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Cell proliferation is an important cellular process for physiological tissue homeostasis
and remodeling. The mechanisms of cell proliferation in response to pathological
stresses are not fully understood. Mitochondria are highly dynamic organelles
whose shape, number, and biological functions are modulated by mitochondrial
dynamics, including fusion and fission. Mitofusin-2 (Mfn-2) is an essential GTPase-
related mitochondrial dynamics protein for maintaining mitochondrial network and
bioenergetics. A growing body of evidence indicates that Mfn-2 has a potential role
in regulating cell proliferation in various cell types. Here we review these new functions
of Mfn-2, highlighting its crucial role in several signaling pathways during the process
of pathological cell proliferation. We conclude that Mfn-2 could be a new mediator of
pathological cell proliferation and a potential therapeutic target.
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INTRODUCTION

Cell proliferation is a precision–control process, which is essential for embryonic and postnatal
development (Takeuchi and Nakamura, 2014). Under pathological conditions, abnormal cell
proliferation is a central mechanism attributing to disease progressions. Abnormal cell
proliferation includes both abnormal cell division and abnormal cell differentiation (Fajas,
2003). These processes are common in various diseases. For example, cardiac fibroblast
proliferation and fibroblast-to-myofibroblast transition resulted in cardiac fibrosis (Nagpal et al.,
2016), a pathological process characterized by the accumulation of extracellular matrix in the
cardiac interstitium. Abnormal hepatic stellate cell (HSCs) trans-differentiation, activation, and
proliferation of HSCs are the primary driving force to promote chronic cholestatic liver diseases
and facilitate the progression of liver fibrosis (Liu et al., 2019). Proliferation is also a main
characteristic of cancer cells and the base of metastasis (Carmeliet et al., 1998). Therefore,
a thorough understanding of the underlying mechanisms regulating various pathological cell
proliferations is the premise for developing new therapeutic strategies.
Previously, mitochondria have been regarded as static and isolated organelles. More
recently, they are found to undergo constant changes in morphology, including fission,
fusion, and network formation, and they can also relocate to different parts in cells
(trafficking); all of these processes are termed mitochondrial dynamics. Mitochondrial
dynamics is essential to maintain the normal function of cells such as energy metabolism,
calcium homeostasis, and reactive oxygen species generation (Vafai and Mootha, 2012;
Tsushima et al., 2018). Mitochondria dynamics (Figure 1) is closely related to cell
proliferation. Previous evidence has set a link between mitochondria dynamics and cell
proliferation; high levels of mitochondrial fission are associated with active proliferation
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FIGURE 1 | Mitochondria dynamics and Mfn-2 structure. Mfn-2 is one of the main factors regulating mitochondrial fusion. The N-terminal of Mfn-2 is the GTPase
domain. There are two HR domains and two transmembrane domains.

(Chen and Chan, 2017). Mitra et al. (2009) reported that
maintaining mitochondria in hyperfused morphology could
regulate the cell transition from G1 to S phase. In addition,
the number of mitochondria throughout the cell cycle is mostly
constant, which is attributed to mitochondria dynamics to
a great extent (Carlton et al., 2020). Oncocytes could alter
mitochondria dynamics to support their proliferation property
(Senft and Ronai, 2016).

Research in the past two decades or so have revealed that
the mechanisms of mitochondrial dynamics are regulated by a
group of highly conserved guanosine triphosphatases (GTPase)
(Misaka et al., 2002; Rojo et al., 2002; Son et al., 2017). Mitofusin
1 (Mfn-1) and mitofusin 2 (Mfn-2) control the fusion of the
outer mitochondrial membrane (OMM), while optic atrophy
1 (OPA1) regulates the fusion of the inner mitochondrial
membrane. Mitochondrial fission is under-controlled by the
dynamic-related protein 1 (Drp1), which interacts with several
OMM proteins, such as Mid51 and Mid49. Mfns are outer
mitochondria membrane proteins, with GTPase domain in the
N-terminal, followed by a hydrophobic heptad repeat (HR1),
the transmembrane anchor, and HR2. Mfns anchored to OMM
by the C-terminal binding domain, and the N-terminal domain
extruded to the cytoplasm (Fritz et al., 2001; Rojo et al., 2002;
Figure 1). Mammalian Mfn-1 and Mfn-2 shared about 80%
similarity, consisting of 737 and 757 amino acids, respectively.
However, Mfn-1 exhibited higher GTPase activity than Mfn-
2, while Mfn-2 exhibited higher GTP affinity. It is reported
that Mfn-1 functions in mitochondria tethering, while Mfn-2
has other distinct functions in addition to the fusion reaction
(Ishihara et al., 2004). For example, Mfn-2 has been reported
to be involved in PINK/Parkin-mediated mitophagy process

