Bader, 2013; Reimand et al.,
2013; Wang et al., 2015) and germline variants implicated in
the pathogenesis of human diseases and cancer predisposition
(Huang et al., 2018; Li et al., 2010; Reimand et al., 2015). In
contrast, PTM sites are depleted of genetic variation in the general
human population, indicating the functional importance of
conserved PTM signaling and the role of evolutionary constraint
(Li et al., 2010; Reimand et al., 2015). Thus, integrative analyses
of genetic variation using PTMs is likely to contribute to our
understanding of molecular and genetic mechanisms. Besides the
amino acid substitutions replacing the central modified residue
of a PTM site, a larger class of substitutions affects PTMs by
altering the short linear motifs recognized by kinases and other
enzymes (Creixell et al., 2015; Reimand et al., 2013; Wagih

et al., 2015). For example, the sequence motifs targeted by the
ubiquitination system and controlling the degradation of cancer
driver proteins are commonly affected by somatic mutations
(Martínez-Jiménez et al., 2020; Narayan et al., 2016). As a
canonical example of PTM-associated cancer driver mutations,
substitutions in the N-terminal phosphosites of the oncogene
beta-catenin (CTNNB1) stabilize the protein by disrupting
phosphorylation-dependent ubiquitylation (Morin et al., 1997),
causing downstream activation of the Wnt pathway and resulting
in oncogenesis in diverse cancer types. In a recent study,
hotspot somatic substitutions in the splicing factor 3B subunit
1 (SF3B1) at the ubiquitinated residue K700 were shown to
abolish ubiquitylation, disrupt its mRNA interactions and cause
altered splicing of a subset of transcripts (Zhang et al., 2019),
consistent with our earlier analysis (Narayan et al., 2016). As
proteomic and genetic datasets grow rapidly, systematic analyses
and data resources allow researchers to study potential disease
mechanisms involving genetic variation in signaling networks.

We developed the ActiveDriverDB database (www.
ActiveDriverDB.org) to facilitate integrative analyses of human
genetic variation and PTM sites. We present a major update to
our original publication (Krassowski et al., 2017) that includes
additional genomic and proteomic datasets, new types of PTMs
and improved workflows. We included a phosphoproteomics
dataset of SARS-CoV-2 response (Bouhaddou et al., 2020) to
enhance integrative analyses of human population variation
and infection-specific PTMs. This article describes the major
workflows of our database and reviews the recent updates.

RESULTS

The ActiveDriverDB Server
ActiveDriverDB is a web-based database for interpreting protein-
coding variation in human genomes using PTM sites (Figure 1).
Our leading hypothesis is that amino acid substitutions caused
by SNVs in PTM sites can alter signaling networks by creating,
altering, and disrupting the sites. Genetic variation of PTM sites
can affect modification and downstream signaling directly by
substituting the modified residue or indirectly by modifying the
consensus binding sequences (i.e., short linear motifs) located in
the flanking sequences of post-translationally modified residues.
Thus, an integrated analysis of PTM sites and genetic variation
can evaluate the functional impact of variants and lead to
mechanistic insights.

To address this hypothesis, we collected more than quarter
of a million unique, experimentally detected PTM sites in
the human proteome using the powerful resources available
in the public databases PhosphoSitePlus (Hornbeck et al.,
2015), UniProt (UniProt Consortium, 2019), Phospho.ELM
(Dinkel et al., 2011), and HPRD (Keshava Prasad et al., 2009;
Figures 1A, 2A,B). ActiveDriverDB covers seven major types
of PTMs with the largest sets of experimental data available for
the human proteome. These include 149,299 phosphorylation
sites (57%), 87,852 ubiquitination sites (34%), 12,380 methylation
sites (4.7%), 11,394 acetylation sites (4.4%), and three types of
PTM sites added in the 2021 update of the database: 6,081
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FIGURE 1 | Outline of ActiveDriverDB. ActiveDriverDB is an interactive proteo-genomics database for interpreting human genetic variation using post-translational
modification (PTM) sites. (A,B) The database integrates PTM sites from experimental studies collected from proteomics databases with amino acid substitutions
from genome sequencing projects and curated databeses of disease mutations. (C) In the Sequence View, substitutions in PTM sites are classified based on their
functional impact as direct (at a PTM residue), proximal or distal (within 1–2 or 3–7 positions of a PTM residue), or network-rewiring. (D) Network-rewiring
substitutions at PTM sites are predicted to disrupt short linear motifs or create new motifs bound by kinases and other enzymes. (E) In the Network View, proteins
and PTM sites are visualized with their interactions with PTM enzymes (e. g., kinases) and the known drugs targeting the enzymes. (F) The database also provides
prioritized lists of genes and pathways, comprehensive data visualizations and an application user interface (API) for analysing custom variant datasets using
computational pipelines.

