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The human endometrium undergoes approximately 450 cycles of proliferation,
differentiation, shedding and regeneration over a woman’s reproductive lifetime. The
regenerative capacity of the endometrium is attributed to stem/progenitor cells residing
in the basalis layer of the tissue. Mesenchymal stem cells have been extensively
studied in the endometrium, whereas endometrial epithelial stem/progenitor cells
have remained more elusive. This review details the discovery of human and mouse
endometrial epithelial stem/progenitor cells. It highlights recent significant developments
identifying putative markers of these epithelial stem/progenitor cells that reveal their
in vivo identity, location in both human and mouse endometrium, raising common
but also different viewpoints. The review also outlines the techniques used to identify
epithelial stem/progenitor cells, specifically in vitro functional assays and in vivo lineage
tracing. We will also discuss their known interactions and hierarchy and known roles in
endometrial dynamics across the menstrual or estrous cycle including re-epithelialization
at menses and regeneration of the tissue during the proliferative phase. We also detail
their potential role in endometrial proliferative disorders such as endometriosis.

Keywords: endometrium, adul stem cell, progenitor cell, epithelial cells, stem cell niche, lineage tracing, human,
mouse

INTRODUCTION

The Endometrium
The endometrium is a unique tissue that undergoes monthly cycles of proliferation, differentiation,
breakdown, shedding and repair under the control of fluctuations in circulating ovarian hormones,
17 β-estradiol and progesterone (Jabbour et al., 2006). The endometrium is composed of two
layers. The basalis, adjacent to the myometrium, is not shed at menstruation and from this
layer the functionalis arises each month (Gargett et al., 2012). The functionalis, the upper
layer of the endometrium, undergoes the most structural changes during the menstrual cycle.
During the proliferative phase, under the influence of ovarian-derived estradiol (Ferenczy et al.,
1979; Punyadeera et al., 2006), the endometrial glandular epithelium, stroma, and vasculature
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undergo extensive proliferation. Three dimensional (3D)
reconstruction reveals basalis glands form horizontal, branching
networks, whereas the functionalis glands grow vertically
from these branches (Tempest et al., 2020; Yamaguchi et al.,
2020). During the secretory phase, under the influence of
ovarian-derived progesterone, the functionalis undergoes
changes to prepare for pregnancy; the endometrial epithelial
cells differentiate into secretory cells, producing histotroph to
nourish an implanting embryo (Burton et al., 2002), regions
of stromal cells differentiate into epithelial-like decidual cells,
spiral arterioles remodel and uterine natural killer cells become
the dominant leukocyte to assist with allorecognition (Gibson
et al., 2015). In the absence of a pregnancy, the corpus luteum
regresses, circulating progesterone concentrations fall and the
functionalis loses structural integrity and sheds in a piecemeal
fashion (Garry et al., 2009).

Regenerative Capacity of the
Endometrium
Whilst the outward manifestation of menstruation, vaginal
bleeding, may be experienced for 5 days or longer in some
women, repair processes are initiated at the beginning of
this process. Immediate post-menstrual repair involving re-
epithelization of the luminal epithelium commences within
48 h of onset (Ferenczy, 1976) in a steroid hormone-
depleted micro-environment, and when epithelial estrogen
receptor alpha (ERα, ESR1) expression is low (Okulicz and
Scarrell, 1998; Figure 1). Indeed, estrogen is not required
for endometrial re-epithelialization as evidenced in animal
models of endometrial repair (Matsuura-Sawada et al., 2005;
Kaitu’u-Lino et al., 2007). Histological and scanning electron
microscopic examination of menstrual phase endometrium
reveals epithelial extensions of glandular epithelium over the
denuded surface (Ferenczy, 1976; Ludwig and Spornitz, 1991),
supporting the concept that new luminal epithelial cells arise
from the residual basal glandular epithelium (Figures 1B,C).
Mesenchymal to epithelial transition (MET) may also occur
during re-epithelialization (Garry et al., 2010; Patterson et al.,
2013; Cousins et al., 2014), where residual stromal fibroblasts
undergo cellular transformation to form new luminal epithelial
cells. However, a recent cell fate tracing study using multiple
Cre-loxP activated models found no evidence of MET in cycling
adult endometrium (see section on the role of endometrial
epithelial stem/progenitor cells in re-epithelization and post-
partum regeneration).

Post menstruation, the functionalis endometrium
grows from the remaining basalis which has a thickness
of 0.5 mm, reaching a maximum thickness of 7–8 mm
by the mid-proliferative phase (McLennan and Rydell,
1965; Figure 2A). This remarkable regenerative capacity
is likely mediated by stem/progenitor cells located in the
basalis layer (Chan et al., 2004; Gargett, 2007a). Different
populations of endometrial stem/progenitor cells have been
identified, including endometrial mesenchymal stem cells
(eMSCs) and endometrial epithelial stem/progenitor cells
(eES/PCs). The focus of this review are the eES/PCs. Readers

interested in eMSCs are referred to a recent detailed review
(Bozorgmehr et al., 2020).

Cyclical Turnover in the Mouse
Endometrium
Similar to human, the endometrial epithelium of the adult
mouse uterus consists of luminal (LE) and glandular (GE)
epithelia, two histologically and functionally distinct cell types
(Figure 3A). The simple columnar LE lines the inner surface
of the endometrium, the cuboidal GE forms tubular gland
structures surrounded by stromal cells. Like women, the
mouse endometrium responds to cyclical changes in circulating
ovarian steroid hormones, but they do not menstruate. Whereas
women undergo an approximate 28 days menstrual cycle,
mice have an estrous cycle lasting approximately 4 days
(Nelson et al., 1982). The estrous cycle comprises four
stages; the estrogen-dominated proestrus and estrus stages
and the progesterone-dominant metestrus and diestrus (Byers
et al., 2012). Unlike women, the mouse endometrium does
not undergo spontaneous decidualization in the presence of
progesterone, it requires a physical stimulus, i.e., the presence
of a blastocyst, for a decidual reaction to occur (Finn, 1977).
Similar to human endometrium, the mouse endometrium is
composed of a myometrium, a thin compact basal layer and
a loosely compacted functional stromal layer covered with a
luminal epithelium and glands penetrating the stromal layer
to form a mucosa.