(Chen and Dorn, 2013). Mfn-2 is one of the first proteins
identified to mediate the tethering of endoplasmic reticulum
(ER) and mitochondria in mammals (Vance, 1990). This domain,
named mitochondria-associated membranes (MAM), has been
the new frontiers in bioenergetics and biophysical studies of
intracellular organelles. ER lost its physiological morphology,
and the ER–mitochondria interaction was disrupted after Mfn-
2 ablation (de Brito and Scorrano, 2008). Increasing evidence
has indicated that MAM is closely related to cell proliferation in
various diseases (Wang et al., 2009; Danese et al., 2017; Yang et al.,
2019). Comparing with Mfn-1, Mfn-2 may play a vital role in cell
proliferation via various pathways.

In this review, we summarized recent advancements in the
study of mitochondrial fusion protein Mfn-2. We focus on the
link between altered Mfn-2 and pathological cell proliferation.

OVERVIEW OF MITOFUSIN-2 AND CELL
PROLIFERATION

Current evidence indicates that Mfn-2 plays various roles in
many cellular processes, including cell proliferation and cell
death (Chen et al., 2004; Wang et al., 2010; Zhao et al., 2012).
Chen et al. (2004) found that Mfn-2 expression decreased
in proliferative vascular smooth muscle cells (VSMCs), and
overexpression of Mfn-2 could inhibit this proliferation
process. Mfn-2 dysfunction has been associated with a
variety of pathological conditions, including diabetes mellitus
(Hernández-Alvarez et al., 2010), obesity (Bach et al., 2003),
Charcot–Marie–Tooth disease (Züchner et al., 2004; Misko
et al., 2012), atherosclerosis, hypertension (Chen et al., 2004),
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FIGURE 2 | Signaling pathways mediate cell proliferation in various diseases.

and cancer (Zhang et al., 2013; Xu et al., 2017). Collectively, the
results of these studies have depicted Mfn-2 as a hyperplasia
suppressor gene. In addition, energy is required in cell
proliferation; in G1/S phase, mitochondrial elongation requires
a higher amount of ATP to sustain cell duplication (Mitra
et al., 2009). Mitochondria with intact structure are vital to
supply enough ATP in this process, and Mfn-2 is necessary to
maintain mitochondrial membrane potential, cellular oxygen
consumption, etc. According to Sara’s research (Pich et al., 2005),
the role of Mfn-2 in mitochondrial nutrient oxidation is a fusion-
independent function. Mitochondria fusion is also necessary
to maintain the stoichiometry of the protein components of
mtDNA replisome. Mfn-2 mutation could cause diseases due to
mtDNA depletion, disrupting mouse embryo fibroblast (MEF)
proliferation and postnatal heart development (Silva Ramos
et al., 2019). Here a more detailed discussion of how Mfn-2
regulates cell proliferation is provided (Figure 2).

MITOFUSIN-2 AND ATHEROSCLEROSIS

Atherosclerosis is the main cause of cardiovascular diseases. It has
been clearly demonstrated that the development and progression
of atherosclerosis involve inflammation, abnormal proliferation

of VSMCs, remodeling of the vascular wall, and evolution of
occlusive plaques.