glycosylation sites (2.3%), 8,049 sumoylation sites (3.1%), and
203 succinylation sites (0.08%). The 261,348 unique PTM sites
occur in proteins encoded by 15,570 genes (i.e., 82% of protein-
coding genes). Different types of PTMs are known to act in
concert in important cellular processes (Dantuma and van
Attikum, 2016). Consistently, a fraction of mutated PTM sites
(5.5%) is affected by multiple types of PTMs, suggesting that
such complex signaling activities may be altered through amino
acid substitutions. In this article, we summarize the counts
of PTM sites and substitutions in canonical protein isoforms
for individual genes, however, our database includes all high-
confidence protein isoforms with 552,068 PTM sites. These data
show the extent of PTMs in the human proteome and underline
their value in interpreting protein-coding genome variation
using our database.

We analyzed human genetic variation datasets of three classes
using flanking sequences of seven amino acids on both sides of
the post-translationally modified residue (Figures 1B, 2A,B).
First, we integrated the ClinVar catalog of inherited disease
mutations (Landrum et al., 2020) with 237,930 unique
amino acid substitutions, of which 65,162 (27%) affected
PTM sites. We prioritized 28,976 substitutions classified as
pathogenic or likely pathogenic in ClinVar and found that

6,913 (24%) of these affected PTM sites. When considering
the entire ClinVar dataset of disease-associated substitutions,
22% occurred in PTM sites (65,162/237,930). Second, we
integrated somatic genome variation of human cancers of
nearly 40 types, including the Cancer Genome Atlas (TCGA)
PanCanAtlas dataset with ∼10,000 cancer exomes (Ellrott
et al., 2018), as well as the ICGC/TCGA Pan-Cancer Analysis
of Whole Genomes (PCAWG) dataset with ∼2,500 whole
cancer genomes (ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium., 2020) added in the 2021 update of our
database. This resulted in a total of 889,792 unique amino acid
substitutions, of which 179,470 (20%) affected PTM sites. Third,
we integrated two datasets of genome variation in the human
population, the 1000 Genomes Project (The 1000 Genomes
Project Consortium, 2015) and ESP6500 (Tennessen et al., 2012)
with a total of 1,047,196 unique amino acid substitutions, of
which 217,932 (21%) affected PTM sites. Together, these genetic
maps include 2,049,883 unique amino acid substitutions of
which 436,192 (21%) are predicted to affect PTM sites. Our
variant impact predictions show the strongest effects on a subset
of substitutions in PTM sites: 37,186 (8.5%) substitutions replace
the central PTM residue and therefore likely to abolish PTMs, and
35,136 (8.1%) are predicted to create or disrupt kinase-binding
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FIGURE 2 | PTM sites and mutations in ActiveDriverDB. (A) Summary of genetic variants (i.e., amino acid substitutions) affecting PTM sites in the database. Eight
types of PTM sites are shown as horizontal stacked bar plots (left to right) with five genome variation data-stes (top to bottom): interited disease mutations (*ClinVar:
only pathogenic and likely pathogenic variants), somatic cancer mutations (TCGA, PCAWG) and human population variation (1000 Genomes, ESP6500). Colors
indicate the predicted impact of substitution on PTM sites. Total numbers of unique PTM-associated substitutions in consensus protein isoforms are shown. (B) Bar
plot shows counts of PTM sites and relatedd substitutions in ActiveDriverDB. The current and previous versions of the database are compared. (C) Allele frequency
of substitutions in the human population (1000 Genomes) affecting the phosphosites modulated by the SARC-CoV-2 infection in Vero E6 cells. Population cohorts
are shown in colors (AFR, African; Admixed American; EAS, East Asian; EUR, European; SAS, South Asian). (D) Top genes with PTM-related substitutions in all PTM
sites in inheried disease and cancer, genes with glycosylation and sumoylation-associated subtitutions, and top genes in the human population with
SARS-CoV-2-specific phosphosites affected by substitutions. Colors indicate the predicted impact of substitutions on PTM sites. Genes were prioritized using
ActiveDriver (FDR < 0.05), except for the rightmost group where unique substitution counts were used.