During proestrus, under the influence of increasing
concentrations of circulating estrogens, uterine water content,
height of LE cells and GE proliferation increases (Wood
et al., 2007). During oestrus, the uterus is distended, and
the endometrial glands exhibit maximal secretory activity
(Bertolin and Murphy, 2014). In the absence of pregnancy, the
endometrium enters metestrus, where degeneration occurs, the
LE and GE undergo significant apoptosis (Wood et al., 2007) and
the LE undergoes vacuolar degeneration (Bertolin and Murphy,
2014). As the endometrium enters diestrus, LE cells are columnar
and endometrial glands are atrophic in the absence of steroidal
support (Bertolin and Murphy, 2014).

Menstruation can be mimicked in a mouse using exogenous
steroids and inducing artificial decidualization via delivery of
sesame oil into the lumen of the uterine cavity (Brasted et al.,
2003; Cousins et al., 2014). Post-partum repair can also be
modeled in mice using pseudopregnancy models (Fan et al., 2008;
Rudolph et al., 2012; Patterson et al., 2013) to provide a useful
model for studying endometrial dynamics.

Whilst the cyclical changes in the mouse endometrium during
the estrous cycle are not as dynamic as in human endometrium,
putative stem/progenitor populations have been identified in
the mouse endometrium, which likely support cell turnover
and endometrial repair and regeneration post-partum (Chan
and Gargett, 2006; Huang et al., 2012; Cao et al., 2015). While
definitive endometrial epithelial stem/progenitor cell markers are
still lacking for both mouse and human, new markers of these
cells are emerging, which will enable their role in endometrial
regeneration to be determined in the near future.
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FIGURE 1 | Scanning electron microscopy of human endometrial microarchitecture during menstruation. (A) Day 2, basalis glandular epithelial stump protrudes into
the uterine lumen. (B) Day 4, newly formed luminal epithelium progressively covering fibrin-coated denuded areas. (C) Day 7, re-epithelialization has been
completed. Adapted with permission from Ludwig and Spornitz (1991).

FIGURE 2 | Human endometrial epithelial location and hierarchy. (A) Full-thickness proliferative and secretory stage premenopausal endometrium. Functionalis and
basalis delineated by dotted line. Glands (g) extend from the luminal epithelium to the endometrial-myometrial junction, showing branching and horizontal gland
profiles in the deep basalis. (B) Epithelial stem/progenitor hierarchy. Adapted with permission from Gargett et al. (2012) and Filby et al. (2020).

FIGURE 3 | Mouse endometrium and epithelial unit. (A) Longitudinal section of estrous cycling endometrium, hematoxylin, and eosin stained. (B) A representative
uterine epithelial unit stained with CD326 (EpCAM, epithelial marker, green) is composed of LE, duct and single gland labeled by FOXA2 (red) in adult wild-type
uterine tissue section. The dotted line shows the intersection zone between luminal and gland epithelial compartments. Scale bar: 5 µm.
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IDENTIFYING EPITHELIAL
STEM/PROGENITOR CELLS

Characterization of Adult Stem Cells
Stem/progenitor cells are rare cells present in most postnatal
tissues and organs, where they function in maintaining cellular
homeostasis of the tissue or organ (Snyder and Loring, 2005;
Gargett, 2007b). Stem/progenitor cells are initially identified by
their functional attributes that distinguish them from the bulk
of the cells comprising the tissue or organ. Identifying criteria of
stem/progenitor cells are self-renewal, high proliferative potential
and capacity to differentiate into one or more cell types of
the tissue in which they reside (Potten and Loeffler, 1990).
Paradoxically, epithelial stem/progenitor cells are quiescent and
rarely proliferate, despite their ability to initiate a cascade
of daughter cell proliferation to restore tissue homeostasis
following tissue damage. The stem cell niche, comprising
the stem/progenitor cell and neighboring differentiated niche
cells, secreted molecules and extracellular matrix regulates
resident stem/progenitor cell proliferation and cell fate decisions
(Eckfeldt et al., 2005).

Functional Assays of Stem/Progenitor
Cell Activity
Initially, human stem/progenitor cells are characterized by
functional assays assessing their key attributes as there are no
universal stem/progenitor cell markers. Clonogenicity, defined
as the ability of a single cell to initiate a colony of cells when
seeded as single cells at extremely low seeding densities, is the
most commonly used approach for identifying a stem/progenitor
cell activity (Gargett, 2007a). Self-renewal is a defining feature
of stem/progenitor cells and can be assessed by serial cloning
of individual cells in vitro (Gargett et al., 2009) and in
serial transplantation at limiting cell numbers in vivo (Asselin-
Labat et al., 2006). Proliferative potential is assessed by serial
passaging of cells to calculate the number of population doublings
before senescence is reached (Li et al., 1998; Gargett et al.,
2009). Differentiation is determined by culture of the putative
stem/progenitor cell population in induction media containing
key differentiation factors or transplanting them into orthotopic
or ectopic sites (e.g., kidney capsule) and analyzing the cells
formed in the neo-tissue generated (Kaur et al., 2004; Joseph and
Morrison, 2005).

Although there is no universal marker that defines the many
human stem/progenitor cell types identified to date, some are
common for several of these cells from different tissues. Some
stem/progenitor cell markers have functional roles in tissue
homeostasis, but often this is not the case. Some markers may
be a stem/progenitor cell marker in one tissue, e.g., CD34
is a hemopoietic stem cell marker in bone marrow, but also
marks mature endothelial cells in other tissues. It is important
that any phenotypic marker defining a specific stem/progenitor
cell population has been verified to enrich for the cell type
in one or more of the functional assays listed above (Kaur
et al., 2004; Gargett, 2007a). Side population (SP) cells, identified
as a small population of cells capable of effluxing the vital

DNA-binding dye, Hoechst 33342 by dual wavelength flow
cytometry, may be used as an assay of potential stem/progenitor
cells in a cell population (Challen and Little, 2006). Another
approach uses label retention of DNA synthesis labels, such
as bromodeoxyuridine (BrdU), in studies which may indirectly
predict potential stem/progenitor cell populations retaining
the label following a chase period while their proliferating
progeny rapidly dilute the label to histologically non-detectable
levels (Braun and Watt, 2004). Further evidence is required to
functionally verify the stem or progenitor identity of cells labeled
by both approaches.

Lineage Tracing to Identify
Stem/Progenitor Cells
Lineage tracing is a powerful technique used to identify
stem/progenitor cells. It has evolved since its initial use in the late
nineteenth century, where dyes and fluorescent tracers were the
most commonly used approach (Kretzschmar and Watt, 2012).
Using a pulse-chase approach, a single marked cell is traced
for a length of time by following the transmission of the cell’s
mark to its progeny. Analyzing the cellular phenotype, location,
and number of the marked progeny, provides information on
the identity of the initial marked cell that generated a clone of
cells in vivo. Using this technique, researchers have extensively
identified adult stem cell populations in the intestine (Barker
et al., 2007), liver (Wang et al., 2015), and uterus (Jin, 2019).

