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Lung adenocarcinoma is one of the most malignant diseases worldwide. The immune

checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed

cell death-ligand 1 (PD-L1) have changed the paradigm of lung cancer treatment;

however, there are still patients who are resistant. Further exploration of the immune

infiltration status of lung adenocarcinoma (LUAD) is necessary for better clinical

management. In our study, the CIBERSORT method was used to calculate the infiltration

status of 22 immune cells in LUAD patients from The Cancer Genome Atlas (TCGA).

We clustered LUAD based on immune infiltration status by consensus clustering.

The differentially expressed genes (DEGs) between cold and hot tumor group were

identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis were performed. Last, we constructed a Cox regression model. We

found that the infiltration of M0 macrophage cells and follicular helper T cells predicted

an unfavorable overall survival of patients. Consensus clustering of 22 immune cells

identified 5 clusters with different patterns of immune cells infiltration, stromal cells

infiltration, and tumor purity. Based on the immune scores, we classified these five

clusters into hot and cold tumors, which are different in transcription profiles. Hot tumors

are enriched in cytokine–cytokine receptor interaction, while cold tumors are enriched

in metabolic pathways. Based on the hub genes and prognostic-related genes, we

developed a Cox regression model to predict the overall survival of patients with LUAD

and validated in other three datasets. In conclusion, we developed an immune-related

signature that can predict the prognosis of patients, which might facilitate the clinical

application of immunotherapy in LUAD.
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INTRODUCTION

Lung cancer is the most common fatal disease in the world,
causing most cancer-related death every year. Eighty-five percent
of lung cancer are non-small cell lung cancer (NSCLC)
(Siegel et al., 2020). As the most frequently diagnosed subtype
of NSCLC, lung adenocarcinoma (LUAD) has high inter-
/intratumor heterogeneity, and its carcinogenic mechanisms
have not been fully illustrated (Calvayrac et al., 2017). Before
the introduction of immunotherapy, the outcomes of LUAD
patients were dismal due to its malignant nature and limited
effect of chemotherapy. However, with the rapid development of
immune checkpoint inhibitors and target therapy, the prognosis
of patients has improved significantly (Herbst et al., 2018). To
diagnose and treat patients more precisely and economically,
effective and stable models that can predict and stratify the
prognosis of LUAD patients is warranted (Tang et al., 2017).

The introduction of immunotherapy revolutionized the
paradigm of cancer treatment, and it brought hope to patients
who were formerly untreatable and improved the survival
status of many LUAD patients (Doroshow et al., 2019).
However, there are still some patients who are resistant
to and cannot benefit from immune check point blocker
(ICB). Among patients who are resistant to ICB, some of
them do not respond to immunotherapy (innate resistance),
and others initially respond to ICB but turned to be
insensitive as the disease progresses (acquired resistance)
(Pitt et al., 2016). One of the main mechanisms underlying
the immunotherapy resistance is immune evasion, which is
utilized by tumor cells to escape the immune surveillance and
elimination (Vinay et al., 2015; Herbst et al., 2018). Under
this aberrant situation, immune responses aroused by the
tumor antigen can be suppressed in tumor microenvironment
(TME), which is dynamic and complex, consisting of several
immune cells, stromal cells, cytokines and chemokines, and
extracellular molecules, and immune cell infiltration status is
the key determinant of TME (Altorki et al., 2019). Like a
double-edged sword, TME is able to lead to both beneficial
and adverse consequences in tumorigenesis, and TME can
change continually in the process of tumor progression
(Quail and Joyce, 2013).

The development of next-generation sequencing enabled us
to characterize tumor heterogeneity from the gene level, and
the public databases such as TCGA provide us with a chance
to guide and design basic experiments (Devarakonda et al.,
2015). Using bioinformatic technology, we can analyze the
immune infiltration in tumors and calculate the value of the
immune/stromal score for LUAD.