It is reported that the antiproliferative effect of Mfn-2
in serum-evoked VSMC proliferation was mediated via the
inhibition of Erk/mitogen-activated protein kinase (Erk/MAPKs)
signaling followed by cell cycle arrest. Cell transition from G0/G1
phase to S phase is one of the important characteristics for
proliferation. EdU assay indicated that downregulation of Mfn-
2 resulted in a significant decrease of G0/G1 phase cells and
a synchronous increase of the percentage of S-phase cells in
homocysteine-induced VSMCs, and overexpression of Mfn-2
obtained the contrary results, suggesting that cell cycle arrest at
G0/G1 phase is responsible for the anti-proliferation effects of
Mfn-2 (Xu et al., 2019). Two related mechanisms involved in
this process were reported: one is that Mfn-2 could bind and
inhibit the proto-oncogene Ras directly via its p21 Ras-binding
domain in the N-terminal to control cell proliferation (de Brito
and Scorrano, 2009), while Mfn-2 mutant lacking amino acids
77–91 failed to pull down Ras, with no effect on its function in the
regulation of mitochondria fusion (de Brito and Scorrano, 2009);
the other is that Mfn-2 regulates NAD/NADH ratio to control
the transition of cell phase (Li et al., 2015). Infection with Mfn-
2 adenovirus could increase NADH level and reduce NAD level,
blocking the cell cycle at G0/G1 phase.
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The accumulation of cholesterol-containing low-density
lipoproteins in the intima and endothelium promotes the
recruitment of monocytes, which then differentiate into
macrophages and initiate inflammatory activation. Inflammation
cells release various cytokines and growth factors, the most
powerful factors, such as platelet-derived growth factor (PDGF)
and its receptors, inducing VSMCs to transform from quiescent
state to secretion and proliferation state via many signaling
pathways, such as MAPK, PI3K/Akt, etc. (Wang et al., 2018).
One remarkable characteristic of this process is migration of
VSMCs from the media to the intima, contributing to neo-intima
formation. In addition, various inhibitors in the process of
inflammation could inhibit VSMC proliferation (Uhrin et al.,
2018). In Feng’s study, Mfn-2 expression was downregulated in
proliferative VSMC primary cells treated with PDGF. Down-
regulated Mfn-2 promotes cell proliferation and migration rate
not only in PDGF-induced VSMCs but also in arterial smooth
muscle cells (ASMCs) mediated by microRNA (miRNA) miR-31
(Huang et al., 2018), which targets the 3′UTR of Mfn-2 and
downregulates its expression.

In patients diagnosed with type 2 diabetes, the incidence of
atherosclerosis is high, and the expression of Mfn-2 in the muscle
decreased; similar results are also observed in high-fat-diet
mice. In addition, increasing the level of Mfn-2 could alleviate
insulin resistance (Gan et al., 2013) through increasing the
phosphorylation levels of PI3K-P85 and AKT2 insulin signaling
pathways. Previous studies have identified that nuclear receptor
superfamily member peroxisome proliferator-activated receptor-
γ (PPARγ) is involved in atheromatous inflammation through
the extracellular signal-regulated ERK/MAPKs and p38/MAPK
pathways (Chen et al., 2004; Monsalve et al., 2013; Nagy et al.,
2013; Yang et al., 2012). Liu et al. (2014) found that Mfn-2
inhibited atherosclerotic plaque formation by increasing PPARγ,
and this process may be partially regulated by inactivation
of the ERK1/2 and p38/MAPKs pathways. Xu et al. (2019)
showed that, in homocysteine (Hcy)-induced atherosclerosis,
c-Myc expression was increased, and it bound DNMT1 promoter
to cause DNA hypermethylation of the Mfn-2 promoter, resulting
in aberrant Mfn-2 transcription that led to VSMC proliferation.

As mentioned above, Mfn-2 is crucial in maintaining MAM
structure. MAM is the central platform for the initiation of
mitophagy and the formation of autophagosome (Hailey et al.,
2010; Hamasaki et al., 2013). Chen and Dorn (2013) has linked
Mfn-2 with PINK-Parkin-mediated senescent mitochondria
elimination. In their model, PINK phosphorylates Mfn-2 to
recruit Parkin to mitochondria, and Parkin, in turn, mediates
Mfn-2 ubiquitination and initiates mitophagy. The effects of
mitophagy on VSMC survival in response to stimuli in the
pathogenesis of vascular disorders have been investigated in
numerous studies (Culley and Chan, 2018; Marshall et al., 2018).
He et al. (2019) reported that apelin-13 could induce VSMC
proliferation and exacerbate atherosclerosis. PINK1/Parkin-
mediated mitophagy could promote this process. In addition, a
study on miR-145 found that the autophagy level was increased
in the carotid intima hyperplasia in C57BL/6J mice (Wang et al.,
2020), and activation of autophagy could stimulate aortic VSMC
proliferation in metabolic hypertension rats (Wen et al., 2019).