Today, the predominant method of lineage tracing is cell
marking by genetic recombination. Here, the expression of a cell
or tissue specific recombinase enzyme leads to the subsequent
expression of a conditional reporter gene. This allows for the
permanent genetic labeling of a cell and its future progeny.
There are two widely used recombination systems: one adapted
from bacteriophage P1 (Cre-loxP) and used predominantly in
mice, and the other adapted from Saccharomyces cerevisiae
(FLP-FRT) and used predominantly in Drosophila. This review
will focus on the Cre-loxP recombination system used in
mice. In this site-specific recombination system, one mouse
line contains a tissue or cell-specific promotor expressing Cre
recombinase, with the enzyme’s activity temporally controlled
through its fusion with an estrogen receptor (Feil et al., 1997)
or progesterone receptor (Kyrkanides et al., 2003). Activation
of Cre recombinase is dependent on the administration of
tamoxifen or mifepristone, estrogen and progesterone receptor-
binding ligands, respectively (Feil et al., 1997; Kyrkanides et al.,
2003). This Cre recombinase containing mouse line is crossed
with a mouse line containing a reporter gene, such as Rosa26-
lacZ, Rosa26-GFP, Rosa26-tdTomato flanked by a loxP-STOP-
loxP sequence. The administration of tamoxifen or mifepristone
results in the tissue or cell-specific activation of Cre recombinase
and the enzyme’s excision of the STOP sequence, allowing
expression of the reporter gene (β-galactosidase, GFP, tdTomato
for the above examples, respectively), and the permanent genetic
labeling of the tissue or cell population and their progeny. The use
of low ligand doses allows for the labeling of individual cells and
their clones, with subsequent lineage tracing potentially leading
to the identification of a stem/progenitor cell population.
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Self-renewal and differentiation, hallmarks of stem cells,
can be directly assessed by single-cell lineage tracing under
physiological conditions. In one approach, a single cell is
genetically marked to enable transmission of that mark to the
cell’s progeny, resulting in a labeled clone. The properties of the
labeled clone determine whether or not it is a stem cell clone,
thus identifying the founder cell as stem cell or not (Fox et al.,
2009). The lineage mark does not change the properties of the
marked cell, or its progeny, or the surrounding environment
(Kretzschmar and Watt, 2012). Thus, lineage tracing reflects a
cell’s physiological behavior and fate in the context of its stem
cell niche in the intact tissue, which is not possible in non-
niche environments, such as in vitro clonogenicity assays or
transplantation. Another advantage of single-cell lineage tracing
is that it can be performed in any cell type without knowing the
specific gene markers of this cell type (Kretzschmar and Watt,
2012). Using the Cre-loxP recombination system in mice has
led to numerous discoveries of stem cell populations. Intestinal
epithelial stem cells were discovered using the marker gene
leucine-rich repeat-containing G-protein coupled receptor 5
(Lgr5) (Barker et al., 2007). Initial screening identified Lgr5 as
a Wnt target with expression restricted to the intestinal crypts.
A transgenic mouse line containing a knock-in fluorescently
tagged Lgr5 promotor next to an inducible Cre recombinase and
the Rosa26-lacZ reporter strain was used to trace the lineage
of Lgr5+ cells over time. Observation and quantification of
the number of clones, their position, and differentiated clonal
cell phenotypes identified Lgr5+ crypt base columnar cells as
the epithelial stem cells of the intestine (Barker et al., 2007).
Similarly, using the Wnt-responsive marker gene Axin2, an
epithelial stem cell population was discovered in mouse liver
(Wang et al., 2015). Using a mouse line containing an Axin2
promotor positioned next to an inducible Cre recombinase and
the Rosa26-mTmG reporter strain, the expression of Axin2+
cells was traced, showing they produced clones that expanded
concentrically from the central veins. The pericentral Axin2+
cells were capable of self-renewal and differentiating into the
hepatocyte population (Wang et al., 2015).

HUMAN ENDOMETRIAL EPITHELIAL
STEM/PROGENITOR CELLS

Endometrial epithelial stem/progenitor cells were first identified
as clonogenic cells, comprising 0.22% of single cell suspensions
of EpCAM+ epithelial cells obtained from hysterectomy tissue
which includes the basalis layer (Chan et al., 2004; Schwab
et al., 2005). Both large (0.08% of epithelial cells) and small
clones (0.14%) were generated. The frequency of clonogenic
human endometrial epithelial cells using limiting dilution
analysis was 1/174 (0.57%) epithelial cells (Gargett et al.,
2009), similar to epithelial colony forming unit (CFU) cells.
In serum-free medium, stromal feeder layers and growth
factors EGF, TGFα, or PDGF-BB were required for growth
indicating the importance of epithelial-stromal interaction.
Large endometrial epithelial clones underwent self-renewal
in vitro as demonstrated by serial cloning at very low

seeding densities (10–20 cells/cm2) (Gargett et al., 2009), 35–
45 population doublings and differentiation into large gland
like structures in 3D organoid-type cultures. In comparison,
small epithelial clones showed limited self-renewal, proliferation
and only generated small spheroidal structures. Endometrial
SP cells are heterogeneous and include all cell lineages of
human endometrium, of which 27% are EpCAM+ epithelial
cells (Miyazaki et al., 2012; Gargett et al., 2016). SP cells
very occasionally reconstitute epithelial glands (0.02–8%) when
transplanted into immunocompromised mice (Masuda et al.,
2010; Cervelló et al., 2011). While these attributes of rare
epithelial cells indicate stem/progenitor cell activity in human
endometrium they provide no evidence of their location or
stem cell niche.