motifs by substituting important amino acid residues within
seven positions of PTM sites (Wagih et al., 2015). The majority of
substitutions are classified as proximal (30%) or distal (53%) and
are located at 1–2 or 3–7 positions from the nearest PTM site,
respectively (Figure 3A). Most proximal and distal substitutions
cannot be interpreted reliably in the context of known kinase-
binding motifs; however, these may affect uncharacterized
sequence motifs of phosphorylation and other PTM types or
cause smaller alterations of sequence motifs (Figures 3B,C).
The genomic variation of amino acid substitutions in PTM sites
provides a wealth of novel hypotheses for further computational

and experimental studies to understand genotype–phenotype
associations and PTM function.

The Sequence View
The first major workflow of ActiveDriverDB starts with a gene
ID of interest provided by the user. The database displays an
interactive color-coded overview of the protein sequence where
the amino acid substitutions are annotated with respect to their
impact on PTM sites and their frequency in the genetic dataset
(Figure 1C). The user may choose to focus on cancer genomes,
inherited diseases, or genome variation in the human population.
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FIGURE 3 | Putative impact of adjacent and distal PTM-flanking residues on kinase binding motifs. (A) Histogram of substitutions in PTM sites relative to the
distance to the closest modified residues. (B) Enrichments of amino acids in the 125 kinase binding site models of position weight matrices (PWMs). Each point
represents a position in the consensus binding sequence (short linear motif) of a specific kinase. For each flanking position in the motif (X-axis), the amino acid with
the highest enrichment relative to its proteome-wide distribution is shown on the Y-axis, indicating the potential impact of sustitutions at these positions. Kinases with
amino acids showing at least eight-fold enrichment at the furthest flanking positions (6th, 7th) are labelled. (C) Examples of kinases with enrichments at the 6th and
7th flanking positions of PTM sites. PWM logos show the prevalence of specific amino acids (Y-axis) at the flanking positions (X-axis). Asterisks show the furthest
flanking positions from panel A.

The data can be filter based on the disease subtype, type of
PTM or the annotations of genetic variants. Four categories
are used to classify the PTM-specific impacts of substitutions.
Direct mutations substitute a central, modified residue of a PTM
site with another non-modifiable amino acid residue that will
likely disrupt PTMs at the site. Proximal and distal mutations
induce a substitution within 1–2 or 3–7 residues, respectively,
from the closest PTM site. For a subset of distal and proximal
mutations, we predict that the substitutions have a plausible
network-rewiring effect since they disrupt an existing short linear
motif of a known kinase or other PTM enzyme (i.e., motif loss)
or create a new sequence motif (i.e., motif gain) in the flanking
sequence of the PTM site (Figures 1D, 2A). Network-rewiring
mutations are predicted using the MIMP method that uses a
machine-learning framework of Gaussian mixture models and
Bayesian posterior probability estimation to quantify the impact
of substitutions on short linear motifs (Wagih et al., 2015).
The Sequence View also displays a table of mutations and their
impact on PTM sites, information on protein domains (Finn
et al., 2017), evolutionary conservation (Pollard et al., 2010) and

disorder (Ward et al., 2004), and hyperlinks to external databases.
This view allows researchers to construct experimentally testable
hypotheses of variant function and associations with phenotypes
and disease.

The Network View
The second major workflow starts from a gene of interest in
a protein–protein interaction network. The network shows
the protein as the central node (i.e., the substrate) and
all kinases and other PTM enzymes targeting the protein
are shown as peripheral nodes. Approved drugs targeting
these PTM enzymes, derived from the DrugBank database
(Wishart et al., 2018), are displayed via secondary peripheral
interactions of the network. The Network View focuses on
enzyme–substrate interactions that occur at individual PTM
sites and provides predictions of substitutions causing gains
and losses of these interactions through altered sequence
motifs, derived from the MIMP method (Wagih et al.,
2015). Two types of networks are provided. First, the high-
confidence experimental networks only include experimentally
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validated enzyme–substrate interactions at specific PTM sites
collected from databases and previous studies (Hornbeck
et al., 2015; Reimand and Bader, 2013; UniProt Consortium,
2019; Wagih et al., 2015). The lenient MIMP-predicted
networks include computationally predicted interactions at
confirmed PTM sites based on the presence of known kinase
binding motifs or de novo motifs induced by amino acid
substitutions (Wagih et al., 2015). This systems-levels overview
of PTM-associated mutations helps predict their impact on
downstream signaling networks and discover potential avenues
for experimental modulation.

