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Sodium Valproate-Induced
Chromatin Remodeling
Maria Luiza S. Mello*

Department of Structural and Functional Biology, University of Campinas (Unicamp), Campinas, Brazil

Valproic acid/sodium valproate (VPA), a drug originally prescribed as an anticonvulsant,
has been widely reported to act on epigenetic marks by inducing histone acetylation,
affecting the DNA and histone methylation status, and altering the expression of
transcription factors, thus leading to modulation of gene expression. All these
epigenetic changes have been associated with chromatin remodeling effects. The
present minireview briefly reports the main effects of VPA on chromatin and image
analysis and Fourier transform infrared (FTIR) microspectroscopy in association with
molecular biology methodological approaches to investigate the VPA-induced changes
in chromatin structure and at the higher-order supraorganizational level.
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INTRODUCTION

Chromatin, which in eukaryotic cells is a complex structure containing DNA, histones, non-histone
proteins and RNA, has a dynamic organization essential for its normal physiological performance.
It is well known that changes in gene expression may affect chromatin structure at the molecular
level. Chromatin remodeling also affects chromatin at the superstructural level. Gene expression is
modulated temporally and spatially by a series of epigenetic marks that affect specifically DNA
and histones. Removal or association of epigenetic marks from/to chromatin components may
dramatically change gene expression and chromatin structure. In this context, drugs that inhibit
histone deacetylases (HDACi), facilitate the access of acetyl groups to histones or interfere with the
activity of methyltransferases that control the methylation status of DNA and histones, have a role
affecting gene expression that is generally accompanied by chromatin remodeling. One example
of such a drug is valproic acid (VPA), which was originally prescribed for the treatment of seizure
disorders and was subsequently revealed to be a potent epigenetic agent.

Improvements in assessing changes in chromatin architecture associated with the modulation of
epigenetic marks have been developed to better understand alterations in chromatin functionality.
Thus, examination of the known of VPA action, including those concerned with chromatin
remodeling, may be instrumental in making decisions concerning the practical use of this drug.

In this minireview, the main effects of VPA on chromatin epigenetic marks are described, and
image analysis and infrared spectroscopic methodological approaches to demonstrate VPA-induced
changes in chromatin structure and higher-order superstructure are briefly reported.

VALPROIC ACID/SODIUM VALPROATE EFFECTS ON
CHROMATIN COMPONENTS

Valproic acid is a short-chain fatty acid. The effects of VPA associated with its prescription for
the treatment of seizure disorders, including epilepsy, are primarily mediated by its activities as an
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inhibitor of GABA transaminase and blocker of voltage-gated
sodium channels and T-type calcium channels (Chateauvieux
et al., 2010). Drug pharmacological formulations require the
association of VPA with its sodium salt (sodium valproate), to
obtain a solid compound convenient for storage and human oral
administration (Petrusevski et al., 2008).

The first demonstration that VPA could affect epigenetic
markers and chromatin structure came with the demonstration
that it inhibited class I histone deacetylases (HDACs), which favor
histone acetylation, especially at the lysine 9 residue of histone
H3 and the lysine 8 residue of histone H4 (Göttlicher et al., 2001;
Phiel et al., 2001; Eyal et al., 2004). With VPA-induced histone
H4 hyperacetylation, transcription from diverse promoters can
be activated, cell cycle arrested, and apoptosis intrinsic and
extrinsic pathways elicited. In HeLa human cervical carcinoma
cells, treatment with 3.0 mM VPA for 24 h, which induces histone
H4 hyperacetylation, led to gene deregulation, with upregulation
of more than twofold of 1,074 genes (including genes related to
the cell cycle, cell signaling, pyruvate dehydrogenase kinase 4
and ATPase class V) and downregulation of 551 genes (including
genes related to importin β, Fas apoptotic inhibitory molecule,
and cyclin B1) (Dejligbjerg et al., 2008). In VPA-treated rat
neurons, increased acetylation of histones H3 and H4 was
detected only in the promoters of the upregulated genes, and
was found to affect 726 genes, including genes involved in
epileptogenesis (Fukuchi et al., 2009).