Markers and Location
Human Endometrial Basalis Epithelial Markers
It has been hypothesized that human endometrial epithelial
stem/progenitor cells are located in the basalis layer, thereby
providing a source of cells to regenerate the endometrial
functionalis each month (Gargett, 2004, 2007b; Figure 2B). Thus,
initial attempts to find specific markers for these stem/progenitor
cells focused on the basalis layer. The first basalis-specific
epithelial marker identified was nuclear AXIN2 in 2012. AXIN2
was discovered using a gene microarray approach, comparing
highly purified EpCAM+ epithelial cells isolated from pre-
and post-menopausal hysterectomy endometrium (Nguyen
et al., 2012). The rationale for this approach was based on
the following assumptions; post-menopausal endometrial
epithelial cells have a similar gene expression profile to basalis
epithelial cells of pre-menopausal endometrium, that the
functionalis would dilute gene expression of the basalis in
pre-menopausal endometrium, and that estrogen stimulates
the scant epithelial cells present in atrophic post-menopausal
endometrium to regenerate functionalis-like glands. Indeed, the
gene profile of post-menopausal endometrial epithelium showed
marked similarity to laser-captured micro-dissected menstrual
endometrial epithelium (Gaide Chevronnay et al., 2009). Many
WNT signaling pathway molecules were differentially expressed,
with AXIN2 and SOX9 upregulated in post-menopausal
endometrial epithelial cells. Immunofluorescence and confocal
microscopy showed specific nuclear AXIN2 immunoreactivity
in pre-menopausal basalis epithelial cells, while cytoplasmic
AXIN2 was observed in functionalis epithelium (Nguyen
et al., 2012). AXIN2 mRNA and nuclear SOX9 and β-catenin
proteins have since been described in basalis glands of human
endometrium (Valentijn et al., 2013; Syed et al., 2020). As nuclear
markers, AXIN2, SOX9 and β-catenin are not convenient
markers for prospective isolation of basalis epithelial cells to
demonstrate stem/progenitor cell functional activity. Surface
markers are required.

Surface Markers of Human Endometrial Epithelial
Stem/Progenitor Cells
Two surface markers have been identified in subpopulations of
basalis epithelium that enrich for stem/progenitor cell activity in
several functional assays confirming stem/progenitor status. One
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is N-cadherin, identified in an unbiased approach using the same
pre- versus post-menopausal gene profiling of highly purified
EpCAM+ epithelial cells from hysterectomy tissue described in
the previous section (Nguyen et al., 2017). Of the 11 surface
markers showing increased expression in post-menopausal
epithelial cells, CDH2 was the most consistently differentially
expressed as shown in the heat map and confirmed by qPCR
in a validating set of endometrial epithelial samples (Nguyen
et al., 2017). Importantly, N-cadherin+ (protein encoded by the
CDH2 gene) endometrial epithelial cells were more clonogenic
than N-cadherin− epithelial cells, showed greater self-renewal
and more population doublings by serial cloning. They also
differentiated into cytokeratin-expressing organoids in 3D
culture. N-cadherin-immunostained epithelial cells were located
in the bases of the glands adjacent to the myometrium in pre-
and post-menopausal endometrium (Nguyen et al., 2017). They
colocalized with cytokeratin, ERα and E-cadherin, suggesting
they were not undergoing epithelial-mesenchymal transition
(EMT). They were generally quiescent as few immunolocalized
with the proliferation marker, KI67. N-cadherin+ cells were
localized to the apical and lateral surfaces of the epithelial cells
and rarely colocalized with the basalis epithelial marker nuclear
SOX9. It is possible that the N-cadherin+ cells are located
on horizontal branching and rhizome like glandular structures
recently identified in the basalis of human endometrium
(Tempest et al., 2020; Yamaguchi et al., 2020).

A second marker, SSEA-1 or CD15, identifies basalis epithelial
cells in pre-menopausal and post-menopausal endometrium
(Valentijn et al., 2013). While the stem/progenitor cell activity
of freshly isolated SSEA-1+ epithelial cells has not yet been
determined, cultured SSEA-1+ cells form larger spheroids in
3D cultures than SSEA− cells. SSEA-1+ cells have longer
telomeres and greater telomerase activity than SSEA-1− cells,
characteristics suggestive of a stem/progenitor cell. Cultured
SSEA-1+ spheroids show weak immunoreactivity for nuclear
ERα or PR, suggesting they were derived from the ill-defined
basalis-functionalis junction rather than the deep basalis, since
basalis epithelial cells express ERα throughout the menstrual
cycle (Leyendecker et al., 2002). Of interest is that nuclear
SOX9 is found in SSEA-1+ cells and some SSEA-1+ cells
show nuclear β-catenin, indicating active WNT signaling,
potentially maintaining an undifferentiated epithelial state. Co-
localization with another WNT signaling marker, nuclear AXIN2
protein has not yet been reported for SSEA-1+ cells. The
luminal epithelium also contains numerous SSEA-1+ cells with
nuclear SOX9. Whether these have stem/progenitor function
remains uncertain given that they are shed each month during
menstruation (Valentijn et al., 2013) but they could be derived
from the glandular epithelial cells that re-epithelialize the
denuded surface during menstruation, although there is no
proof (Figure 1).

Another marker, LGR5, is a receptor for R-spondin and
functions in the canonical WNT signaling pathway. LGR5
is a surface marker of intestinal epithelial stem cells, but
is a controversial marker of human endometrial epithelial
stem/progenitor cells, as evidenced by conflicting reports of its
expression during the menstrual cycle (Gil-Sanchis et al., 2013;

Tempest et al., 2018a), most likely due to the poor quality of
available antibodies and co-localization with leukocyte markers
CD45 and CD163 (Tempest et al., 2018a). Human LGR5+
endometrial epithelial cells have not been assessed in functional
stem cell assays during the normal menstrual cycle or in post-
partum regeneration, limiting our understanding of the identity
of these cells. Organoid culture of LGR5+ epithelial cells would
be beneficial in assessing the self-renewal and differentiation
properties of human LGR5+ endometrial epithelial cells. It is
clear further work is required to validate LGR5+ as a definitive
endometrial epithelial stem/progenitor cell marker.

A range of stem cell markers in non-endometrial tissues have
been investigated in human endometrium, but their validation as
markers of epithelial cells with stem/progenitor activity has not
been determined. These have been summarized in a recent review
(Tempest et al., 2018b).

