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Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years
of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately
1–5% of women below 40 years old are affected by POI. The etiology of POI is
heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic
factors, and environmental toxins. Genetic factors account for 20–25% of patients.
However, more than half of the patients were idiopathic. With the widespread application
of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded,
especially the latest identification in meiosis and DNA repair-related genes. During
meiotic prophase I, the key processes include DNA double-strand break (DSB) formation
and subsequent homologous recombination (HR), which are essential for chromosome
segregation at the first meiotic division and genome diversity of oocytes. Many
animal models with defective meiotic recombination present with meiotic arrest, DSB
accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the
article, based on different stages of meiotic recombination, including DSB formation,
DSB end processing, single-strand invasion, intermediate processing, recombination,
and resolution and essential proteins involved in synaptonemal complex (SC), cohesion
complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations
identified in POI patients and the potential candidate genes for POI pathogenesis, which
will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian
protection, and early intervention for POI women.

Keywords: premature ovarian insufficiency, meiosis, homologous recombination, mutations, next-generation
sequencing

INTRODUCTION

Premature ovarian insufficiency (POI) is the depletion or dysfunction of ovarian follicles before
the age of 40, which is characterized by menstrual disturbance (amenorrhea or oligomenorrhea)
for at least 4 months, with raised gonadotrophins (FSH > 25 IU/I on two occasions > 4 weeks
apart) and estrogen deficiency (European Society for Human et al., 2016). Approximately 1–5% of
women under 40 years old are affected by POI, demonstrated with isolated or syndromic phenotype
(Desai and Rajkovic, 2017). The etiologies of POI are heterogeneous, including genetic factors,
autoimmune diseases, infection, iatrogenic factors, and environmental toxins. However, most of the
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cases are still unexplained, known as idiopathic POI. Genetic
defects account for approximately 20–25% of POI patients,
including chromosomal abnormalities (10–15%) and monogenic
mutations (Qin et al., 2015; Jiao et al., 2017). Until now, more
than 75 genes have been found to cause POI, which were
involved in various processes, including gonadal development,
meiosis, DNA damage repair, follicle development, hormone
metabolism, and mitochondrial function (Patino et al., 2017;
Franca and Mendonca, 2020). Recently, advances in next-
generation sequencing (NGS) allow more identification in DNA
damage repair genes. Most of the newly identified genes play
predominate roles in meiotic homologous recombination (HR),
such as STAG3 (Xiao et al., 2019), while other genes, although
participating in DNA damage repair in somatic cells, are found to
be essential for meiotic HR as well, such as MCM8 (AlAsiri et al.,
2015) and BRCA2 (Weinberg-Shukron et al., 2018). Therefore,
the role of meiotic HR genes in POI pathogenesis is indispensable.

Females are born with fixed number of oocytes within the
ovaries. The fertile lifespan depends on the size of oocyte pool
at birth and the rapidity of follicle depletion. The initial oocyte
pool is determined by the number of primordial germs cells
migrating to the genital ridge, followed by germ cell proliferation
and functional meiosis, established as the number of primordial
follicles at puberty. The human germ cells enter into meiosis
from week 9 postconception, go through leptotene, zygotene, and
pachytene, and then transitorily arrest at diplotene stage from the
time of birth until puberty when primordial follicles are activated
and meiosis continues secondary to FSH and LH secretion.
During meiotic prophase I, the key processes are deliberate
generation of DNA double-strand breaks (DSBs) and subsequent
HR, which laid the foundations of stability and diversity of
oocyte genome (Handel and Schimenti, 2010). Disturbance of
meiotic HR leads to meiosis blocking before diplotene and DSB
accumulation. Animal models defective at DSB formation and
HR resulted in early exhaustion of follicle pool and infertility,
which were similar to the phenotypes of human POI. While only
a few genes have been identified with mutations in POI patients,
such as MSH4 (Carlosama et al., 2017) and MSH5 (Guo et al.,
2017), here, we categorized the genes participating in meiotic
HR, candidate genes for human POI, and further reviewed the
mutations in detail, Which have been identified in POI patients
(Figure 1 and Table 1).

SUBSECTIONS RELEVANT FOR THE
SUBJECT

Programmed Double-Strand Break
Formation
At the beginning of meiotic prophase I, accurate DSB localization
and formation are the basis of homologous chromosome
recognition and synapsis, and indispensable for crossover, which
is crucial for chromosome segregation and formation of euploid
gametes. The predominant protein determining potential DSB
sites is PRDM9, which recognizes the DSB hotspots on the
chromosome loops, catalyzes H3K4 trimethylation (Sun et al.,