The importance of HDAC inhibitors, including
suberoylanilide hydroxamic acid (SAHA) and trichostatin
A (TSA), in neuronal differentiation and neuroprotection,
has been recently reviewed by Shukla and Tekwani (2020).
When comparing the effects of VPA, SAHA, and TSA on
neurogenesis, a higher number of differentially expressed genes
and a more potent dysregulation of stem cell differentiation
have been found to result from the VPA action (Meganathan
et al., 2015). VPA-induced upregulation of axonogenesis and
ventral forebrain-associated genes and repression of neural tube
and dorsal forebrain transcripts occur via miR-378 microRNA
(Meganathan et al., 2015). Although HDAC inhibitors may
play a role in the pathogenesis of neurodegenerative diseases,
there are indications that SAHA and VPA may act as potential
neurotrophins (Shukla and Tekwani, 2020).

Valproic acid has also been found to induce chromatin
decondensation that lasts longer than the time assigned to
promote histone acetylation. This finding suggested that VPA
could affect the methylation status of DNA and histones,
which was confirmed in several cell types, including tumor
cells (Detich et al., 2003; Milutinovic et al., 2007; Marinova
et al., 2011; Palsamy et al., 2014; Rocha et al., 2019). The
VPA-promoted demethylation of DNA, which leads to the
conversion of 5-methylcytosine (5mC) to cytosine (C), involves a
complex process flowing through an active or a passive pathway,
depending on the cell type. In MCF-7 human breast tumor
cells, for instance, VPA-induced DNA demethylation occurs
through a passive pathway (Marchion et al., 2005). In human lens
epithelial cells and HeLa cells, VPA acts predominantly within
the active DNA demethylation pathway, through the action of
enzymes of the ten-eleven translocation (TET) protein family

and independent of cell replication, although a passive pathway
promoting the suppression of DNA methyltransferase (DNMT)
activity may also be involved (Palsamy et al., 2014; Rocha
et al., 2019). Although reversible, DNA methylation changes
are more stable than histone acetylation alterations, and may
lead to long-term epigenetic reprogramming (Milutinovic et al.,
2007). In response to VPA, a dynamic interplay has also been
verified between the acetylation of histone tails and changes in
DNA methylation, including decreased methylation of tumor
suppressor genes (Marchion et al., 2005; Milutinovic et al., 2007;
Dong et al., 2010; Gu et al., 2012). These findings suggested that
VPA may have therapeutic potential due to its antitumor effects
especially when administered in synergistic combination with
other agents (Braiteh et al., 2008; Mohammed et al., 2011; Booth
et al., 2017; Heers et al., 2018; Zhang et al., 2019).

Methylation and demethylation of histones are other events
modulated by VPA. In histone H3 of HEK 293 human
embryonic kidney cells, hypermethylation of lysine 4, conferring
hypomethylation of lysine 27, occurred simultaneously with
HDAC inhibition promoted by VPA (Ganai et al., 2015). Global
changes in the abundance of di- and trimethylated lysine 4 and
of mono- and dimethylated lysine 9 of histone H3 (H3K4me2,
H3K4me3, H3K9me, and H3K9me2, respectively) are present
in several tumor types, giving support to the hypothesis that
overall histone modifications may represent potential markers of
cancer prognosis (Santos-Rosa et al., 2002; Ellinger et al., 2010;
Fang et al., 2014; Beyer et al., 2017). In particular, H3K4me2 is
associated with a small subset of genes that become prepared for
rapid activation in response to stimulus (Russ et al., 2014).

H3K4me3, a marker of the exclusive active state of gene
expression (Santos-Rosa et al., 2002), increased significantly in
HeLa cells cultivated in the presence of 0.5 and 2 mM VPA, as
assessed by immunofluorescence signals and protein abundance
(Rocha and Mello, 2020). In addition, immunofluorescence
signals of H3K4me2 at the nuclear periphery became intensified
in HeLa cells under VPA treatment (Rocha and Mello, 2020).
Persistent demethylation of histone H3 lysine 4 at this nuclear
region in other cell types has been associated with gene
transcriptional activation and is implicated in the generation of
a state of transcriptional memory that could last for several days
(Gialitakis et al., 2010; Light and Brickner, 2013; Fiserova et al.,
2017).