Endometrial Epithelial Stem/Progenitor
Cell Hierarchy
Dual color immunofluorescence of N-cadherin with SSEA-1 or
SOX9 in human endometrium showed little co-localization by
confocal microscopy (Nguyen et al., 2017). Rather, SSEA-1+ and
SOX9+ epithelial cells were proximal to N-cadherin+ epithelial
cells and appeared to overlap the basalis-functionalis “junction”,
suggesting a potential differentiation hierarchy of epithelial
cells exists in human endometrial epithelium (Figure 2B).
The most primitive may be the clonogenic, self-renewing
N-cadherin+SSEA-1− epithelial cells located in the deepest
gland profiles, some of which appear to branch or are only
found on half a profile (Nguyen et al., 2017). These may give
rise to a very small population of N-cadherin+SSEA-1+ cells
closer to the functionalis, which in turn generate the more
proximal N-cadherin−SSEA-1+ epithelial cells which appear to
span the basalis-functionalis “junction” and are also present
in the luminal epithelium. The most numerous and most
differentiated epithelial cells are N-cadherin−SSEA-1− cells of
the functionalis glands. N-cadherin also colocalizes with the
ALDH1A1 isoform of an epithelial stem cell lineage marker,
aldehyde dehydrogenase I (ALDH1), in the deep basalis, with
78% of N-cadherin+ cells showing colocalization (Ma et al.,
2020). This potentially suggests additional cell types in the
endometrial epithelial stem/progenitor cell hierarchy. ALDH1A1
is a cytoplasmic enzyme that converts retinal to retinoic acid
suggesting that the retinoic acid pathway may have important
roles in clonogenic N-cadherin+ cells. The distribution of
ALDH1A1 suggests these cells are unlikely to co-express SSEA-
1 or SOX9. Recently, single cell transcriptomics of human
endometrial biopsy tissue showed a small distinct population
of ciliated epithelial cells (Wang et al., 2020). However,
neither CDH2, ALDH1A1 nor FUT4 [α-(1,3)-fucosyltransferase
4] catalyzing protein glycosylation associated with the expression
of SSEA-1 were identified in the gene profiles, suggesting the
basalis epithelium was not sampled. It is also not known whether
ciliated cells are part of the putative endometrial epithelial
hierarchy. Nor is it clear how this epithelial hierarchy are located
in 3D endometrium, given the degree of gland branching and
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rhizome formation in the basalis glands (Tempest et al., 2020;
Yamaguchi et al., 2020).

Mutations in cytochrome c oxidase (CCO) have been
used to visualize cell lineages in the intestine (Taylor et al.,
2003). In the endometrium, in vivo lineage tracing using
mitochondrial DNA passenger mutations as clonal markers
identified a stem cell niche in the basalis GE (Tempest et al.,
2020). Multiple CCO-deficient cell clusters are located in the
basalis GE and genome sequencing of each cluster revealed
common somatic mutations, indicative of a similar cell of origin
(Tempest et al., 2020). Individual glands in the functionalis may
have more than one epithelial stem/progenitor cell as they appear
to arise from horizontal branching glands. Interestingly, the
number of CCO-deficient clusters increased with age, peaking
at age 50 before declining around age 60, indicative of stem
quiescence associated with menopause (Tempest et al., 2020).
Reassessing the apparent epithelial hierarchy in horizontal
branching basalis glands and in the vertical glands that appear
to sprout from them will be important. It also explains
why only the basal half of some gland profiles contained
N-cadherin+ epithelial cells (Nguyen et al., 2017). This horizontal
glandular structure of the deepest endometrial glands suggests a
mechanism that prevents their shedding during menstruation,
thus preserving a glandular reservoir of stem/progenitor cells
required for regenerating the functionalis glands each month
(Tempest et al., 2020).

The current model of the putative stem/progenitor cell
populations in human endometrium are based on 2D imaging
with its inherent limitations. Future research using in vivo
lineage tracing of passenger mutations (as above), new tissue
clearing methods, slice cultures (see below), organoid models and
molecular (sequencing) will enable investigation of the epithelial
hierarchy in 3D and at the single cell level. These approaches will
inform and may build on the current models.

Role of Stem/Progenitor Cells in
Endometrial Repair and
Re-epithelialization
Endometrial repair following menstruation is a rapid process
that occurs over a 48-h period in the absence of circulating
estrogens. Scanning electron microscopy studies show that repair
is initiated on days 2–3 of the menstrual cycle and is completed
by days 4–5 (Ferenczy, 1976) as evidenced by an intact luminal
epithelium. The endometrium sheds and repairs concurrently in
a piecemeal fashion, as shown by areas of new luminal epithelial
cells adjacent to shedding functionalis (Garry et al., 2009). There
are a number of potential mechanisms of re-epithelialization, the
most commonly accepted theory suggesting that the new luminal
epithelium arises from the glandular epithelium of exposed
basalis glands (Novak and Te Linde, 1924). These cells migrate
from the protruding stumps of glands over the denuded surface
to rapidly form a new luminal epithelium (Ludwig and Spornitz,
1991; Figure 1). This mechanism likely explains the presence
of luminal epithelial SSEA-1+SOX9+ cells described above,
as the functionalis layer regenerates from the re-epithelialized
basalis, and the luminal epithelium retains the SSEA-1+SOX9+

phenotype as it is pushed ever upwards during endometrial
growth. It is also possible that residual SSEA-1+ luminal epithelial
cells may be activated at menstruation to support rapid re-
epithelialization during piecemeal shedding of the functionalis,
given the adhesive and migratory properties of SSEA-1+ cells
(Valentijn et al., 2013). Shedding functionalis remnants can also
get trapped under the new migrating luminal epithelium, where
they are reorganized and incorporated into the newly developing
functionalis in the subsequent cycle (Henriet et al., 2012). This
may also explain the presence of SSEA-1+ cells in the new
luminal epithelium.

Another proposed mechanism is MET, where stromal cells
close to the luminal surface appear to become new luminal
epithelial cells (Garry et al., 2010). These cells can be identified
by dual staining of mesenchymal and epithelial markers, such as
cytokeratin and vimentin. As a mesodermal-derived epithelium,
human endometrial epithelium co-expresses cytokeratin and
vimentin. Whether these cells are derived from an endometrial
progenitor population, such as a basalis epithelial progenitor that
has previously undergone EMT remains to be elucidated. MET
has been studied more comprehensively in mouse models of
regeneration, which are described below.

Role of Epithelial Stem/Progenitor Cells
in Endometrial Regeneration
The contribution of stem/progenitor cells in endometrial
regeneration has been well documented in xenograft models,
where single cell suspensions of endometrial epithelial and
stromal cells transplanted under the kidney capsule self-
organize into endometrial glands and stroma (Masuda et al.,
2007). These endometrial like structures respond to cyclical
exogenous estradiol and progesterone and exhibit blood-filled
cyst formation when steroid hormone support is withdrawn
(Masuda et al., 2007). Clonally-derived side population cells of
epithelial and stromal origin can also form endometrial-like
structures under the kidney capsule (Cervelló et al., 2011).