Gene and Pathway Prioritization
We statistically analyzed PTM sites and amino acid substitutions
to nominate statistically significant cancer driver genes, inherited
disease genes, and molecular pathways with enrichments of
PTM-associated substitutions (FDR < 0.05), using methods
we developed previously (Paczkowska et al., 2020; Reimand
and Bader, 2013). The database includes top-ranking genes
with frequent PTM-associated mutations in inherited disease
and multiple types of cancer (Figure 2D). The genes were
prioritized using the ActiveDriver method that uses a Poisson
statistical model to identify significant over-representations of
substitutions at the PTM sites of individual proteins (Reimand
and Bader, 2013). For pathway prioritization, genes with enriched
substitutions in PTM sites were collapsed into enriched Gene
Ontology terms and Reactome molecular pathways using the
ActivePathways data fusion method (Paczkowska et al., 2020).
Lists of genes and pathways were derived for the combined
set of all PTMs, and also separately for each PTM type. To
prioritize genes involved in inherited disease, we focused on the
mutations with pathogenic or likely pathogenic effects. Gene and
pathway prioritization allows researchers to find individual genes
and groups of functionally related genes with PTM-associated
disease mutations.

Searching, Data Downloads, and Automated Analysis
ActiveDriverDB can be queried interactively and included in
automated pipelines. The most common approach is to search
the database interactively using a gene symbol or RefSeq ID
(e.g., TP53 or NM_000345), or a specific amino acid substitution
or a SNV in the GRCh37 version of the human genome
(e.g., IDH1 R132H or chr2 209113112 G A). The database can
be queried using names of molecular pathways (e.g., R-HSA-
1640170 or Cell Cycle) or diseases (e.g., Noonan syndrome) and
all genes with such annotations are retrieved. Users can upload a
dataset of genetic variants from their experiments to a password-
protected area of the database and analyze their data interactively.
The upload form supports protein and DNA coordinates of
genetic variants. ActiveDriverDB can be used computationally
via an Application User Interface (API) of the Representational
State Transfer (REST) pattern that provides automated tools to
annotate genetic datasets using PTM information. The datasets
used in the database are also available for bulk downloads. In
this update, we have improved the annotations of PTM sites
by adding names of source databases, several classes of protein
IDs and flanking sequences of PTM sites. PubMed IDs are

available for a subset of sites. The downloadable datasets include
PTM sites, PTM-associated substitutions, site-specific enzyme–
substrate interaction networks, protein sequences, and disorder
predictions. We also provide interactive charts displaying the
counts of PTM sites and associated substitutions in the database.

Genetic Variation in Phosphorylation
Sites Induced by SARS-CoV-2 Infection
To enable detailed studies of the cellular changes induced
by SARS-CoV-2 infection, we incorporated a recent dataset
that quantified the proteome-wide phosphorylation changes
in response to SARS-CoV-2 infection in Vero E6 cells of
green monkeys (Chlorocebus sabaeus) (Bouhaddou et al.,
2020). We integrated 1,530 unique SARS-CoV-2 modulated
phosphosites in proteins encoded by 949 genes that were
detected with significant phosphorylation differences in
infected vs. control cells at the 24-hour post-infection
time point (FDR < 0.05 in infected cells; FDR > 0.05 in
controls). The majority of these phosphosites occur on
serine residues (88%) followed by threonines (11.3%) and
tyrosines (0.7%). We filtered a small subset of phosphosites
(1%) that mapped to non-phosphorylatable residues in
human proteins (i.e., other than S/T/Y) to avoid inclusion
of non-human phosphorylation sites and potential sequence
alignment artifacts. This dataset enables integrated analyses of
human genome variation, PTM sites and signaling networks
underlying the SARS-CoV-2 infection and the coronavirus
disease (COVID-19) pandemic.