Increased levels of H3K9me concomitant with decreased levels
of H3K9me2 may be consistent with the intensification of global
gene expression induced by VPA (Rocha and Mello, 2020). In
different cell types, H3K9 monomethylation is associated with
gene activation, particularly within coding regions (Kouzarides,
2007), whereas H3K9 dimethylation signals are higher in silent
genes and formation of heterochromatin (Barski et al., 2007).

Knowledge of the potential effects of VPA continues to
be expanded. When HepG2 cells, which are used as an
in vitro model of diabetes, were exposed to a high-glucose
regimen and cultivated in the presence of VPA, RNA-seq assays
revealed attenuation of the hyperglycemia-induced activation
of complement and coagulation cascade genes (MASP2, C3)
due to the altered expression of transcription factors (Hnf-4α,
Fxr) (Felisbino et al., 2021). VPA has thus been hypothesized
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to attenuate some of the deleterious pathways activated by
hyperglycemia. Other effects not directly affecting epigenetic
markers and unknown until recently, have been proposed
after the analysis of mixtures of VPA and DNA and VPA
and histones revealed molecular interactions between VPA
and chromatin components in vitro (Sargolzaei et al., 2017;
Vidal and Mello, 2020).

VPA AND CHROMATIN REMODELING

The fact that chromatin structure is affected by VPA is
demonstrated by increased sensitivity of DNA to nucleases
and increased association of DNA with intercalating agents
(Marchion et al., 2005). The VPA-induced depletion of
structural maintenance of chromosome (SMC) proteins 1–5,
SMC-associated proteins, DNMT-1 and the heterochromatin
protein HP1, resulted in chromatin remodeling and promoted
the access of DNA-damaging agents to their target sites
(Marchion et al., 2005).

Chromatin decondensation resulting from VPA exposure,
when affected at the level of the higher-order hierarchical
packing state, often accompanies a decreased HDAC activity
and a general increase in histone acetylation and global DNA
demethylation. This chromatin decondensation effect can be
probed using computer-assisted image analysis procedures,
especially when they are validated by immunoassays that identify
specific epigenetic targets (Felisbino et al., 2011, 2014; Vidal et al.,
2014b; Veronezi et al., 2017). In non-transformed NIH 3T3 cells,
these changes have been found to affect not only euchromatin
but also constitutive heterochromatin bodies (chromocenters)
(Felisbino et al., 2014). Conversely, in other cell systems, such as
that of the insect Triatoma infestans, only a few cells exhibited

heterochromatin decondensation but no histone acetylation in
the presence of VPA (Bassani et al., 2021). In this model, such
a finding suggests a possible effect of VPA on structural proteins
other than histones, which are important for the establishment of
the chromatin architecture (Marchion et al., 2005; Kortenhorst
et al., 2009). The fact that not all cells within a heterogeneous
cell population equally experience chromatin decondensation
and response to mechanical stimuli upon treatment with an
HDAC inhibitor (for example, TSA) has been revealed in
vertebrate cell systems using Fourier transform infrared (FTIR)
microspectroscopic imaging (Morrish et al., 2019).

For investigations concerned with molecular changes that
affect chromatin structure, FTIR microspectroscopy has been
revealed to be a useful analytical approach when global DNA
demethylation is induced by VPA treatment (Veronezi et al.,
2017). Additionally, when isolated DNA and histones H1 and H3
macromolecules were mixed with VPA, changes in FTIR spectral
signatures were used to detect direct interactions between this
drug and the chromatin components resulting in conformational
alterations in these macromolecules (Vidal and Mello, 2020).

Image Analysis of Chromatin
Suprastructural Changes Under VPA
Treatment
Among the various image analysis approaches that permit
detecting changes in higher-order chromatin organization,
staining of cell nuclei with the DNA-specific Feulgen reaction
(Mello and Vidal, 2017) followed by a computer-assisted process
of image acquisition, segmentation and featuring, results in the
conversion of magenta-colored images into grayscale images that
are subsequently converted into false-colored images useful for
the evaluation of parameters of interest (Vidal et al., 2014a).