A new in vitro system involving human endometrial tissue
slice culture shows promise in enabling the investigation of the
role of epithelial progenitor cells in endometrial regeneration.
Of particular importance is that this culture system provides
a multicellular, 3D “in vivo-like” system, which maintains
endometrial zonation (Muruganandan et al., 2020). In this model,
tissue slices respond to estrogen and progesterone over a 21-day
period. LacZ staining via adeno-mediated gene delivery can be
achieved, however, specific delivery to only the epithelium needs
further optimization (Muruganandan et al., 2020). This model
has the potential for investigating the interactions and dynamics
of epithelial stem/progenitor cells in situ, particularly during
the estrogen dominant proliferative phase of rapid endometrial
functionalis growth.

As described earlier, a potential epithelial progenitor hierarchy
exists in the glandular epithelium, which is thought to support
regeneration of the tissue as estradiol concentrations begin to
rise following menstruation. N-cadherin+ cells express ERα

(Nguyen et al., 2017) and, as is typical for stem/progenitor
populations, rarely proliferate. As in other tissues, such as
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the intestine, more mature cells in the endometrial epithelial
hierarchy may be responsible for glandular epithelial cell
proliferation in the rapidly growing functionalis glands. Such
cells, defined as a transit amplifying population, with the capacity
to rapidly proliferate and produce more differentiated cells,
amplify the output from each stem cell division. These transit
amplifying cells (TAC) are present either in the functionalis as
an ERα+ TAC or possibly as SSEA-1+ TAC around the basalis-
functionalis junction.

Epithelial expression of SOX9 is higher in the proliferative
phase than the secretory phase (Saegusa et al., 2012) and co-
localizes with SSEA-1 in the basalis epithelium. It has been
suggested that SOX9 may act as a checkpoint to prevent
hyperplasia (Prévostel et al., 2016) highlighting its importance in
the epithelial cell regulation and overall tissue homeostasis. Since
SOX9 is a WNT pathway transcription factor and the WNT/β
catenin pathway is critical to maintaining epithelial cell integrity
in other organs, such as the intestine (Fevr et al., 2007), it is
possible that SOX9 plays a key role in epithelial cell proliferation
following menstruation. Nuclear AXIN2 is expressed by basalis
epithelial cells (Nguyen et al., 2012) in both pre- and post-
menopausal women, where it acts as a negative regulator of
WNT signaling to maintain the epithelial stem/progenitor niche
(Nguyen et al., 2012). Clearly more detailed studies at the
single cell level are needed to delineate the roles of the various
cells of the endometrial epithelial hierarchy in endometrial re-
epithelialization and regeneration.

Role of Stem/Progenitor Cells in
Endometrial Pathologies—Endometriosis
and Endometrial Cancer
Endometriosis is characterized by the presence of endometrial-
like tissue in the peritoneal cavity. Retrograde menstruation,
where menstrual fragments flow backward through the fallopian
tubes into the peritoneal cavity, is likely the main cause of
endometriosis. Given that 90% of all women exhibit retrograde
menstruation, and the prevalence of endometrial cells in the
peritoneal cavity is similar in women with or without the disease
(Dorien et al., 2017), other mechanisms must be involved to
account for the subset of women who develop endometriosis.
Whilst the number of endometrial cells in the peritoneal fluid
does not differ, the cell types contained in the shed tissue
may have an important role. Indeed, it has been hypothesized
that endometrial epithelial stem/progenitor cells are shed in
menstrual fluid which gain access to the peritoneal cavity by
retrograde menstruation where they initiate lesions via their
clonogenic activity (Gargett, 2007b; Gargett et al., 2016; Cousins
et al., 2018a; Filby et al., 2020). Women with endometriosis
have more SSEA-1+SOX9+ epithelial cells in their functionalis
compared to normal women. These cells can form 3D structures
in vitro, suggesting that they may generate lesions in vivo
when the functionalis is retrogradely shed at menstruation
(Hapangama et al., 2019). Similar to healthy controls, the eutopic
expression of LGR5 does not change over the menstrual cycle.
However, an increase in the expression of LGR5 was observed
in ectopic lesions when compared to eutopic endometrium

(Vallvé-Juanico et al., 2018) which may suggest its involvement
in disease pathogenesis. Menstrual effluent of women with
endometriosis also contains an increased number of basalis
fragments (Leyendecker et al., 2002), suggesting that the resident
stem/progenitor cell populations may also contribute to the
survival of tissue fragments reaching the pelvic cavity.

Endometrial epithelial stem/progenitor cells have rarely
been isolated from menstrual blood, although endometrial
mesenchymal stem cells and stromal fibroblasts are well
characterized in menstrual fluid (Musina et al., 2008; Bozorgmehr
et al., 2020). The endometrial epithelial basalis marker SSEA-1
has been identified in ectopic endometriosis lesions (Valentijn
et al., 2013) which may support their role in lesion establishment
and progression (Valentijn et al., 2013). SOX9, a marker of
stem/progenitor activity in other tissues, is normally expressed
in the basalis, but women with endometriosis exhibit a higher
number of SSEA-1+SOX9+ cells in the functionalis during the
secretory phase of the menstrual cycle. Isolated SSEA-1+SOX9+
cells differentiated into endometriotic gland like structures in 3D
culture (Hapangama et al., 2019). Deep basalis epithelial markers
ALDH1 isoforms ALDH1A1, and ALDH1A3 are increased in
the epithelium of ovarian endometriomas, and ALDH1A3 is
increased in the epithelium of lesions found on the bowel
(Ma et al., 2020), potentially suggesting the cells were derived
from basalis epithelium. All of these findings suggest that
endometriosis lesion survival depends on the presence of one or
more basalis-derived epithelial stem/progenitor cells.

Endometrial cancer is the most common gynecological
cancer. Cancer stem cells (CSCs) are implicated in tumor
initiation, progression, metastasis and recurrence. Endometrial
CSCs are thought to originate through several mechanisms
including; genetic mutation or epigenetic alteration of epithelial
stem/progenitor cells residing in the tissue, de-differentiation of
endometrial epithelial cells which form a CSC progenitor, or
via EMT of endometrial Side Population cells (Giannone et al.,
2019). Endometrial CSC were initially identified as clonogenic
cells which generated tumors recapitulating the histology and
several markers of the parent tumors when transplanted in
limiting dilution into an immunocompromised mouse model
(Hubbard et al., 2009). The tumors could be serially transplanted
indicating self-renewal of the tumor-initiating cells. Putative
epithelial stem/progenitor marker CD44 has been suggested as an
endometrial CSC marker, showing upregulation in endometrial
carcinoma compared to normal endometrium (Gao et al., 2012;
Torres et al., 2019). SOX9 is up-regulated in endometrial
cancer and in endometrial hyperplasia (Gonzalez et al., 2016).
N-cadherin protein is also increased in the glandular epithelium
of endometrioid adenocarcinomas (Xie et al., 2017), highlighting
a role for abnormal basalis-derived epithelial stem/progenitor
cells in endometrial proliferative diseases.