2015; Chen et al., 2020), and binds to the chromosome axis
through interaction with protein CXXC1, HORMAD1 (Daniel
et al., 2011), MEI4 (Kumar et al., 2010), REC114 (Kumar et al.,
2018), and IHO1 (Stanzione et al., 2016; Kumar et al., 2018).
Then, HELLS and PRDM9 form a pioneer complex to open
chromatin at hotspots, permitting correct placement and repair
of DSBs (Spruce et al., 2020). Then, the endonuclease SPO11
is recruited at PRDM9-binding sites before or after the loop
axis interaction and catalyzes DSB formation at the hotspots
(Romanienko and Camerini-Otero, 2000). Moreover, other
proteins required along with SPO11 to generate DSBs including
MEI1 (Reinholdt and Schimenti, 2005) and TOPOVIBL (Robert
et al., 2016). The knockout mouse models of the above
genes demonstrate female infertility and premature depletion
of oocytes due to defective DSB formation and homologous
synapsis, except for CXXC1 and HORMAD1. The conditional
knockout mice of Cxxc1 are fertile (Tian et al., 2018).
Hormad1 deficiency does not affect folliculogenesis but disrupts
homologous chromosome segregation, resulting in infertility due
to gemmate aneuploidy (Shin et al., 2010). Although most of
the genes involving DSB formation might be candidate genes
for human POI, no causative mutation has been identified
in POI patients. Interestingly, there are findings that bi-allelic
deleterious mutations of TOROVIBL, MEI1, and REC114 could
result in recurrent androgenetic complete hydatidiform moles
due to extrusion of all maternal chromosomes with the spindles
into the first polar body during meiosis metaphase I. These
findings indicated that DSB-formed genes were essential for
stabilization of gemmate genome. Defects in these genes might
be pleiotropic and responsible for heterogeneous reproductive
phenotypes (Nguyen et al., 2018).

DSB End Processing
After DSB formation, DNA ends are engaged in a process
of maturation, involving the release of SPO11-oligonucleotide
covalent complexes and exonucleolytic degradation on the same
strand, which leads to extended overhanging of 3’ single strands
on both sides of the DSBs. This process is facilitated by the MRN
complex, EXO1, CtIP, and RPA.

The multiprotein complex MRN is consisted of MRE11,
RAD50, and NBS1, which are evolutionarily conserved in 5′-
end resection of DSBs (Anand et al., 2019). Disruption of the
N-terminal exons of Nbs1 in mice resulted in female infertility
due to oogenesis failure (Kang et al., 2002). The female mice with
a mutation in Mre11 exhibited premature oocyte elimination
attributing to defects in homologous chromosome pairing and
DSB repair during meiotic prophase I (Inagaki et al., 2016).Rad50
heterozygous mutant mice demonstrated ovarian atrophy as well
(Roset et al., 2014). These animal models indicated the essential
role of the MRN complex in maintenance of the primordial
follicle pool. In humans, mutations in MRN subunits caused
Nijmegen Breakage Syndrome in recessive pattern, in which
POI was one of the degenerative changes (Chrzanowska et al.,
2012). Although they are potential causative genes for POI, no
mutation has been identified in isolated POI yet. Besides that,
CtIP is an important cofactor of MRN in catalyzing the 5′-
end resection (Sartori et al., 2007). CtIP mutations cause Seckel
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FIGURE 1 | Diagram of meiotic HR genes. (A) Major steps of meiotic prophase I, including DSBs formation, 5′-3′ resection, end procession, RAD51 filament
formation, strand invasion, intermediates formation, and resolution. The key genes in different steps are labeled in the box, those genes that have been identified in
POI patients are labeled with red color, and those that have been functionally validated are underlined. (B) The formation of DSBs is initiated by PRDM9, which binds
to chromatin and catalyzes H3K4 trimethylation to mark hotspots. Then, the complex MEI4/REC114/IHO1 binds to HORMAD1 on the axis and activates SPO11 to
cut chromatin to form DSBs. (C) The synapsis complex is installed by CE and LE with TF connections in each pair of homologous chromosomes, which establish
the platform of HR. (D) The cohesion complex regulates sister chromatid cohesion and SC formation, which is consisted of meiosis-specific subunits STAG3,
RAD21L, and SMC1B and non-specific subunits SMC3 and REC8. Notes: DSBs, double-strand breaks; SC, synaptonemal complex; LE, lateral element; CE, central
element; TFs, transverse filaments; HR, homologous recombination.

and Jawad syndromes in a recessive manner, while no ovarian
abnormality was noticed (Qvist et al., 2011). Therefore, although
CtIP performs an important role in DSB end processing, it might
not be a potential causative gene of POI.

EXO1 has 5′ to 3′ exonuclease activity, which is recruited to
DSBs by MRN and promotes the formation of 3′-tailed single-
strand DNA (ssDNA) (Garcia et al., 2011). Exo1 knockout female
mice were infertile due to dynamic loss of chiasmata during
meiosis prophase I (Wei et al., 2003). A meta-analysis of 53
GWASs with nearly 70,000 women found EXO1 polymorphism
associated with the age of natural menopause (Day et al.,
2015). Recently, through whole-exome sequencing (WES) in 50
patients with POI, one heterozygous mutation in EXO1 was
identified, which impaired meiosis by disrupting recruitment
of RPA and RAD51 onto DSB sites (Luo et al., 2020). These
findings confirmed the role of EXO1 in POI, and discussed
the dosage-dependent effect of oocyte-non-specific HR gene on
ovarian function.