In our study, we calculate 22 immune cells in LUAD and
identified 5 clusters of LUAD based on the infiltration status
of immune cells. To further explore the mechanism behind the
infiltration of immune cells, we defined two groups, cold tumor
and hot tumor, based on the five clusters. We developed a Cox
regression model based on the DEGs and made validation in
three external cohorts. Overall, we are the first to classify patients
in LUAD based on immune cell infiltration retrieved from TCGA
and construct a stable predicting model for survival of LUAD

patients. Our findings may give guidance to the application of
immunotherapy and facilitate the clinical management of LUAD.

MATERIALS AND METHODS

Data Collection
The RNA-sequencing data and clinical information of LUAD
were downloaded from UCSC XENA (http://xena.ucsc.edu/).
The RNA-sequencing data for LUAD with immunotherapy
were downloaded from the platform supplied in the articles
(Hugo et al., 2016; Riaz et al., 2017; Mariathasan et al.,
2018). The processed count data of the bladder cancer were
download from an online website (http://research-pub.gene.
com/IMvigor210CoreBiologies/) supplied in the article. The
processed count and fragments per kilobase of transcript
per million mapped reads (FPKM) data were downloaded
from the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/) with accession numbers: GSE78220
and GSE91061. These three data sets were transformed
into transcripts per million (TPM) and made a log(x +

1) normalization.

Immune Infiltration Estimation
The estimation of 22 immune cells of LUAD was calculated by R
package “CIBERSORT;” the samples with p < 0.05 were included
for further analysis (Newman et al., 2015; Thorsson et al., 2018).
The 28 immune cells were calculated by R package “ssGSEA”
with supplied cell makers (Tamborero et al., 2018). The six-
cell types were accessed from an online tool TIMER (https://
cistrome.shinyapps.io/timer/) (Li et al., 2020). The R package
“ESTIMATE” was applied to calculate the immune score, stromal
score, and tumor purity. To explore the immune infiltration in
LUAD, we used CIBERSORT to calculate the proportion of 22
immune cells and revealed the function of immune infiltration
through multiple strategies.

Differentially Expressed Genes Selection
The samples were divided into two main groups based on the
immune score and immune cell infiltration. The R package
“limma” was used to calculate DEGs with criteria as follows:
logFC > 1 or <-1 and adjust p < 0.05. Visualization of DEGs
was conducted by volcano diagram and heatmap.

Enrichment and Protein–Protein Network
Analysis
For the enrichment analysis, genes with p < 0.05 that
were differentially expressed in hot and cold tumors were
selected. We use the R package “clusterprofile” to perform
GO enrichment categories. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID, https://david.
ncifcrf.gov/), an online tool, was used to perform KEGG pathway
analysis. STRING (https://string-db.org/) was used to conduct a
protein–protein interaction (PPI) network and further visualized
by Cytoscape.
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Consensus Clustering
The consensus clustering of 22 immune cells was performed by
the R packages “ConsensusClusterPlus” with reps = 100, pItem
= 0.8, and pfeature = 1. The optimal number of clusters is
determined by heat map and delta diagram.

Construction of Predicting Model
The LUAD RNA-sequencing data with survival information were
randomly divided into training and testing cohort by R package
“caret.” Genes differently expressed in hot and cold tumors were
used to perform univariate survival analysis, and genes with p <

0.05 were selected. Then, the R packages “glmnet” was used to
perform least absolute shrinkage and selection operator (LASSO)
analysis. To optimize the model, a step-wised proportional
hazards model was used. The survival analysis was analyzed by R
packages “survival,” and receiver operating characteristic (ROC)
was analyzed by R package “survivalROC.”

Statistical Analysis
All analyses used in this study were performed by R software
(version 3.5.1). For the analysis of the correlation of immune
infiltration and clinical–pathological parameters, cells were
divided into two groups based on the clinical parameters, and
chi-square test was used to analyze the correlation. WilcoxTest
was used to compare the infiltration of immune cells in normal
and tumor tissues, as well as in cold and hot tumors. ANOVA
was used to compare immune score, stromal score, and tumor
purity among the five clusters. For the survival analysis, p-value
was calculated with log-rank test. p < 0.05 was considered as
statistically significant.