MOUSE ENDOMETRIAL EPITHELIAL
STEM/PROGENITOR CELLS

At birth, the murine uterus lacks endometrial glands and
consists of a tube lined with a simple luminal epithelium
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supported by undifferentiated mesenchyme. The LE forms buds
which invade the mesenchyme to initiate the development of
GE around post-natal day 5 (P5). Around P7, histologically
distinct uterine glands appear in the endometrium (Branham
et al., 1985; Gargett and Chan, 2006), which continue to
extend from the LE into the surrounding endometrial stroma
forming the basic adult configuration of the murine uterus
by P15 (Gray et al., 2001). Individual uterine epithelial
units, comprising a region of LE, glands surrounded by
stromal cells and the intersection zone between LE and the
gland (Figure 3B) form the basic structure of the entire
endometrial epithelium (Jin, 2019). The endometrium becomes
functional, undergoing cyclical regression and regeneration,
when the reproductive hormones estrogen and progesterone are
secreted by the ovaries. The LE regulates embryo attachment
for implantation, and GE regulates embryo survival and
growth, stromal cell decidualization and placental development
(Wang et al., 2013; Spencer et al., 2019; Ye, 2020). To
date, there are no definitive stem cell markers for the
mouse endometrium.

Location of Murine Endometrial
Epithelial Stem/Progenitor Cells
Before more sophisticated methods were available, DNA label
retention was used extensively to predict the existence and
location of potential endometrial epithelial stem/progenitor cells.
Epithelial label retaining cells (LRCs) are absent or very rare after
a 3- to 4-week chase in postnatal and prepubertal mouse models
and predominantly found in the LE along with rare LRC in the
GE (Gargett and Chan, 2006; Cervelló et al., 2007; Patterson and
Pru, 2013). These LE LRCs do not express Esr1 (ERα), in contrast
to neighboring Esr1+ non-LRC. This molecular difference may
be used to characterize their identity and function (Gargett
and Chan, 2006; Chan et al., 2012). LRCs initiated estrogen-
induced endometrial epithelial regeneration in ovariectomized
mice (Chan et al., 2012). By applying genetic labeling of H2B-
GFP, peripubertal labeling resulted in glandular LRCs persisting
for 8 months and through several pregnancies (Patterson and
Pru, 2013). However, long-term persistent glandular LRCs were
not seen post H2B-GFP labeling in adult cycling mice (Wang
et al., 2012). Thus, the LRC approach is limited in definitively
identifying stem/progenitor populations and their location, likely
due to variables such as timing of the initial pulse, length
of chase and labeling cells on their penultimate cell division
(Gargett et al., 2016).

Mouse telomerase reverse transcriptase (mTert) marks stem
cells in the intestine (Breault et al., 2008) and was recently
shown to mark rare stromal, epithelial and leukocyte populations
in the mouse endometrium. Epithelial mTert expression does
not co-localize with BrdU, indicating that mTert is independent
of LRCs and marks a different progenitor cell type (Deane
et al., 2016). Wild-type recipients of bone marrow transplants
from mTert-GFP or Chβ-actin-GFP reporter mice demonstrated
no contribution of bone marrow-derived cells to endometrial
epithelial lineages, but contributed to immune cells which were
likely misidentified in previous studies (Ong et al., 2018).

The first CreERT2-LoxP–based single-cell lineage tracing
system in the adult mouse uterus to functionally identify
epithelial stem cells resulted from characterizing stem cell
clones in vivo (Jin, 2019). In this study, a mouse line containing
a Keratin19 (epithelial marker) promotor positioned next
to an inducible Cre recombinase was crossed with the
Rosa26-YFP reporter strain to lineage label epithelial cells.
By quantifying distinct cellular phenotypes (EpCAM+FOXA2−
luminal vs. EpCAM+FOXA2+ glandular) and the proliferative
ability (KI67+) of the endometrial epithelium, different
clonal populations were identified in the mouse endometrial
epithelium. The founder cells of mixed clones, originating from
the intersection zone of the LE and GE, were identified as
endometrial epithelial stem cells (Jin, 2019; Figure 3B). Such
tissue distribution supports that these bipotent endometrial
epithelial stem cells bidirectionally differentiate into LE
and GE for maintaining homeostasis and regeneration of
mouse endometrial epithelium under physiological conditions
(Jin, 2019).

Another recent lineage tracing study in the mouse uterus
claimed Axin2-expressing cells residing in endometrial glands
as the stem cell source responsible for epithelial regeneration
(Syed et al., 2020). In this study, tetracycline induction and
Cre-mediated recombination system were combined to label
and trace the behavior and fate of the Axin2-expressing cells.
Around 29% of GE are Axin2+, querying the enrichment level
of the endometrial epithelial stem cell population, which is
expected to be rare as for other adult stem cells. Lineage tracing
Axin2+ cells revealed their location in gland bases, where they
progressively expanded to occupy entire glands after 90 days
using an initial subset of labeled Axin2+ GE cells, or after 70 days
when all Axin2+ GE cells were labeled and traced. The mouse
endometrium is a highly regenerative tissue with substantial
epithelial turnover during each 4-to 5-day estrous cycle. A 90-day
trace is equivalent to 22–23 cycles, and 70 days equates to 14–
15 cycles. However, there was a limited contribution of Axin2+
GE to the LE under both experimental conditions during normal
estrous cycling. Even after six cycles of pregnancy and involution
(180 days) following 1 week of maximally labeled Axin2+ GE
cells, the contribution of Axin2+ GE to the LE is minimal. Thus,
Axin2+ GE has a very limited contribution to LE after multiple
cycling or post-partum injury, but a high contribution to GE,
suggesting Axin2+ GE supply to LE is insufficient to maintain
homeostasis or renewal of LE (Syed et al., 2020). It appears that
Axin2+ GE is a GE-specific progenitor cell, particularly given
that the cellular turnover of LE is substantially greater than GE
in cycling mice (Kaitu’u-Lino et al., 2010). Using a different GE
specific marker, lineage tracing of Foxa2+ GE fate completely
excluded the contribution of GE to LE (Jin, 2019). This was
further verified by evidence that Lgr5+ progenitor cells located
on the tips of developing endometrial glands after birth are
exclusively responsible for the development and maintenance of
uterine glands (Seishima et al., 2019). Lineage tracing of Pax8+
epithelial cells revealed a potential cellular source to maintain
both luminal and glandular epithelia, however, their potency is
difficult to be determined, as Pax8 is abundant throughout the
entire endometrial epithelium (Fu et al., 2020). The epithelial
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stem cell population located in the intersection area between LE
and GE maintains and renews both LE and GE efficiently to
supply cellular requirement during cycling and the post-partum
period (Jin, 2019). Thus, the intersectional location of the adult
endometrial epithelial stem cells well supports the physiology and
function of mouse uterine endometrium.