Although there is no direct evidence that Mfn-2 regulates
cell proliferation via autophagy, considering the role of Mfn-
2 in the maintenance of MAM, more studies are required to
provide evidence linking Mfn-2-mediated autophagy with VSMC
proliferation in the future.

MFN-2 AND PULMONARY
HYPERTENSION

Pulmonary hypertension is another pathological condition
attributed to VSMC proliferation. Pathophysiological changes
involve all three layers of pulmonary arteries during vascular
remodeling. For instance, endothelial angiogenesis, smooth
muscle cell hyperplasia and hypertrophy, adventitial fibroblast
proliferation, myofibroblast differentiation, and extracellular
matrix deposition have all been reported (Howell et al.,
2003; Wilkins et al., 2015). The excessive proliferation and
impaired apoptosis of pulmonary artery smooth muscle cells
(PASMCs) contribute to vascular obstruction in pulmonary
hypertension patients.

The role of Mfn-2 in pulmonary hypertension is complicated.
Zhang et al. (2012) reported that hypoxia induced Mfn-
2 expression and knock-down Mfn-2 suppressed hypoxia-
induced PASMCs proliferation through the PI3K/Akt signaling
pathway. However, other studies indicated that the expression
of Mfn-2 was decreased in pulmonary hypertension models,
and increasing the Mfn-2 level may be a therapeutic strategy
(Ryan et al., 2013, 2015; Fang et al., 2016; Lu et al., 2016).
Deletion of thrombospondin motifs 8 (ADAMTS8), a secreted
protein specifically expressed in the lung and the heart,
reduced PASMC proliferation with Mfn-2 upregulation and
mitochondrial function improvement (Omura et al., 2019).
Downregulation of Mfn-2 may cause more cells to enter the
S + G2/M phase of the cell cycle and inhibit the mitochondrial
apoptosis pathway. These effects were reversed in PASMCs by
Mfn-2 overexpression (Roy et al., 2009), indicating that Mfn-2
could be a therapeutic target in pulmonary hypertension (Ryan
et al., 2013). While these discrepancies need to be resolved in
future studies, it is clear that Mfn-2 is a critical regulator for
pathological pulmonary hypertension.

Recent studies revealed that miRNAs play an important role
in the pathogenesis of pulmonary hypertension by regulating
ASMC proliferation (Thum et al., 2008; Roy et al., 2009;
Bauersachs, 2010; Castoldi et al., 2012; Chen et al., 2014). Several
miRNAs have been identified to participate in fibrosis and
smooth muscle cell proliferation via targeting Mfn-2 directly.
Huang et al. (2018) reported that the expression level of miR-
31 was increased significantly in the arterial walls of patients
with atherosclerosis obliterans. In addition, miR-31 promoted
the proliferation and migration of human arterial smooth
muscle cells, at least partially, through directly interacting with
Mfn-2. In another study, Lu et al. (2016) revealed that miR-
17 was upregulated in human PASMCs from patients with
pulmonary artery hypertension, and the function of miR-17 in
PASMC proliferation and apoptosis was partially mediated by
downregulation of Mfn-2.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 April 2021 | Volume 9 | Article 647631

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-647631 March 26, 2021 Time: 17:41 # 5