RESULTS

Correlation of Immune Infiltration and
Clinical Parameters in LUAD
The design and process of our study are shown in the flow chart
in Figure 1. Survival analysis revealed that higher infiltration
of dendritic cells, mast cells, monocytes, and plasma cells
was associated with better overall survival of patients, while
macrophages predicted an unfavorable outcome. In terms of
progression-free interval (PFI), higher infiltration of dendritic
cell, mast cell, monocyte, CD4+ T cell, and regulatory T cell
(Tregs) were significantly correlated with longer survival, while
follicular helper T cell points to negative prognosis. These results
indicate that immune cells status can reflect tumor features, and
the infiltration of immune cells has prognosis predicting function
(Figure 2).

Different Immune Cell Infiltration Patterns
in Normal and Tumor Tissues
We analyzed the proportion of immune cells in tumors and
normal tissues, respectively, to explore the infiltration of immune
cells. Heterogeneity of LUADwas shown by the different ratios of
each cell type (Figures 3A,B). Then, we compared the infiltration
of immune cells in tumors and normal tissues. Results showed
that several cells involved with tumor immunity have higher
immune infiltration level in tumor tissues, including naive B

cell, memory B cell, plasma cell, CD8+ T cell, activated CD4+

memory T cell, follicular helper T cell, regulatory T cell, M1
macrophage cell, and resting dendritic cell. In contrast, some
types of cells in the resting status are abundant in normal tissues,
including natural killer (NK) resting cell, mast resting cell, and
resting CD4+ memory T cell. These results indicate that most
immune cells accumulated in tumor tissues are in response to the
tumor neoantigen (Figure 3C).

Correlation of Immune Cells in Tumors and
Normal Tissues
Cancer immune interaction is a process that involves multiple
cell types, so it is important to characterize the synergistic or
antagonistic relationships between different cells. Therefore, we
performed a correlation analysis of the 22 immune cells in tumors
and normal tissues. In tumor samples, we found that CD8+ T
cells were positively associated with activated memory CD4+ T
cell, follicular helper T cell, and M1 macrophage cells, indicating
the cooperation among these cells. On the contrary, results
showed that CD8+ T cells were negatively correlated with M2
macrophage cells in tumor samples, indicating that M1 and M2
macrophage cells exhibit different ability in regulating immune
responses mediated by CD8+ T cells. Generally, immune cells
showed much weaker correlation in normal samples compared
with tumor samples. In normal samples, we found that naive B
cells were positively correlated with regulatory T cells, plasma
cells, and regulatory T cells, while follicular helper T cells
were negatively associated with resting NK cells and activated
dendritic cells.

Among all 22 immune cell types, CD8+ T cells are the cell type
that has diverse relationships with other cell types, indicating its
pivotal role in immune regulation of LUAD. Positive correlations
were also found between naive B cells and plasma B cells; mast
cells and neutrophil were also positively correlated, suggesting
a synergistic relationship between them (Figures 4A,B). Delta
results and heatmap revealed that the LUAD could be divided
into five clusters according to the different immune infiltration
patterns (Figures 4C,D).

Immune Subtyping of LUAD
Heatmap was performed to show the distribution of 22 immune
cells in the 5 clusters in LUAD. Cluster 1 was mainly enriched
in adopted immune cells, which were naive B cells and plasma
cells. Cluster 2 was highly enriched in M0 macrophages of
innate immune and activated NK cell and follicular helper
T cell of adopted immune. Cluster 3 was strongly enriched
in M2 macrophage and moderately enriched in neutrophils,
resting dendritic cells, and resting mast cells. Cluster 4 was
highly enriched in resting memory CD4+ T cells. Cluster 5
was mainly enriched in several kinds of T cell, including CD8+

T cell, activated memory CD4+ T cell, Tregs, follicular helper
T cells, and two cell types from innate immune, which are
M1 macrophages and activated NK cells, suggesting that innate
immune and adopted immune may have a synergistic effect in
the immune interaction (Figure 5A). The immune score, stromal
score, and tumor purity were calculated to further profile the
five clusters. Consistent with heatmap, cluster 5 had the highest
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FIGURE 1 | Schematic flowchart showed the analysis strategy.

immune score among all five clusters; while it had the lowest
tumor purity, its stromal score was lower than that of cluster 4.
The immune scores of the five clusters increased from cluster 1
to 5; consistent with this, the tumor purity of the five clusters
decreased from cluster 1 to 5 gradually. The same tendency can be
found in the stromal score, but cluster 4 had the highest stromal
score (Figures 5B–D).