The niche for endometrial epithelial stem cells in both mice
and humans is not as well studied as other organs. Endometrial
stem/progenitor cells are a relatively new field and it took
time to identify specific marker (s) for these cell populations
in human and they are still to be identified in the mouse.
This limits the identification of their microenvironment on
a cellular and molecular level. There is currently insufficient
published knowledge to provide a detailed understanding of the
endometrial epithelial stem cell niche in this review. However, it
is anticipated that new studies in the next few years will generate
discoveries on the endometrial epithelial stem cell niche.

Role of Endometrial Epithelial
Stem/Progenitor Cells in
Re-epithelization and Post-partum
Regeneration
Stem cell contributions to re-epithelization can be studied
using mouse models of menstruation (Brasted et al., 2003;
Cousins et al., 2014) or pseudopregnancy (Huang et al.,
2012; Patterson et al., 2013). MET has been studied in
both models. Cells expressing both cytokeratin and vimentin
were observed close to areas of repair within 12 h of
progesterone withdrawal in a menses-like model (Cousins et al.,
2014), with significant increases of epithelial Wnt7a mRNA
coinciding with decreasing concentrations of stromal Wnt4
mRNA suggesting stem/progenitor activity and MET. In a
postpartum repair model, a group of stromal cells expressing
Anti Mullerian Hormone Receptor type II contributed to
epithelial repair and regeneration via MET (Huang et al.,
2012; Patterson et al., 2013). A comprehensive investigation
into a role for MET in endometrial regeneration using a
number of different lineage tracing mouse lines indicates that
mesenchymal reporter-positive epithelial cells were identified
at birth and maintained in adult epithelium, as expected
for a mesodermal-derived epithelium. However, evidence of
MET of adult mesenchymal cells, particularly during post-
partum repair, was not identified suggesting that it is unlikely
that the mesenchyme contributes to the adult epithelium
(Ghosh et al., 2020).

SP cells have been found in the stroma in postpartum mice
but not in the normal cycling endometrium (Hu et al., 2010). The
identity and role of endometrial SP cells remain unclear. Unlike
in estrous cycling mice, mTert+ LE cells were not observed prior
to endometrial breakdown, most likely due to the high exogenous
progesterone support. Following progesterone withdrawal and
induction of menses, LE mTert+ clusters were identified in the
repairing epithelium (Cousins et al., 2018b), suggesting activation
to support immediate repair mechanisms. During this initial
repair event no GE mTert+ cells are identified, suggesting that
GE expression of mTert may be estrogen dependent and may

have a role in endometrial regeneration. LE mTert+ cells were
located adjacent to clusters of KI67+ cells suggesting that mTert+
cells may undergo asymmetrical division to form TACs, which
proliferate to form new LE cells (Cousins et al., 2018b). Similarly,
extensive cell turnover of the LE was demonstrated during
the repair phase in an induced menstruation-like event, which
was followed by GE proliferation (Kaitu’u-Lino et al., 2010).
These concepts are also in keeping with how the GE supports
regeneration in the human endometrium.

Whilst the bone marrow does not appear to contribute to the
endometrial epithelium during the estrous cycle, bone marrow
transplantation studies under pathological conditions have
revealed a limited contribution of bone marrow-derived cells to
endometrial regeneration (Bratincsak et al., 2007; Du and Taylor,
2007; Mints et al., 2008; Du et al., 2012; Morelli et al., 2013).

Lineage tracing has provided direct evidence that the epithelial
stem cells in the intersection zone between LE and GE are capable
of life-long maintenance of the self-renewing endometrial
epithelium and post-partum regeneration of epithelial lineages
(Jin, 2019). Axin2+ (Syed et al., 2020) or Lgr5+ (Seishima et al.,
2019) progenitor GE cells located at the tips (base) of glands
support the cyclical renewal and/or post-partum regeneration of
endometrial GE in mice. It would be interesting to reveal the
relationship among the epithelial stem cells in the intersection
area, Axin2+ and Lgr5+ GE progenitors in future studies. It is
possible that the epithelial stem cells in the intersection area
differentiate into either Axin2+ or Lgr5+ GE progenitors with
significant overlap between these 2 progenitor cells given the role
of both markers in the Wnt signaling pathway.

CONCLUSION

Accumulating reports of endometrial epithelial stem/progenitor
cells have revealed their important roles in homeostasis and
regeneration of the endometrial lining of the uterus in
both humans and mice. Increasing knowledge of endometrial
stem/progenitor cell biology and their niches provides new
understanding of the remarkable regenerative capacity of mouse
and human endometrium. It also contributes new insight
into endometrial proliferative disorders, offering potential for
new therapies targeting the epithelial stem/progenitor cells. In
mice, lineage tracing single cells in the whole uterus reliably
tracks the behavior and fate of the endometrial epithelial
stem/progenitor cells, by which, potency, location and markers of
endometrial epithelial stem/progenitor cells have been advanced.
In humans, previous and recent studies applying functional
stem cell assays including organoid formation and specific
surface marker identification have enabled characterization
of the location of endometrial epithelial stem/progenitor
cells. The surface markers identified for human endometrial
epithelial stem/progenitor cells allow their isolation and future
manipulation for treatment of infertility or miscarriage caused by
an inadequate endometrial proliferation. Single cell sequencing
comparing basalis, functionalis and luminal epithelium will
likely increase our understanding of the epithelial hierarchy
in human endometrium in relation to the newly discovered
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unique structural differences between these endometrial zones.
The regulatory mechanisms of self-renewal and differentiation
of endometrial epithelial stem/progenitor cells are the scientific
premise needed to decode aberrations in these cells and their
role in the development of endometrial diseases such as
endometriosis and endometrial cancer. Only then can effective
treatments be developed that target abnormal endometrial
epithelial stem/progenitor cells. The promise of endometrial
epithelial stem/progenitor cells for regenerative medicine, their
markers and their regulatory mechanisms of self-renewal
and differentiation should ensure further research in these
areas are pursued.
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