When 3′-tailed ssDNAs are established, RPA is recruited to
prevent ssDNA degradation or formation of secondary structure
(Soustelle et al., 2002). Recent study found that the loss of RPA
completely abrogated the loading of recombinases RAD51 and
DMC1 on DSBs sites, blocked strand invasion, and chromosome
synapsis (Shi et al., 2019). However, because RPA is ubiquitously
expressed, the Rpa1 null mice showed embryonic lethality.

Although the heterozygotes displayed defects in DSB repair,
ovarian phenotype had not been observed (Wang et al., 2005).
Therefore, the evidence of RPA participating in POI pathogenesis
was insufficient yet.

Strand Invasion
As the proceeding of HR, RPA is replaced by the recombination
proteins RAD51 and DMC1, which catalyze homology search and
strand invasion, establishing the basis of synapsis (Brown and
Bishop, 2014). Besides RAD51 and DMC1, the dynamic process is
also regulated by other recombination factors, including BRCA2,
PSMC3IP, MND1, MEIOB, and SPATA22.

RAD51 and its meiotic paralog DMC1 execute the critical
step of strand invasion (Bishop et al., 1992; Park et al., 2008).
In the Dmc1-deficient mice, gametogenesis arrested in meiotic
prophase I, resulting in germ cell depletion in the adult ovaries
and infertility. Recently, a homozygous mutation p.D36N in
DMC1 was identified in one consanguineous pedigree having
one patient with POI and one patient with non-obstructive
azoospermia (NOA) (He et al., 2018b). Histological study found
that spermatogenesis was blocked at zygotene stage in the
patient with NOA, indicating that POI in women might be
caused by dysfunctional meiosis prophase I of oocytes (Pittman
et al., 1998). Besides that, another homozygous mutation DMC1
p.M200V was identified by Sanger sequencing in sporadic POI
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TABLE 1 | Variants of meiosis HR genes identified in POI patients.

Gene Aliases Mechanism/function Mutations found in POI
pedigrees

Mutations found
in sporadic POI
patients

Phenotype Inheritance Ovarian phenotypes of mice
model

Fertility of mice
model

STAG3 – Subunit of cohesion
complex

p.F187fs*7 (Caburet et al., 2014) – PA AR Follicle are exhausted at 6 weeks of
age (Winters et al., 2014)

Infertility

p.S227* (Colombo et al., 2017)

p.Y650Sfs*22 (Le Quesne Stabej
et al., 2016)

p.L490Tfs*10 (He et al., 2018a)

p.N98Qfs*2 and p.Y650* (Franca
et al., 2019)

p.H293_E295del; p.I297_E298insD
(Xiao et al., 2019)

p.R1018Dfs*14; p.L220R (Heddar
et al., 2019)

SYCE1 POF12 Central element of SC p.Q205* (de Vries et al., 2014) – PA, SA AR Oocyte loss before reproductive
age due to synapsis failure
(Bolcun-Filas et al., 2009)

Infertility

Partial region deletion (∼4 kb) (Zhe
et al., 2020)

SMC1β SMC1L2 Subunit of cohesion
complex

– p.I221T; p.Q1177L
(Bouilly et al., 2016)

PA, SA Digenicity Gradually follicle decrease from 4 to
8 weeks of age (Takabayashi et al.,
2009)

Infertility

REC8 – Subunit of cohesion
complex

– p.Q154R; p.R300L
(Bouilly et al., 2016)

PA, SA Di-genicity Completely lack of oocytes at
postnatal day 5 (Xu et al., 2005)

Infertility

RAD51 FANCR Strand invasion – p.E68G (Luo et al.,
2020)

PA AD – Embryonic lethal
(Tsuzuki et al.,
1996)

DMC1 LIM15 Strand invasion p.D36N (He et al., 2018b) p.M200V
(Mandon-Pepin
et al., 2008)

SA AR Early oocyte exhausted in the adult
ovaries (Pittman et al., 1998)

Infertility

FANCU XRCC2 Strand invasion p.L14P (Zhang et al., 2019) – SA AR Gradually follicles loss from
postnatal days 21 to 180 (Yang
et al., 2018)

Impaired fertility

PSMC3IP HOP2 Strand invasion p.Y163* (Al-Agha et al., 2018) p.R166Afs; p.L144*
(Yang et al., 2019a)

PA AR; AD Absent follicle in the knockout
ovaries (Petukhova et al., 2003)

Infertility

p.E201del (Zangen et al., 2011)

MND1 GAJ Strand invasion Partial region deletion (8.6 kb) (Jolly
et al., 2019)

– – AR Absent follicles and CL (Pezza
et al., 2014)

Infertility

(Continued)
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TABLE 1 | Continued

Gene Aliases Mechanism/function Mutations found in POI
pedigrees

Mutations found
in sporadic POI
patients

Phenotype Inheritance Ovarian phenotypes of mice
model

Fertility of mice
model

BRCA2 FANCD1 DNA DSBs repair p.V2527* and p.S3231fs16*
(Weinberg-Shukron et al., 2018)