FIGURE 1 | Image analysis of VPA-treated chromatin. Images of VPA-treated Feulgen-stained HeLa cell nuclei show the decreased areas covered by condensed
chromatin in gray color (A) [reprinted from Felisbino et al. (2011)—PLoS ONE 6: e29144]. A scatter diagram representing the Sc% vs. AAR relationship for
Feulgen-stained HeLa cell nuclei shows nuclei treated with 1.0 mM VPA for 2 h (blue dots) compared with nuclei from the respective untreated control (black dots)
(B) [reprinted from Felisbino et al. (2011)—PloS ONE 6: e29144]. Each dot in the plot represents one nucleus with a specific phenotype as shown in the theoretical
model (C) [modified from Vidal et al. (2014a)].
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By preselecting an absorbance cutoff point in association with a
certain higher-order chromatin packing state and applying it to
nuclear images in which absorbance values exceed this threshold,
a false color such as green, for example, may be automatically
attributed to the resulting image. Chromatin decondensation,
like that promoted by VPA on histone acetylation and/or
DNA demethylation, is revealed microscopically in specific
nuclear areas in which the green false color is no longer
evident (Figure 1A).

Mathematically, such a change in chromatin architecture can
be demonstrated in stained preparations by plotting a scatter
diagram containing the distribution of points that corresponds
to many nuclear phenotypes of the cell sample at a time
(Figures 1B,C). The whole methodological procedure is detailed
elsewhere (Vidal et al., 2014a). Briefly, each nuclear phenotype
is defined in terms of matching its relative area occupied
by condensed chromatin (Sc%) vs. a dimensionless parameter
that identifies how many times the average absorbance of

FIGURE 2 | Immunofluorescence signals (A) and FTIR spectral window in the 2,990–2,850 cm−1 wavenumber range (B) for DNA 5mC of HeLa cells cultivated in
the presence of VPA. In panel (A), reduction in the DNA 5mC fluorescence signals is shown as assessed visually (A,B) and from images obtained with the ImageJ 3D
plugin software (C). In panel (B), the area under the band contributed by -CH3 signals, which decreases with increasing VPA concentration, is evident in the original
normalized spectra (A) and after the peak fitting process provided by the Grams/AI 8.0 software [(C) (1 mM VPA) and (D) (20 mM VPA)] compared to the untreated
control (B). In the original spectra shown in panel (A), the curve for the untreated control is represented by the black line, whereas the curves for 1 and 20 mM
VPA-treated cells are represented by the red and green lines, respectively [reprinted from Veronezi et al. (2017). PLoS ONE 12(1): e0170740].
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the condensed chromatin exceeds the average absorbance of
the entire nucleus (AAR) (Vidal, 1984; Vidal et al., 2014a).
Consequently, an altered distribution of points in the scatter
diagram demonstrates the usefulness of this methodology for
studies on chromatin remodeling (Figures 1B,C).

Recently, a proposal was raised to study VPA-induced imaging
changes in the nuclear morphology of astrocyte cells in a
temporal context, a process that was named 4D morphometry
(Kalinin et al., 2021). The authors reported results that
reflected chromatin reorganization not only spatially but also
temporally, which allowed them to conclude that their findings
provided insights into the mechanisms of astrocyte-to-neuron
reprogramming (Kalinin et al., 2021).

FTIR Microspectroscopy Assessment of
VPA-Induced Changes in
Chromatin Components
Fourier transform infrared is a sensitive analytical method that
permits detection within a sample of vibrational signals that
are characteristic of chemical functional groups and that tend
to absorb infrared (IR) radiation within a specific wavenumber
range (cm−1). This methodology is a useful tool for several
analytical purposes including those in the biological realm (Singh
et al., 2012). Modern technology allows the absorption of an
IR light beam that passes through a sample to be examined at
all wavenumbers at once, and the use of a Fourier transform
algorithm generates a spectral signature in which band peaks
are revealed at specific wavenumbers. FTIR spectra for small
amounts of solid samples are currently obtained with modern IR
microspectroscopes associated with light microscopes.