We evaluated the extent of human genome variation
and known disease mutations affecting these phosphosites.
ActiveDriverDB includes 3,961 amino acid substitutions
affecting SARS-CoV-2-modulated phosphosites. These include
2,007 unique substitutions observed in the two human
population cohorts (1000 Genomes; ESP6500) and 1,615
unique substitutions detected in somatic cancer genome
sequencing projects (TCGA and PCAWG), and 39 unique
substitutions with pathogenic or likely pathogenic effects
documented in the ClinVar database (Figure 2A). We evaluated
the impact of these PTM-associated substitutions. A relatively
large fraction of substitutions (27%) were predicted to create
or disrupt kinase binding motifs according to MIMP (Wagih
et al., 2015). A minority of substitutions (5.1%) replaced the
phospho-residue with another residue, likely causing direct
disruptions of signaling. The remaining substitutions were
considered as proximal (17%) or distal (51%) relative to the
phosphosites. We also studied the allele frequencies of these
PTM-specific substitutions in the human population and found
that the majority of variants were of low frequency (i.e., less than
1%) in the 1000 Genomes Project dataset (The 1000 Genomes
Project Consortium, 2015), however dozens of variants were
more prevalent population-wide (Figure 2C). Of the most
variable proteins with respect to SARS-CoV-2-specific PTM sites,
two are related to alternative splicing (SRRM1, SRRM2) and
one to cell cycle regulation (MKI67) (Figure 2D). Interestingly,
altered SRRM2 phosphorylation has been also observed in
HIV-1 infection (Wojcechowskyj et al., 2013). Collectively,
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these data suggest that the variable cellular and physiological
responses to SARS-CoV-2 infection in humans may have a
genetic component that affects the PTM sites and signaling
networks that respond to viral infection. Further analysis and
experiments may lead to insights to disease mechanisms and
therapy options.

Interpreting Genetic Variation Through
Protein Glycosylation
Glycosylation is a type of PTM that involves the conjugation of
diverse glycan structures to proteins, in particular extracellular
components such as receptors and secreted proteins (reviewed
in Moremen et al., 2012; Reily et al., 2019). Glycosylation
modifications are conducted by approximately 700 enzymes
and multiple subtypes are known, whereas N- and O-linked
glycosylation are the most common subtypes. Glycosylation is
involved in the folding and quality control of proteins and
modulates protein function and protein–protein interactions.
Glycosylation of extracellular protein domains in cell–cell
signaling contributes to developmental processes and the
immune system (Moremen et al., 2012). Aberrant glycosylation
patterns, often linked to genetic abnormalities of specific
glycosylation enzymes, play important roles in autoimmune
diseases such as inflammatory bowel disease, diabetes mellitus,
systemic lupus, and congenital disorders of glycosylation (Reily
et al., 2019). In cancer, glycosylation is involved in the
pathways of metastasis, anti-apoptosis and therapy resistance,
and the PTM is also used in diagnostic and prognostic
biomarkers (Reily et al., 2019). The increasing availability of
comprehensive glycoproteomic datasets generated in human
samples (Chen et al., 2009; Liu et al., 2005; Wollscheid et al.,
2009) enhances the interpretation of disease genes and mutations
using this PTM type.

We collected 7,021 experimentally determined glycosylation
sites (including 6,081 unique sites) in proteins encoded by 1,683
genes from proteomics databases (Hornbeck et al., 2015; Keshava
Prasad et al., 2009; UniProt Consortium, 2019; Figure 2B).
These include the major subtypes of N-glycosylation (2,680
sites) and O-glycosylation (2,856 sites), a few S- and C-linked
glycosylation sites, and 1,437 glycosylation sites with no specified
subtype. Interestingly, a fraction of proteins (167 or 10%) has
glycosylation sites that co-occur with phosphorylation sites,
indicating crosstalk of the underlying signaling networks. In total,
we found 15,355 unique amino acid substitutions that affect
glycosylation sites, including 429 substitutions with pathogenic
or likely pathogenic effects in disease genes in the ClinVar
dataset and 6,364 somatic substitutions in cancer genomes
(Figure 2A). We selected the genes with most significant
glycosylation-associated mutations in cancer and inherited
disease using ActiveDriver (FDR < 0.05; top 10 genes shown)
(Figure 2D). In cancer genomes, frequent substitutions at
glycosylation sites are apparent in epidermal growth factor
receptors and oncogenes EGFR and ERBB3, as well as PAPPA, a
secreted protein involved in the activation of insulin-like growth
factor pathways (Lawrence et al., 1999). Germline mutations
with pathogenic or likely pathogenic effects at glycosylation
sites are associated with cardiomyopathies (MYH7), cancer