New variations:
p.I3312V;
IVS-7T > A (Yilmaz
et al., 2016)

PA AR; AD Absent follicle in adult ovaries
(Connor et al., 1997); increased
ovarian tumor incidence (Szabova
et al., 2012)

Infertility

c.68-1G > C and p.Y1480*;
p.D2723V and p.C3233Wfs*15
(Qin et al., 2019)

BRCA1 FANCS DNA DSBs repair – New variations:
p.T1246N;
p.R1835Q (Yilmaz
et al., 2016)

– AD Decreased primordial follicle
number (Titus et al., 2013)

Impaired fertility

MEIOB SPGF22 DSB repair/meiotic HR p.T406 = (Caburet et al., 2019) – SA AR Completely lack of oocytes at
postnatal day 2 (Luo et al., 2013)

Infertility

MSH4 – Stabilization of double
Holliday junction

p.l743_K785del (Carlosama et al.,
2017)

– SA AR Steady follicle loss soon after birth
(Kneitz et al., 2000)

Infertility

MSH5 POF13 Stabilization of double
Holliday junction

p.D487Y (Guo et al., 2017) p.L353M; p.D487Y;
p.I703V (Guo et al.,
2017)

SA AR; AD Gradually follicle loss after birth and
completely devoid at 2–3 months of
age (de Vries et al., 1999)

Infertility

p.P29S
(Mandon-Pepin
et al., 2008)

MCM8 POF10 HR intermediate
process

p.P149R (AlAsiri et al., 2015) p.H317L; p.H601R
(Dou et al., 2016)

PA, SA AR; AD Follicles were absent at 8 weeks
post-partum; ovarian adenomas
and sex cord stromal tumors
developed in older females
(Lutzmann et al., 2012)

Infertility

p.H161P (Bouali et al., 2017) p.C155Y; p.N183S;
p.R445Q (Desai
et al., 2017)

c.1954-1G > A; p.L491Ifs*88
(Tenenbaum-Rakover et al., 2015)

p.K118Efs*5 (Zhang et al., 2020)

p.R309* (Heddar et al., 2020)
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TABLE 1 | Continued

Gene Aliases Mechanism/function Mutations found in POI
pedigrees

Mutations found
in sporadic POI
patients

Phenotype Inheritance Ovarian phenotypes of mice
model

Fertility of mice
model

MCM9 ODG4 HR intermediate
process

P.R132*; c.1732+2T > C
(Wood-Trageser et al., 2014)

p.T139A; p.T595R;
p.V808I; p.Q551*;
p.E670* (Desai
et al., 2017)

PA, SA AR; AD Completely devoid of oocytes in
adult ovaries (Lutzmann et al.,
2012)

Infertility

p.E495* (Fauchereau et al., 2016) p.L475F; p.L974S;
p.A1130T (Guo
et al., 2020)

p.E225Kfs*4 (Goldberg et al., 2015) p.T595R;
c.905-1G > T
(Yang et al., 2019a)

p.Q551* (Desai et al., 2017)

HFM1 POF9 Crossover formation
and proper synapsis

P.C1157Y (Zhe et al., 2019) p.H414P;
p.R1194C (Pu
et al., 2016)

SA AD; AR Follicles are almost exhausted at 45
days (Guiraldelli et al., 2013)

Infertility

p.I884S and c.1686-1G > C (Wang
et al., 2014)

p.G736S and
p.P1310Rfs*41
(Wang et al., 2014)

EXO1 HEX1 Crossover resolution – p.T52S (Luo et al.,
2020)

PA AD Small ovary with oocytes loss at
7 months of age (Wei et al., 2003)

Infertility

FANCM FAAP250 HR intermediate
process

p.Q1701* (Fouquet et al., 2017) – SA AR Depleted primary follicles and
reduced developing follicles in
ovaries (Bakker et al., 2009)

–

FANCL FAAP43,PHF9 – – p.Q350Vfs*18;
p.M247Nfs*4 (Yang
et al., 2020)

PA, SA AD Reduced follicles at 4 weeks, germ
cell-deficient (GCD) phenotype
(Agoulnik et al., 2002)

Infertility

FANCA FAA – – p.R591Q;
p.E1296G (Yang
et al., 2019b)

PA, SA AD Significantly reduced follicles and
obvious hypogonadism (Cheng
et al., 2000; Wong et al., 2003)

Impaired fertility

SPIDR – HR intermediate
process

p.W280* (Smirin-Yosef et al., 2017) – PA AR – –

NUP107 – Meiosis/DNA repair p.R355C (Ren et al., 2018);
p.D447N (Weinberg-Shukron et al.,
2015)

– PA AR – –

DSBs, double-strand breaks; HR, homologous recombination; SC, synaptonemal complex; AD, autosomal dominant; AR, autosomal recessive; PA, primary amenorrhea; POI, premature ovarian insufficiency; SA,
secondary amenorrhea; CL, corpora lutea; “–” unknown. “*”means “stop codon”.
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(Hikiba et al., 2008), while the point mutant mice showed normal
ovarian morphology, highlighting the importance of functional
studies in verifying the pathogenicity of variations (Hikiba
et al., 2008; Tran and Schimenti, 2018). Absolutely, loss of
RAD51 resulted in embryo lethality in mice (Tsuzuki et al.,
1996). However, a WES study in sporadic POI patients found
one heterozygous missense mutation of RAD51, which resisted
the protein localization in the nucleus. In vitro experiments
found that heterozygous mutation affected HR efficiency by
haploinsufficiency, indicating that the pathogenic effect of
RAD51 on POI might be dosage dependent (Luo et al., 2020).