Differences in Hot and Cold Tumor
Hot tumors indicate tumors that have high immune infiltration;
accumulating evidence has suggested that patients with hot
tumors are more likely to benefit from immunotherapy. On the
contrary, cold tumor with a low level of immune infiltration is
prone to be resistant to ICB (Jiang et al., 2018; Mariathasan et al.,
2018). Results showed that clusters 4 and 5 had higher immune
scores than other clusters; although there are several immune
cells enriched in clusters 1–3, they lacked the enrichment of
CD8+ T cells, which was an important cell type related to
immune therapy response. To further elaborate the mechanism
that dictates the immune cell infiltration in tumors, we divided
the five clusters of LUAD into two major groups: clusters 1–3
were cold tumors; clusters 4 and 5 were hot tumors. First, we
estimate and compare immune cell infiltration levels in the cold
and hot tumor groups. Both methods showed that compared
to cold tumors, antigen-presenting cells and other important
immune cells are highly infiltrated in hot tumors, which further
approve our definition of LUAD (Figure 6A). Then, we explored
the difference between the two groups at the transcriptional
level. Volcano and heatmap showed that hot and cold tumors

are different in transcription patterns (Figure 6B). Consistent
with all above the results, immune-related genes were highly
expressed in hot tumor, for instance, CXCL9, TCL1A, CCL19,
CXCL13, MS4A1, and C4orf7. Although few immune-related
genes had a high expression in cold tumor, such as MMP8, most
genes highly express in cold tumor are not so closely related to
immune responses, including CGA, INHA, IBSP, and CHRNA9
(Figure 6B). Both two steps showed that compared to cold
tumors, antigen-presenting cells and other important immune-
related factors are highly infiltrated in hot tumors, which further
approve our definition of them (Figures 6A,B).

We conducted Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis to further
confirm the high immune activation level in hot tumors.
We found that cytokine–cytokine receptor interaction, allograft
rejection, and antigen processing and presentation were enriched
in the hot tumor. In the cold tumor, the DEGs were mainly
enriched in metabolic pathways, biosynthesis of antibiotics, and
neuroactive ligand–receptor interactions. These results suggest
that metabolism may influence the immune status of the tumor
(Figures 6C–F).

Identification of Hub Genes for Prognostic
and Construction of Predicting Model
PPI network analysis was performed to further explore the
function of DEGs between hot and cold tumors, and then, we
identified hub genes through MCODE in Cytoscape software.
The top 10 hub genes in hot tumors mainly regulate the activity
of immunocyte chemotactic factors such as CXCL10 and CCL5.
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FIGURE 2 | Correlation of immune infiltration and clinical parameters in lung adenocarcinoma (LUAD). (A) Forest plot showed the correlation of immune infiltration and

overall survival (OS). (B) Forest plot showed the correlation of immune infiltration progression-free interval (PFI). (C–G) The Kaplan–Meier diagram showed the

correlation of infiltration of immune cells and overall survival (OS).

The top genes in cold tumor are ARF1, PDIA3, ALDOA, FKBP2,
NDUFS5, NDUFC1, COX7A2, C14orf2, LNX1, and BTBD6
(Figures 7A,B).