predisposition (CDH1), epilepsy (SCN1B), and others. These
examples showcase an integrative analysis of disease mutations
with protein glycosylation sites that may offer insights into
disease mechanisms.

Interpreting Genetic Variation Through
Protein Sumoylation
Sumoylation is a PTM that involves the reversible conjugation of
SUMO polypeptides (small ubiquitin-related modifiers SUMO1-
4) to consensus sequence sites in target proteins (reviewed in
Geiss-Friedlander and Melchior, 2007; Flotho and Melchior,
2013; Celen and Sahin, 2020). Sumoylation plays a key role
for the cellular response to stress, such as heat shock and
DNA damage (Enserink, 2015). In response to DNA damage,
sumoylation acts in concert with ubiquitylation events to
orchestrate the recruitment of repair proteins to DNA breaks
(Dantuma and van Attikum, 2016). A similar interplay of the
two modifiers is observed in hypoxic stress response (Cheng
et al., 2007). Sumoylation affects lysine residues primarily in
nuclear proteins and is thought to regulate protein activation,
inactivation and degradation, and protein–protein interactions.
Aberrant sumoylation is implicated in malignancies including
ovarian, lung, breast, and prostate cancer (Celen and Sahin, 2020;
Geiss-Friedlander and Melchior, 2007). Defects in sumoylation
are also associated with neurodegenerative pathologies such as
Huntington’s, Parkinson’s and Alzheimer’s diseases (reviewed in
Yang et al., 2017). Finally, sumoylation is involved in intrinsic and
innate immunity and is a target of viral infection (Hu et al., 2016;
Liu et al., 2016).

The updated ActiveDriverDB database includes 8,049
experimentally determined sumoylation sites in 2,478 unique
genes primarily collected from PhosphoSitePlus (Hornbeck
et al., 2015). Interestingly, more than half of sumoylation sites
(4,783 or 59%) co-occur with other types of PTMs, in particular
ubiquitination sites. We found 19,226 amino acid substitutions at
sumoylation sites (16,914 unique), including 8,450 substitutions
in the human population genomics datasets, 8,465 somatic
substitutions in cancer genomes, and 397 pathogenic or likely
pathogenic substitutions of the ClinVar database, suggesting
potential disease mechanisms at mutated sumoylation sites.
Driver gene analysis of PTM-enriched amino acid substitutions
revealed multiple genes with germline and somatic mutations.
In the TCGA cancer genomics dataset, the transcription factors
(TFs) BCOR (BCL6 corepressor, FDR = 1.2 × 10−35) and
BCLAF1 (Bcl-2-associated transcription factor 1; ActiveDriver
FDR = 9.8 × 10−4) were significantly enriched in substitutions in
glycosylation sites. Both TFs act as transcriptional repressors of
apoptosis and are known as cancer driver genes in the COSMIC
Cancer Gene Census database (Futreal et al., 2004). Several
other TFs of the less-studied zinc finger family were found in
the analysis (Figure 2D). Sumoylation is known as a mechanism
of modulating TF activity, thus somatic substitutions in PTM
sites may lead to aberrant TF activity in cancer and cause
downstream transcriptional deregulation of cancer hallmark
pathways. Further study of these substitutions at PTM sites may
refine our understanding of known cancer genes and reveal
novel candidates.
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Interpreting Genetic Variation Through
Protein Succinylation
Succinylation is a PTM that involves the transfer of succinyl
groups to lysine residues of substrate proteins via enzyme-
dependent and independent means (reviewed in Sreedhar et al.,
2020; Trefely et al., 2020). Succinylation has been described
only recently (Zhang et al., 2011) and its molecular mechanisms
are not fully understood. The highest levels of succinylation
are found in mitochondrial proteins, however, high-throughput
studies have also detected modifications of cytoplasmic and
nuclear proteins. The succinyltransferases CPT1A and KAT2A
conduct target-specific modifications while succinyl turnover is
controlled by the sirtuin proteins SIRT5 and SIRT7 that regulate
bulk succinylation and DNA-damage-dependent succinylation,
respectively (Du et al., 2011; Li et al., 2016). The modification
is increasingly implicated in transcriptional regulation as histone
proteins are often succinylated and site mutations have functional
consequences (Smestad et al., 2018; Xie et al., 2012). However, the
lysine residues affected by succinylation also undergo other PTMs
such as acetylation, methylation and ubiquitylation. Therefore,
more research is needed to understand the role of succinylation
and its interactions with other PTMs in core cellular processes
and human disease (Sreedhar et al., 2020).