BRCA2 regulates the localization of RAD51 onto ssDNA
to form an RAD51-ssDNA filament, promoting HR repair for
DSBs both in somatic cells and in germ cells (Davies et al.,
2001; Xia et al., 2001). Somatic BRCA2 mutations impaired
chromosome integrity, manifesting with an increased risk of
tumor (Daum et al., 2018), whereas recent studies found its
crucial role in ovarian development mediated by functional
meiotic recombination (Miao et al., 2019). Until now, four pairs
of compound heterozygous mutations and one homozygous
mutation in BRCA2 have been identified in POI pedigrees
through WES analysis (Weinberg-Shukron et al., 2018; Qin et al.,
2019; Caburet et al., 2020). Among them, four mutation carriers
demonstrated with microcephaly, leukemia, thyroid cancer, or
breast carcinoma, while other three carries presented with
isolated POI. The widely varying severity of clinical profiles of
bi-allelic BRCA2 mutation carriers confirmed the complicated
function of BRCA2, also highlighted the necessity of long-term
follow-up for them. Recent studies in Caenorhabditis elegans
found BRCA1 influenced RAD51 dynamics and combined
with SYCP3 and MSH5 to promote synapsis and crossover
resolution (Janisiw et al., 2018). Although its function in
mammalian meiosis was unclear, Brca1 mutant mice had
impaired reproductive capacity and decreased primordial follicle
counts (Titus et al., 2013). Women with BRCA1 variations also
presented with accelerated ovarian reserve decline (Lin et al.,
2017; Porcu et al., 2020). Therefore, BRCA1 was a potential
causative gene of POI, which required comprehensive evaluation
of somatic characteristics like BRCA2.

PSMC3IP (also known as HOP2) and MND1 are meiosis-
specific factors in all organisms expressing DMC1. PSMC3IP-
MND1 complex facilitates strand invasion and D-loop formation
by promoting DMC1/RAD51 capturing of double-strand DNA
(dsDNA) (Chi et al., 2007; Pezza et al., 2007). Absence of them
resulted in non-homologous synapses and DSB accumulation
(Sansam and Pezza, 2015). Psmc3ip and Mnd1 knockout
mice showed severely reduced ovarian size and defective
gametogenesis (Petukhova et al., 2003; Pezza et al., 2014). In
previous studies, two-point mutations of PSMC3IP and one
microdeletion of MND1 inherited in recessive patterns have been
identified in consanguineous pedigrees with POI or XX female
gonadal dysgenesis (Zangen et al., 2011; Zhao and Sung, 2015;
Al-Agha et al., 2018; Jolly et al., 2019), confirming their crucial
roles in gametogenesis and POI pathogenesis.

MEIOB and SPATA22 are ssDNA-binding proteins
predominately expressed in meiosis prophase I, which form
a complex that interacts with RPA to recruit RAD51 and

DMC1 to the ssDNA (La Salle et al., 2012; Luo et al., 2013;
Souquet et al., 2013; Ishishita et al., 2014). Both Meiob-null mice
and Spata22-null mice exhibited small ovaries devoid of oocytes
in any developmental stage due to uncompleted meiotic HR
(Luo et al., 2013; Hays et al., 2017). Recent WES study with a
POI pedigree identified one homozygous splicing mutation in
MEIOB, which resulted in a truncated MEIOB protein, thus
interrupting the interaction with SPATA22 (Caburet et al., 2019).
POI might be caused by defective MEIOB-SPATA22 complex-
induced insufficient DNA single-strand invasion during meiotic
HR. Although no mutation has been found in SPATA22, it still is
a potential candidate gene of POI.

Intermediate Processing and
Homologous Recombination
During strand invasion, the presynaptic filaments recognize the
template strands, invade into the duplex DNA, displace the
original strand, and bind to their complementary sequence,
forming the intermediate of HR repair. The intermediate
processing is performed by two pathways: synthesis-dependent
strand annealing and double Holliday junction (dHJ). SDSA
is a pathway for non-crossover repair, in which a D-loop
intermediate is formed and the broken DNA is synthesized using
the homologous chromosome as a template (Ranjha et al., 2018).
In the dHJ pathway, two DSB ends participate in the invasion that
forms a classic double junction intermediate, which facilitates
crossover formation and resolution. During the process, MSH4–
MSH5 heterodimer, MCM8–MCM9 helicase complex, HFM1,
RECQL4, BLM, and MCMDC2 are involved.