To evaluate the value of these genes in predicting survival in
LUAD, we used the TCGA dataset as a training cohort based
on the equal mortality rate. Then, we used a LASSO regression

model to identify genes that predict the overall survival in
the training cohort. Meanwhile, we also performed a stepwise
multi-Cox regression model to identify the genes with the
strongest predicting ability. We identified a gene set containing
nine genes, in which seven of eight genes were unregulated
in the hot tumor, and one of eight was unregulated in the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 651406

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Zheng et al. Immunoinfiltration in Lung Adenocarcinoma

FIGURE 3 | Immune cell infiltration pattern in tumor and normal tissue. (A) Barplot showed the distribution of 22 immune cells in normal tissue. (B) Barplot showed

the distribution of 22 immune cells in tumor tissue. (C) Boxplot showed the 22 immune cells infiltration in normal and tumor tissue.
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FIGURE 4 | Correlation of immune cells in the tumor and normal tissues. (A) Corrplot showed the correlation of 22 immune cells in tumor tissues. (B) Corrplot showed

the correlation of 22 immune cells in normal tissues. (C) Heatmap showed the clusters of immune cells. (D) Delta diagram showed the clusters with under area.

cold tumor; the details in the formation of the nine genes are
listed in Figure 7E. We also calculated a risk value as follows:
risk value = (−0.1773 × PLEKHB1 expression) + (−0.2011 ×

LY75 expression) + (0.08690 × PHGR1 expression) + (0.4450
× TMEM194B expression) + (00.1999 × APOL1 expression)

+ (−0.1034 × PPP2R2B expression) + (−0.1767 × CD160
expression) + (−0.2573 × GPR31 expression) + (−0.2125 ×

CLEC12B expression). This formula was used to calculate the
risk score for each patient in the TCGA and validation cohort
(Figures 7C–E).
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FIGURE 5 | Immune subtyping of lung adenocarcinoma (LUAD). (A) Heatmap showed the immune clusters of LUAD. (B–D) Expression of the immune score, stromal

score, and tumor purity in the five clusters.

Validation of Predicting Model for Overall
Survival
As we mentioned before, we use TCGA data as a training
cohort, and to further test our model, we used data generated
by previous researchers as validation cohort. We built three
validation cohorts in total. Survival status showed that the
risk score could distinguish the patients well; patients with
high-risk score showed unfavorable overall survival in both
training and three validation cohort. The areas under the
curve (AUCs) of 1, 2, and 3 years for the training cohort
were 0.76, 0.73, and 0.72, respectively. These results indicated
that the predicting model performed well in predicting overall
survival and can be used to guide the clinical management
(Figures 8A–E).

DISCUSSION

Lung cancer is a public health concern for its high morbidity
and mortality (Herbst et al., 2018). Due to the high tumor
heterogeneity and complex tumorigenic mechanism of
lung adenocarcinoma, several challenges exist in developing

individual and precise treatment strategies (Fukui et al., 2013);
therefore, robust prognosis predicting models is warranted.
Accumulating evidence has indicated that prognosis of cancer
patients was related to tumor immune infiltration level (Barnes
and Amir, 2017; Yang et al., 2019; Zhou et al., 2019), and
immune infiltration statuses in tumor microenvironment
are key determinants of tumor invasiveness and progression
(Gajewski et al., 2013; Ge et al., 2019). With the introduction
of immunotherapy, it has been well-established that ICB
changed the treatment paradigm of lung cancer, and the
application of ICB alone or ICB combined with target
therapy/chemotherapy offered hope to many patients who
were doomed to death (Karasaki et al., 2017; Mathew et al.,
2018). However, there are still patients who are initially
or gradually resistant to ICB, and their management is
still challenging (Syn et al., 2017). Heterogeneous tumor
microenvironment, which is composed of various types of cells
that regulated tumor progression, plays an important role in
drug resistance (Quail and Joyce, 2013; Wu and Dai, 2017).
Therefore, exploring the mechanisms underlying different
tumor microenvironment by profiling the cell components
are warranted.
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FIGURE 6 | Alterations of signaling in hot and cold tumors. (A) Immune infiltration in hot and cold tumors analyzed by TIMER. (B) Differentially expressed genes