Our database includes 203 unique, experimentally
determined succinylation sites in proteins encoded by 63
genes, all of which co-occur with other lysine PTMs such as
acetylation, methylation, ubiquitylation and sumoylation. Using
ActiveDriverDB, we found 772 amino acid substitutions at
succinylation sites (705 unique), including 250 substitutions
in the human population genomics datasets and 462 somatic
substitutions in cancer genomes. In the TCGA cohort of cancer
genomes, our analysis highlighted several genes encoding
histone proteins (H3J, H2BB, H2BG), reinforcing the role of
succinylation in chromatin regulation and suggesting potential
PTM-specific driver mutations. In the ClinVar dataset of
pathogenic or likely pathogenic mutations, two histone proteins
(H3F3A, HIST1H4C) and the copper-zinc superoxide dismutase
1 (SOD1) were highlighted. Mutations in SOD1 are associated
with familial amyotrophic lateral sclerosis (Rosen et al., 1993).
SOD1 regulates the accumulation of harmful superoxide radicals
in cells and coordinated succinylation is required for its function
(Lin et al., 2013) whereas mutations impacting its catalytic
activity induce the formation of fibrillar aggregates that are toxic
for cells (DiDonato et al., 2003). ActiveDriverDB highlights three
substitutions flanking the succinylated residue K123 of SOD1
that are annotated as likely pathogenic for amyotrophic lateral
sclerosis, suggesting potential hypotheses of these substitutions
and altered succinylation in this lethal neurogenerative disease.
Further succinylation-associated mutations and putative disease
mechanisms are likely to be revealed as larger datasets of these
PTM sites are published.

Improved Annotation of Pathogenic
Germline Variants of Human Disease
We updated the collection of inherited disease mutations from
the ClinVar database (Landrum et al., 2020) and improved the

workflow of interpreting these using PTM sites. The new release
of ActiveDriverDB includes 237,930 amino acid substitutions
associated with human diseases, a four-fold increase compared
to the ClinVar dataset included in the previous version of
ActiveDriverDB (56,739). The data have been filtered carefully
to only include variants with evidence of involvement in human
disease. Genetic variants with germline, parental, maternal, and
biparental and de novo origin are included in the database
while variants of somatic and unknown origin are excluded to
improve the analysis of inherited disease variants. Variants can
be filtered based on clinical significance (such as pathogenic,
benign, drug response, etc.) and a star rating reflecting the overall
strength of evidence. Hyperlinks to the corresponding records in
the databases ClinVar and dbSNP allow researchers to quickly
access detailed descriptions of the variants and the original
publications reporting the evidence of disease associations and
pathogenesis. The updated variant filtering and annotations
allow higher-confidence interpretation of disease variants with
PTM information.

Evaluating the Importance of Distal
Flanking Residues of PTM Sites Using
Sequence Binding Motifs of Kinases
The majority of substitutions in PTM sites in our database
are classified as distal and proximal and are located adjacent
to modified residues, especially in the three flanking positions
(Figure 3A). Only a minority of these substitutions are predicted
to have network-rewiring effects since they affect critical sequence
residues, however the flanking sequences of PTMs may contain
additional functional residues that mediate weaker effects and
therefore remain understudied in the database. To quantify the
potential effects of proximal and distal substitutions in PTM
sites, we systematically analyzed the 130 sequence-binding motifs
of kinases used in our database. The motifs are represented as
position weight matrices (PWMs) and used for network-rewiring
predictions (Wagih et al., 2015). We quantified the PWMs in
terms of the strongest amino acid enrichments at each position
relative to the proteome-wide distributions of amino acids.