The meiotic specially expressed proteins MSH4 and MSH5
form a heterodimeric complex (Acharya et al., 1996; Snowden
et al., 2004), which clamps on homologous chromosomes to
stabilize the Holliday junctions (Nishant et al., 2010). In the
Msh5/Msh4 deficient mice, chromosome pairing was failed and
crossover was absent, resulting in atrophic ovaries, which were
similar to the phenotype of human POI (de Vries et al., 1999;
Kneitz et al., 2000). Through WES in two POI pedigrees,
homozygous mutations of MSH4 and MSH5 were identified,
pathogenicity of which was confirmed by in vitro studies and
knock-in mice models (Carlosama et al., 2017; Guo et al., 2017).
These results implied the recessive mode of inheritance for MSH4
and MSH5 in POI. Interestingly, four heterozygous mutations of
MSH5 have been reported in sporadic cases, indicating that their
effects on meiosis and oogenesis might be dominated or dosage
dependent as well (Mandon-Pepin et al., 2008; Guo et al., 2017).

MCM8 and MCM9 form a helicase complex regulating DNA
repair and genome integrity both in somatic cells and in germ
cells (Nishimura et al., 2012). They not only promote MRN-
mediated ssDNA maturation, but also participate in intermediate
processing of HR. Mcm8 or Mcm9 knockout mice suffered
meiosis blocking at prophase I (Lutzmann et al., 2012). Bi-allelic
mutations of MCM8 and MCM9 have been identified in POI
patients with or without familial history (Wood-Trageser et al.,
2014; AlAsiri et al., 2015; Goldberg et al., 2015; Tenenbaum-
Rakover et al., 2015; Fauchereau et al., 2016; Bouali et al., 2017;
Desai et al., 2017). The prevalence of bi-allelic mutations of
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MCM9 in sporadic cases was variable among different studies,
ranging from 1.6 to 6.1% (Yang et al., 2019a; Guo et al., 2020).
However, heterozygous variations were also found in 1.0–4.6% of
sporadic POI, making the inheritance pattern of MCM8/MCM9
in recessive or dominate to be ambiguous (Dou et al., 2016;
Desai et al., 2017; Guo et al., 2020). Interestingly, some patients
were found to carry digenic heterozygous variants in both MCM8
and MCM9 or in MCM8/MCM9 and other DNA repair genes
(Desai et al., 2017). Moreover, researchers observed MCM8 had a
dosage-dependent effect on the severity of POI phenotypes. These
findings indicated that heterozygous variations of HR genes
might establish a genetic background susceptive to DNA damage,
which would affect meiosis when additional variations in the
related genes or environmental toxin existed (Heddar et al., 2020;
Wang et al., 2020). Besides the essential role in meiosis, MCM8
and MCM9 were involved in DNA replication, DNA damage
response and cell cycle regulation in somatic cells. Some of the
mutation carriers presented with short stature, and an MCM8
carrier was reported to have pilomatricomas (Heddar et al., 2020).
Mitomycin-induced DNA breaks and aberrant metaphases in the
patient’s lymphoblastoid cells suggested that the patients carrying
MCM8 or MCM9 mutations were susceptive to tumor or growth
retardation due to impaired DNA repair and genome instability
in somatic cells. Therefore, long-term follow-up of cancers for
those mutation carriers is needed.

HFM1 is a DNA helicase preferentially expressed in germline
cells. Absence of HFM1 resulted in aberrant intermediate
processing and reduced crossover formation (Guiraldelli et al.,
2013). Two-compound heterozygous mutations of HFM1 were
identified in two familial POI and one sporadic case (Wang et al.,
2014). Moreover, heterozygous pathogenic mutations were found
in a POI pedigree and 1.5% of the sporadic case, indicating that
HFM1 mutants might cause POI through both recessive and
dominate modes (Pu et al., 2016; Zhe et al., 2019).

RECQL4 and BLM are pleiotropic helicases expressed non-
specifically, which unwind dsDNA into ssDNA during HR
repair for DSBs (Singh et al., 2012). They are essential for
maintenance of genome stability in both somatic and germline
cells. Therefore, their defects mostly cause syndromic POI, such
as Rothmund–Thomson syndrome (Siitonen et al., 2009) and
Bloom syndrome (Arora et al., 2014), in which POI is one of the
complicated symptoms.

Besides the helicases above, MCMDC2 is an atypical yet
conserved MCM protein, which also plays an important role in
ssDNA invasion that promotes homolog alignment and inter-
homolog crossover formation. Mcmdc2 knockout mice were
infertile, demonstrated to have atrophic ovaries completely
devoid of oocyte at 6 weeks post-natal (Finsterbusch et al., 2016).
Although no mutation of MCMDC2 has been reported in POI
patient yet, it still is a potential causative gene for POI.