Xin et al. Mfn-2 and Pathological Cell Proliferation

MITOFUSIN-2 AND
FIBROPROLIFERATIVE DISEASES

Fibroblasts are a crucial component of connective tissues
in various organs. Fibroblast activation and proliferation is
characterized by an excessive accumulation of fibrous connective
tissues in response to various stimuli (Kendall and Feghali-
Bostwick, 2014). Fibrosis is a key pathological process in the
development of various fibroproliferative diseases, such as
cardiovascular fibrosis, pulmonary fibrosis, liver cirrhosis,
systemic sclerosis, and kidney fibrosis. Fibroblasts produce the
structural proteins of extracellular matrix (ECM), such as fibrous
collagen (Kendall and Feghali-Bostwick, 2014). Fibroblast
activation and proliferation may cause the accumulation
of ECM’s components, ultimately leading to disruption of
the architecture in various tissues and dysfunction of the
organs, such as end-stage liver disease and kidney failure.
Mfn-2 could inhibit non-alcoholic fatty liver by interacting
with phosphatidylserine (PS) directly. Mfn-2 deficiency could
reduce PS transfer from the ER to the mitochondria, inducing
mitochondrial dysfunction (Hernandez-Alvarez et al., 2019).
Knockdown of Mfn-2 could rescue mitochondria Ca2+

transfer and inhibit cell proliferation in kidney cysts (Kuo
et al., 2019). In addition, overexpressed Mfn-2 could alleviate
glomerular mesangial cell proliferation via the MAPK/ERK
and PI3K/Akt pathways (Wan-Xin et al., 2012; Chen et al.,
2019). Mfn-2 regulates mitochondria fusion and intracellular
lipid metabolism, which are tightly linked with lung fibrosis
(Chung et al., 2019). Prediabetes is a common pathological
condition characterized by increased ventricular mass and
wall thickness, in which fibroblast proliferation is one of
the key factors. Although this is a complicated biological
process, Mfn-2 is considered to play a vital role in this process
(Koncsos et al., 2016).

Endoplasmic reticulum stress (ERS) is a cellular state in
which the protein folding capacity of ER is overwhelmed due
to increased protein load or disruption of the protein folding
environment (Berridge, 2002). It has been reported that ERS
is involved in fibroblast activation and proliferation in many
organs such as the liver (Shin et al., 2013), heart (Spitler and
Webb, 2014), kidney (Chiang et al., 2011), and lung (Baek et al.,
2012). Previous reports also identified the relationship between
Mfn-2 and ERS. For example, in cardiac fibrosis, we found
that the expression of Mfn-2 was decreased, and upregulating
Mfn-2 inhibited fibroblast proliferation via the p-PERK/ATF4
pathway but not the IREα/Xbp1s or c-ATF6 signaling pathway
(Xin et al., 2019). Ngoh et al. (2012) and Muñoz et al.
(2013) also reported that Mfn-2 was an ERS-inducible protein.
Philippe and Gary wrote a review discussing the role of Mfn-
2 in inflammation-induced ERS (Delmotte and Sieck, 2019).
Downregulation of Mfn-2 aggravated ERS, attributing to the
proliferation of airway smooth muscle.

A study from Sun et al. (2015) showed that miR-214 mediated
ISO-induced proliferation and collagen synthesis in cardiac
fibroblasts through directly targeting Mfn-2 and activating the
downstream ERK1/2 MAPK signaling pathway.

MITOFUSIN-2 AND CANCER

Abnormal cell proliferation could lead to the destabilization
of chromosomal and genetic organization, resulting in the
formation of neoplasm. This effect is regulated by a series of
genes. Mutation of the genes will drive cells into tumor cells.
The increase in glucose uptake and enhanced glycolytic rates
indicate that metabolic alteration provides growth advantages
for tumor cells (Lunt and Vander Heiden, 2011). In addition,
tumor cells may exert different metabolic ways from normal
cell proliferation. Warburg noticed that tumor cells exhibit a
high rate of glycolysis even in the presence of oxygen (aerobic
glycolysis) (Ortega et al., 2009). Some types of cancer, such as
bladder cancer, cervical cancer, and breast cancer, are associated
with altered mitochondrial morphology and metabolism (Filadi
et al., 2018). The expression level of Mfn-2 is usually decreased
in various types of cancer, and increasing Mfn-2 expression can
suppress cell proliferation (Rehman et al., 2012), indicating that
Mfn-2 is a tumor suppressor. One mechanism by which Mfn-
2 suppresses cancer cell proliferation is inhibiting the metabolic
flux to aerobic glycolysis by interreacting with pyruvate kinase 2
(PKM2) via the N-terminus (Li et al., 2009); phosphorylation of
Mfn-2 enhances this interaction. Rictor is a subunit of mTORC1;
Rictor deletion could block mitochondrial OXPHOS. Xu’s recent
work showed that Mfn-2 plays a vital role in the inhibition of
the mTORC2/Akt signaling pathway through the interaction with
Rictor by binding its HR1 domain in breast cancer patients.
Mfn-2 knockdown could enhance growth in breast cancer. All
these evidence indicated that the mTORC/AKT pathway is closely
linked with Mfn-2 in pathological cell proliferation.