Regarding the usefulness of FTIR for the analysis of chromatin
components, data have been obtained that enabled researchers
to discriminate the spectral signatures of DNA of different base
compositions, molecular conformations, cytosine methylation
abundances and types of histone-DNA complexes (Kelly et al.,
2009, 2011; Whelan et al., 2011; Mello and Vidal, 2012; Vidal et al.,
2014b; Wood, 2016; Veronezi et al., 2017; Morrish et al., 2019).
Investigating how proteins remodel RNA structure by using FTIR
monitoring and synchrotron radiation circular dichroism has
also been recently proposed (Wien et al., 2021).

In DNA extracted from VPA-treated cells, decreased 5mC
abundance, which can lead to changes in chromatin structure
(Veronezi et al., 2017; Rocha et al., 2019) was demonstrated using
FTIR microspectroscopy. Change in 5mC global abundance
was reflected on the infrared spectral window that identifies
the symmetrical and anti-symmetrical stretching vibrations of
-CH3 groups (Veronezi et al., 2017). When VPA elicits a dose-
dependent effect on the global abundance of 5mC, as reported
and validated immunocytochemically in HeLa cells (Figure 2A),
such an event could be demonstrated by analyzing FTIR spectral
signatures where the area under the absorption band peak at the
∼2,992–2,850 cm−1 spectral window diminishes, thus revealing
decreased energy absorption and reduced -CH3 abundance
(Figure 2B; Veronezi et al., 2017). The differences in the number
of peaks within the 2,992 and 2,850 cm−1 spectral window when
using a peak fitting process (Figure 2B) indicate effects promoted

by VPA on the DNA methylation levels that affect the chemical
environment at the level of the DNA -CH3 stretching vibrations
and the chromatin structure (Veronezi et al., 2017).

Currently, studies on FTIR spectral profiles and optical
anisotropy imaging obtained from dried mixtures of VPA with
DNA, histone H1 and histone H3 have demonstrated a possible
interaction of the drug with these chromatin components in vitro
(Vidal and Mello, 2020). Changes were detected in the textural
superstructure of the DNA with a reduction in its molecular order
and an effect on its patterns of crystallization. Although the drug
does no enter the DNA double helix or bind electrostatically
or through hydrogen bonds to DNA, the affinity of VPA to
the DNA minor groove was hypothesized to occur through van
der Waals interactions. FTIR also provided evidence that VPA
can differentially interact with the highly lysine-rich histone
H1 and the lysine-poor nucleosome core histone H3, affecting
their conformations (Vidal and Mello, 2020). The electrostatic
binding of VPA to histone H1, particularly to lysine residues of its
terminal tails and to aromatic amino acid residues at its globular
domain has been previously proposed using equilibrium dialysis
assays, fluorescence emission, and circular dichroism (Sargolzaei
et al., 2017). FTIR microspectroscopy confirmed small changes
in the conformational state of histone H1 especially in mixtures
containing elevated concentrations of VPA (Vidal and Mello,
2020). Decreased absorbances in the amide I and amide II band
peaks and in their absorbance ratios in histone H3 in the presence
of VPA also indicate changes in the conformational state of this
histone induced by the drug (Vidal and Mello, 2020).

Whether VPA has the potential to directly interact with
DNA and histones in chromatin, affecting its structure, is
currently being investigated in our laboratory and is a matter of
pharmacological interest.

CONCLUSION

Chromatin architecture is complex and dynamically variable in
response to a multitude of effects including those provided by
the microenvironment. In this context, the action of drugs such
as VPA, which affects epigenetic marks particularly on DNA and
histones, and thus induces chromatin remodeling, can be assessed
with image analysis and FTIR microspectroscopic analysis. The
results obtained with these methods, whether accompanied
temporally or validated with further complementary assays, will
support a better understanding of the implications of changes in
chromatin architecture in association with its functionality.
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