Synaptonemal Complex and Cohesion
Complex
Throughout meiosis prophase I, the chromosomes are
reorganized as linear arrays of chromatin loops anchored
to a central axis. The chromosome axis forms a platform for the

assembly of synaptonemal complex (SC), which plays a central
role in homologous pairing, recombination, and chromosome
segregation. The SC is installed by five central elements linked
to two lateral elements by a transverse filament in each pair of
homologous chromosomes.

The central elements of SC include SYCE1-3, C14ORF39, and
TEX12. Female knockout mice of those genes were affected by
infertility and oocyte loss before reproductive age due to different
degrees of synapsis failure (Bolcun-Filas et al., 2007, 2009; Hamer
et al., 2008; Schramm et al., 2011; Davies et al., 2012; Lu et al.,
2014). In POI patients, except for one microdeletion and two
homozygous mutations of SYCE1 which have been identified
(McGuire et al., 2011; Zhen et al., 2013; de Vries et al., 2014; Zhe
et al., 2020), no causative mutation has been found in other genes,
indicating that the mutations in central elements of SC might not
be a common genetic causation for POI.

SYCP1 is the transverse filament of SC that connects
central elements SYCE1–2 to the lateral elements localized in
each homologous chromosome. Absence of Sycp1 disturbed
chromosomal synapsis, resulting in oocytes arrested at pachytene
stage and apoptosis (de Vries et al., 2005). SYCP2 and SYCP3 are
lateral elements of SC, which interact with each other (Winkel
et al., 2009) and stabilize the linear array of chromatin loops
during SC assembly (Yang et al., 2006; Syrjanen et al., 2014,
2017). The Sycp2 and Sycp3 mutant mice were subfertile (Yuan
et al., 2000; Yang et al., 2006), which might be explained by
insufficient SC formation, contrasting to the absolute loss of SC
in Sycp1 null mice (Yang et al., 2006). That dosage-dependent
meiosis dysfunction could also be a potential explanation for
heterogeneous clinical phenotypes of human POI. Furthermore,
Sycp3 mutant female mice exhibited increased aneuploidy in
oocytes and embryos. In human beings, heterozygous variations
of SYCP3 were associated with miscarriage and increased
predisposition to infertility (Bolor et al., 2009; Nishiyama
et al., 2011). Therefore, although no SYCP mutation has been
identified in POI patient yet, their roles in oogenesis and embryo
development should be further explored.

The cohesion complex regulates sister chromatids cohesion
and SC formation, which is composed of meiosis-specific
subunits STAG3, RAD21L, and SMC1B and non-specific
subunits SMC3 and REC8 (Ishiguro, 2019). Female mice deficient
in Stag3 were sterility and follicle exhausted at a young age
(Caburet et al., 2014). To date, seven bi-allelic mutations of
STAG3 have been found in POI pedigrees. All the affected
patients manifested with primary amenorrhea and streak ovaries
(Caburet et al., 2014; Le Quesne Stabej et al., 2016; Colombo
et al., 2017; He et al., 2018a; Franca et al., 2019; Heddar et al.,
2019; Xiao et al., 2019), indicating that recessive mutations in
STAG3 were relatively common genetic causation for primary
POI. Furthermore, mice deficient in other cohesion genes
demonstrated with similar ovarian morphology of Stag3 null
mice (Xu et al., 2005; Takabayashi et al., 2009; Herran et al.,
2011). Through target gene screening of sporadic POI patients,
heterozygous mutations in STAG3, SMC1B, and REC8 have been
found (Bouilly et al., 2016), indicating that the recessive and
dominate causative modes of cohesion genes in POI might
coexist. Moreover, age-dependent decrease of cohesion protein
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is associated with increased rate of aneuploidy oocytes, while
mutations of SMC3were reported in Cornelia de Lange syndrome
without ovarian abnormalities (Deardorff et al., 2007). Therefore,
besides the indispensable contribution to POI, the pleiotropic
effects of cohesion genes in reproductive and somatic diseases
should be considered as well.

Resolution of Recombination
Intermediates
In germ cells, the essential step for accurate separation of
homologous chromosomes at the first meiotic division is
resolution of recombination intermediates, including non-
crossover pathway and crossover pathway. In the non-crossover
pathway, the final products are generated by annealing the
invaded strand to the complementary break end of single
Holliday junction or dissolution of the dHJs (Bizard and
Hickson, 2014; Daley et al., 2014). That process is the
major route for dissipation of HR intermediate, which limits
chromosomal rearrangements and heterozygosity of oocytes.
This reaction requires the RecQ helicase BLM (Wu et al.,
2000), topoisomerase TOP3A (Martin et al., 2018), RMI
complex (Raynard et al., 2008), structure-selective endonucleases
GEN1 (Shah Punatar et al., 2017), MUS81-EME1, and SLX1–
SLX4 (Matos and West, 2014; Wyatt and West, 2014).
Absence of the above genes resulted in syndromic disease
or embryonic lethality. Therefore, their pleiotropic effect on
meiosis and ovarian function was illusive and needs more
detailed exploration.