Under physiological conditions, mitochondria take up
calcium mainly from the ER. Calcium is released through
inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and ryanodine
receptors (RyRs) on the ER membrane (Marks, 1997) and enters
mitochondria through voltage-dependent anion channels
(VDACs). The relationship between calcium signaling pathway
and cancer has been discussed in detail in previous reviews
(Ivanova et al., 2017; Marchi et al., 2018). In this process, MAM
play a vital role (Ivanova et al., 2017) because these harbor key
calcium handling proteins such as IP3R, VDACs, and sigma-1
receptors (Hayashi and Su, 2007). In 2008, de Brito and Scorrano
(2008) showed that Mfn-2 was required for mitochondrial
calcium uptake, and Mfn-2 knockout MEFs exhibited a reduced
calcium uptake rate. In addition, translation of the calcium
signals is necessary for the regulation of cell death and survival.
Lower ER calcium content could arouse the expression of anti-
apoptotic protein expression, such as Bcl-2 (Pinton et al., 2001).
Mfn-2 could restore calcium homeostasis and downregulate ER
stress in mouse neuroblastoma N2a cells.

Besides the regulation of intracellular calcium transportation,
Mfn-2 may also regulate other signaling pathways for cell
proliferation. Transcription factor SP1 plays an essential role
in the expression of PITPNM3 in cancer cells, and Mfn-2
was reported to have anti-tumor activity by interacting with
transcription factor SP1 directly (Tang et al., 2020). Pang et al.
(2019) found that Mfn-2 inhibited cell proliferation via the
Wnt/β-catenin pathway in bladder cancer. Mfn-2 knockdown
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increased the translocation of β-catenin into the nucleus,
resulting in larger tumor volumes and a higher proliferation
index. Pharmacological inhibition of the Mfn-2/mTORC2/Akt
pathway attenuated tumor growth (Xu et al., 2017). Several
other studies also indicated that Mfn-2 interacted with the
proapoptotic Bcl-2 family members Bax and Bak (Suen et al.,
2008; Li et al., 2020).

FUTURE DIRECTIONS

Despite the significant advancements that deepened our
understanding of the structure and functions of Mfn-2, several
key questions remain to be elucidated:

(1) Although some evidence indicated that, in addition to
fusion reaction, Mfn-2 has been reported to regulate
cell proliferation via various signaling pathways, there
are currently no studies that figured out whether these
pathways are related to mitochondria fusion. More studies
on this topic may be necessary in the future.

(2) Although there are many evidence about the role of Mfn-2
in neoplastic diseases, the microenvironment may change
the impact of Mfn-2 in different types of cancers. In the
future, a more detailed analysis of Mfn-2 may be necessary.

(3) Could altered Mfn-2 act as a potential biomarker in
pathogenesis?

CONCLUSION

The machineries of mitochondrial fusion/fission and the
significance of mitochondrial dynamics in regulating

mitochondrial and cellular functions have been established. The
mitochondrial fusion protein Mfn-2 regulates mitochondrial
morphology, metabolism, calcium homeostasis, and mtDNA
stability. Mfn-2 also plays a role via MAM formation and
mitophagy to regulate cell proliferation and cell survival/death
in different tissues. Many important questions await extensive
investigation. In the future, studies on the role of Mfn-2
in cell proliferation may lead to the development of new
strategies for treating various diseases, such as cancer and
cardiovascular diseases.
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