between hot and cold tumors. (C,D) Gene Ontology (GO) enrichment analysis in hot and cold tumors. (E,F) Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis in hot and cold tumors. ****p < 0.001; ns, not significant.
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FIGURE 7 | Identification of hub and prognostic-related genes. (A) Protein–protein interaction (PPI) network of upregulated genes in the hot tumor. (B) PPI network of

downregulated genes in the hot tumor. (C,D) Least absolute shrinkage and selection operator (LASSO) and partial likelihood deviance coefficient profiles of the

selected genes. (E) Multivariate Cox analysis showed the hazard ratios (HRs) of selected genes with forest plots.
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FIGURE 8 | Construction and validation of risk predicting model for overall survival. (A) Survival status in the training cohort. (B) Receiver operating characteristic

(ROC) curve of 1, 2, and 3 years of the training cohort. (C–E) Kaplan–Meier survival curve showed the validation of risk predicting model in three external datasets.

In this study, we calculated the immune infiltration of 22
immune cells to comprehensively characterize the functions of
these immune cells in the biological process of LUAD. We
observed that resting dendritic cells, resting mast cells, and
monocytes were positively correlated with both overall survival
and progression-free interval of LUAD patients.

The common feature of these cells is that they are involved
in antigen presentation process directly or indirectly (Worbs
et al., 2017; Murray, 2018; Olivera et al., 2018). While M0
macrophage and follicular helper T cells are associated with
poor survival, however, the major function of follicular helper
T cells is to help B cells and participate in antibody responses
(Crotty, 2019), which seems to be opposite to poor survival. The
mechanism behind this phenomenon needs further exploration.
Survival results indicate that infiltration status of immune cells
can predict patients’ survival. In immune-inflamed tumors, we
found that several kinds of T cells including CD8+ T cells,
CD4+ T cells, regulatory T cells, and follicular helper T cells
are highly infiltrated, consistent with a previous study that T
cells are the target of immune checkpoint blocker and Chimeric
antigen receptor T cell (CAR-T) therapy, and the status of T
cells can exert strong influence on patients’ prognosis (Guo

et al., 2018). Our results also found that activated immune
cells were mainly enriched in tumor tissues, for instance the
activated memory CD4+ T cell, while naive cells, such as naive
B cells, were more abundant in the normal tissue than in
tumor tissues.

Synergy and cooperation among different immune cells are
essential in the activation of immune response; for example, the
process of antigen presentation, recruitment, and stimulation of
CD8+ T cells are involved with several cell types, chemokines
and cytokines (Sánchez-Paulete et al., 2017). We observed that
CD8+ T cells were correlated with activated memory CD4+

T cell, follicular helper T cell, and M1 macrophage cells.
However, these correlations were not seen in normal tissues,
indicating that immune activation promotes CD8+ T cells
infiltration. Previous studies have shown that cancer patients
of different immune subtypes have distinct prognosis (Denkert
et al., 2018; Li et al., 2019; Xu et al., 2020). Based on that,
we divided the LUAD into different groups according to the
infiltration of 22 immune cells. We identified five clusters with
different immune infiltration patterns. Additionally, the immune
score, stromal score, and tumor purity of the five clusters are
calculated. Immune cell enrichments of clusters 4 and 5 are
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mainly in several types of T cells, suggesting that this pattern
may be more responsive to immunotherapy. Although diversity
existed among clusters 1–3, they are similar in general for
they shared some features in immune, stromal scores, and
tumor purity. Accumulating evidence has indicated that the
diversity and density of immune cells in tumor environment play
important roles in patients’ immune response and prognosis.
Based on the status of T cell infiltration and expression of
specific cytokine, the tumor microenvironment can be simply
defined into hot and cold tumors. In our study, we redefined
clusters 4 and 5 as hot tumor group and others as cold tumor
group. Results showed that the two types of tumors behaved
differently at the transcriptome level. Consistent with the high
immune score observed in hot tumors, immune-related genes
were highly expressed in hot tumors, including CXCL9, TCL1A,
CCL19, CXCL13, MS4A1, and C4orf7. Matrix metallopeptidase
8 (MMP8) is one of the highly expressed genes in cold tumors,
and it encodes a member of the matrix metalloproteinase (MMP)
family, which is involved in the breakdown of extracellularmatrix
including extracellular molecules and a number of bioactive
molecules (Juurikka et al., 2019). Go annotations related to
this gene include metalloendopeptidase activity. It has been
reported that MMP8 behaved differently in cancers depending
on their tissue of origin and was a potential prognostic factor
(Juurikka et al., 2019). In lung cancer, MMP8 is believed to be
associated with a decreased lung cancer risk, and its profile was
distinctly different according to histological types and patient
recurrence status (Shah et al., 2010).The function of MMP8
in cold tumors needs further exploration. GO and KEGG
enrichment analysis revealed that hot tumor was enriched in
cytokine–cytokine receptor interaction and antigen processing
and presentation. As to cold tumors, the DEGs were mainly
enriched in metabolic pathways; metabolic dysfunction is the
mechanism behind many malignant behaviors of tumor (Chen
et al., 2019).