We found that each position of flanking sequence around
the PTM sites included at least five-fold enrichment of specific
amino acids in several sequence-binding models of kinases
(Figure 3B). The strongest enrichments of specific amino acids
occurred in the flanking windows of three residues around the
modified residue. The three flanking positions are also covered
by the most substitutions, indicating widespread genetic effects
on PTM signaling. However, further positions upstream and
downstream of the modified residue also appeared to encode
some information with regards to kinase binding. Even when
considering only the furthest positions six and seven of the
PTM sites, the motifs of 28 kinases included at least five-
fold enrichments of certain amino acids whereas more than
ten-fold enrichments were observed for six kinases (CAMKK1,
CDK7, MARK1, PDK1, PDPK1, and STK11) (Figure 3C). The
effects measured here likely represent an underestimate since the
sequence specificities of many PTM enzymes remain unknown.
In summary, this analysis suggests that substitutions at both
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proximal and distal flanking positions around the modified PTM
sites may affect signaling networks.

Lastly, we asked whether the inclusion of the furthest flanking
positions of six and seven from the PTM sites substantially biased
our estimates of PTM-associated substitutions seen in known
disease genes, in cancer genomes and the human population.
Even when excluding the most distal amino acid substitutions at
the flanking positions six and seven, a substantial fraction of all
human amino acid substitutions is predicted to affect PTM sites.
Using this more conservative estimate, PTM sites are affected
by 17% of substitutions overall, including 19% of pathogenic
or likely pathogenic substitutions in ClinVar and 22% of all
ClinVar substitutions, 16% of somatic substitutions in cancer
genomes, and 17% of substitutions in the human population
genomics datasets. PTM sites, in particular when including the
flanking sequences of seven amino acids, are enriched in disease
mutations and negatively selected in the human population
(Huang et al., 2018; Li et al., 2010; Reimand and Bader, 2013;
Reimand et al., 2013; Reimand et al., 2015). Thus, additional
functional substitutions likely exist in the flanking sequences of
PTMs that cannot be interpreted yet using current proteomics
datasets and computational models.

DISCUSSION

The increasing availability of genomic and proteomic
technologies expedites the development of diverse applications
in research, medicine and society. Human cells and tissues can
be profiled at an improved resolution and decreased cost and
cause an increasing influx of multi-omics datasets in the public
domain. The collection of experimentally validated PTM sites in
ActiveDriverDB has grown by 47% compared to the first release
of the database in 2017 (261,348 vs. 178,204) while the dataset of
disease-associated genome variants has quadrupled in size. Thus,
we have the opportunity to interpret an ever-larger number of
protein-coding variants in the human genome at an enhanced
level of detail. In particular, the network-rewiring impact of
variants is likely underestimated currently, since high-confidence
short linear motifs are known only for a subset of kinases
and other enzymes. Careful computational analysis of short
linear motifs in conjunction with known PTM sites is required
since such low-complexity motifs are statistically expected
to occur frequently across the proteome. As we continue to
expand the known repertoire of sequence-binding specificities
of diverse PTM enzymes, we are increasingly able to predict
the precise network-rewiring effects of substitutions in PTM
sites observed in disease genes and the human population.
Incorporation of protein structural information may further
expand the collection of PTM-associated substitutions since
linearly distant amino acids may affect PTMs through spatial
interactions in the three-dimensional structures (Kamburov
et al., 2015; Iqbal et al., 2020; Hu et al., 2021; Porta-Pardo et al.,
2015). However, as the community rapidly generates larger and
more sophisticated experimental datasets, the databases that use
these for downstream analyses should be updated as well, since
the analysis of -omics datasets with outdated annotations has
detrimental effects on data interpretation (Wadi et al., 2016).

In future updates of the database, we aim to specifically expand
the genetic variation datasets mapping the human population,
cancer genomes and inherited diseases. ActiveDriverDB and
similar resources (Hornbeck et al., 2015; Wang et al., 2015; Li
et al., 2020; Yang et al., 2019) allow a diverse community of
molecular and cell biologists, geneticists and computational
researchers to interpret complex genomic variation data using
PTM sites and signaling networks and to explore detailed
hypotheses of molecular mechanisms. These can contribute
to the development of innovative therapies, biomarkers and
precision medicine strategies.
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