Crossover pathway is the meiosis-specific resolution of dHJs
that contributes to the genetic diversity of species. Although
the process resolves less recombination than non-crossover
pathway, the occurrence of at least one crossover in every pair
of homologous chromosomes is essential for precise separation
of chromosomes in the first meiotic division. Crossover pathway
involves RNF212 (Qiao et al., 2014), HEI10 (Ward et al., 2007),
MLH1 (Baker et al., 1996), and MLH3 (Lipkin et al., 2002).
The knockout mice of the above genes had normal ovarian
morphology; oocytes show proficient synapsis but deficient
crossover, presenting with abnormal chromosome alignment at
metaphase I and disturbed extrusion of polar bodies. Those
female mice were infertile due to a decreased number of mature
MII oocytes and increased number of aneuploidy embryos.
Therefore, these gene defects are responsible for disorders of
oocyte maturation or early embryo development rather than POI.

Fanconi Anemia Pathway Genes in
Meiotic HR
Fanconi anemia (FA) is usually a recessive genetic disease
associated with bone marrow failure, increased cancer
susceptibility, and severe germline defects. There are 22
identified FA genes, which are involved in DNA interstrand
crosslink repair, including the FA core complex which catalyzes
the mono-ubiquitination of FANCD2 and FANCI, and DSB
repair genes—BRCA1 (FANCS), BRCA2 (FANCD1), BRIP1
(FANCJ), PALB2 (FANCN), RAD51C (FANCO), SLX4 (FANCP),
RAD51 (FANCR), and XRCC2 (FANCU) (Tsui and Crismani,

2019). Although all mice models of FA genes reported to
date have different degrees of reduction in fertility, the links
between their roles in DNA repair and fertility have not
been extensively explained. Recent studies found that BRCA2
promoted the localization of RAD51 and DMC1 to meiotic
DSBs. As a member of RAD51 paralogs, FANCU (XRCC2) might
be involved in the RAD51-mediated strand invasion during
meiotic HR (Yang et al., 2018). Besides that, FA core factors
FANCA, FANCB, and FANCC were reported to facilitate the
recruitment of FANCD2 on sex chromosomes and regulate the
histone modification during meiotic HR (Alavattam et al., 2016).
FANCM has also been shown to limit crossover frequencies,
which promoted the conservatism of gametes (Crismani
et al., 2012). The increasing research of FA genes highlighted
their roles in the resolution of meiotic DSBs, giving more
indications of oogenesis as well. Up to date, several FA genes
had identifications in POI, such as homozygous mutations in
FANCM (Fouquet et al., 2017) and FANCU (Zhang et al., 2019)
and heterozygous mutations in FANCA (Yang et al., 2019b)
and FANCL (Yang et al., 2020). Interestingly, heterozygous
FANCA knockout mice showed a declined follicle number
and reduced fertility; in vitro studies found that single-allelic
defects of FANCA and FANCL compromised DNA repair ability
by haploinsufficiency, indicating that the adverse effects of
FA gene variations on meiosis and ovarian function might be
dosage dependent.

DISCUSSION

Identifying causative genes of POI and elucidating their
molecular mechanisms are important for the genetic diagnosis
of POI. As an increasing number of women prefer to conceive
after their mid-30s, the genetic counseling of POI predisposition
will be instructive for their childbearing plans. To date, more
than 75 genes have been found to be responsible for POI,
among which 24 genes were involved in meiotic HR process.
With the widespread use of NGS and whole-genome sequencing,
the identification of novel genes will be increased in the near
future. Furthermore, with the development of data analysis
strategies, more non-synonymous mutations with high risk of
pathogenicity, microdeletion or interruption, and rearrangement
of gene sequences will be identified, expanding the mutation
spectrum and genetic architecture of POI.

Along with the increasing genes and variations identified,
more challenges are emerging to determine the causative
patterns of meiotic HR genes in POI. Most of the meiotic
HR genes were found in familial POI by recessive modes,
while heterozygous mutations were more common in sporadic
cases, and the mutation frequencies varied significantly among
different cohorts. These observations indicated that the genetic
architecture of sporadic POI would be more complicated than
that in familial cases. With more and more di-genetic or
multigenetic variations reported and dosage-dependent effect
confirmed by functional studies, sporadic POI seemed to be a
complex disease, which occurred as a result of multiple genomic
variants paired with environmental influences. Furthermore,
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many HR genes had pleiotropic effects in proliferation and
apoptosis of somatic cells. The relationships between pleiotropic
genes and heterogeneous phenotypes of isolated or syndromic
POI should be further explored as well.

Meiotic HR genes not only participate in oogenesis
but also facilitate oocyte maturation, fertilization, and
early embryo development. Dysfunction of several genes
might be responsible for unexplained infertility or early
pregnancy loss, such as members of SC and cohesion
complex influenced chromosome separation and aneuploidy
of oocytes. Therefore, besides the benefits of early diagnosis,
intervention, and treatment of POI, further studies on
the meiotic HR genes will give advice to other diseases
of infertility and adverse pregnancy outcomes. Moreover,
considering the increased cancer susceptibility of HR gene
defects, long-term follow-up for cancer risks and healthcare
should be suggested.
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