Hub genes in hot tumors mainly were involved with
immunocyte chemotaxis, such as chemotactic factors CXCL10
and CCL5; however, it was difficult to link most hub genes
in cold tumors with immune activities. Previous studies have
evaluated the ability of immune cells in predicting prognosis
of cancer (Gentles et al., 2015; Shen et al., 2019), and based
on that, we explored the prognostic value of DEGs in our
study. We developed a risk model containing nine genes. After
detailed exploration of the nine genes, we identified three genes,
APOL1, CD160, and PPP2R2B, for further study. Apolipoprotein
L1 (APOL1) is a protein-coding gene that is associated with
focal segmental glomerulosclerosis and glomerulonephritis. It
is correlated with lipid binding and chloride channel activity,
and in our model, it is associated with unfavorable prognosis.
Previous studies have reported that the AOPL1 is a protective
factor for renal carcinoma (Hu et al., 2012), but the function
of APOL1 in LUAD has not been fully illustrated. CD160
molecule (CD160) is a protein-coding gene associated with
neurotrophic keratopathy and cone-rod dystrophy 1. It has
been reported that CD160 is expressed on activated NK or
T cells in humans and regulated the cytokine production of
NK cells, therefore regulating its function (Tu et al., 2015).

It has also been reported that CD160 is involved in T-cell
regulation in immune response of the virus (Cai and Freeman,
2009). GO annotation results suggest that CD160 is related
to innate immunity. In our model, CD160 is associated with
a better prognosis. Protein phosphatase 2 regulatory subunit
B beta (PPP2R2B) is a protein-coding gene associated with
diseases including spinocerebellar ataxia, and in our study, it
is associated with favorable survival. It has been reported that,
in colorectal cancer, PPP2R2B, encoding the B55β regulatory
subunit of the PP2A complex, is epigenetically inactivated
by DNA hypermethylation and is related to the rapamycin
sensitization (Tan et al., 2010). The roles of PPP2R2B in lung
cancer need further exploration.

We used the TCGA dataset as a training cohort, and our
risk-predicting model showed satisfying efficacy in external
datasets. Three credible datasets were chosen as external
validation, which was a large phase 2 trial (IMvigor210)
investigating the clinical activity of atezolizumab in metastatic
urothelial cancer (Mariathasan et al., 2018), 38 pretreatment
(pembrolizumab and nivolumab) melanoma tumors (Hugo et al.,
2016), and 68 patients with advanced melanoma (CA209-038
study) (Riaz et al., 2017). Although our predicting model
was constructed based on the LUAD data, it behaved well in
other cancer types (urothelial cancer and malignant melanoma)
and other datasets, which further indicated the stability and
reliability of our model, and implied the potentiality that our
model could be utilized in more cancer types. In conclusion,
we constructed a risk prediction model using immune cell
infiltration status. Since it is the era of immune therapy
and lung cancer is one of the most malignant cancer in
the world, it is reasonable and prompt to construct risk
prediction model using immune-related information. Our
model can spot patients with high risk in immunotherapy
resistance accurately and therefore may guide the clinical use of
immune therapy.
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