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Background: Glioma is the most common primary malignant brain tumor with
significant mortality and morbidity. Ferroptosis, a novel form of programmed cell death
(PCD), is critically involved in tumorigenesis, progression and metastatic processes.

Methods: We revealed the relationship between ferroptosis-related genes and glioma
by analyzing the mRNA expression profiles from The Cancer Genome Atlas (TCGA),
Chinese Glioma Genome Atlas (CGGA), GSE16011, and the Repository of Molecular
Brain Neoplasia Data (REMBRANDT) datasets. The least absolute shrinkage and
selection operator (LASSO) Cox regression analysis was performed to construct a
ferroptosis-associated gene signature in the TCGA cohort. Glioma patients from the
CGGA, GSE16011, and REMBRANDT cohorts were used to validate the efficacy of
the signature. Receiver operating characteristic (ROC) curve analysis was applied to
measure the predictive performance of the risk score for overall survival (OS). Univariate
and multivariate Cox regression analyses of the 11-gene signature were performed
to determine whether the ability of the prognostic signature in predicting OS was
independent. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were conducted to identify the potential biological
functions and pathways of the signature. Subsequently, we performed single sample
gene set enrichment analysis (ssGSEA) to explore the correlation between risk scores
and immune status. Finally, seven putative small molecule drugs were predicted by
Connectivity Map.

Results: The 11-gene signature was identified to divide patients into two risk groups.
ROC curve analysis indicated the 11-gene signature as a potential diagnostic factor in
glioma patients. Multivariate Cox regression analyses showed that the risk score was
an independent predictive factor for overall survival. Functional analysis revealed that
genes were enriched in iron-related molecular functions and immune-related biological
processes. The results of ssGSEA indicated that the 11-gene signature was correlated
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with the initiation and progression of glioma. The small molecule drugs we selected
showed significant potential to be used as putative drugs.

Conclusion: we identified a novel ferroptosis-related gene signature for prognostic
prediction in glioma patients and revealed the relationship between ferroptosis-related
genes and immune checkpoint molecules.

Keywords: ferroptosis, tumor immunity, prognosis, gene signature, glioma

INTRODUCTION

Glioma is the most common primary malignant intracranial
tumor. Glioblastoma, the most malignant form (WHO grade
IV glioma, GBM), has a 5-year survival rate of less than 5%
(Ostrom et al., 2014; Gusyatiner and Hegi, 2018). Though low-
grade gliomas have a better prognosis than glioblastomas, 70% of
the patients inevitably develop into glioblastomas within 10 years,
posing the importance of early diagnosis and risk assessment
to improve the prognosis of gliomas (Kiran et al., 2019).
The rapid progression, along with the highly heterogeneous
nature of gliomas, makes prognostic prediction challenging.
Standard treatment of gliomas involves observation, surgery,
chemotherapy, and radiotherapy (Wang and Mehta, 2019).
Despite significant advances in glioma management over the
past decades leading to remarkable improvements in overall
survival, treatment of gliomas remains a challenge because of
heterogeneity, highly proliferative rate and the infiltrative nature
of the tumor cells (Delgado-López et al., 2017; Li and Ding,
2017; Esparragosa et al., 2018). All these malignant biological
features make gliomas highly recurrent and drug-resistant.
Recently discovered biomarkers indicate improved survival and
specific antitumor treatment (Ostrom et al., 2014; Esparragosa
et al., 2018). Numerous clinical trials targeting these molecule
markers for glioma therapies have been carried out, but few have
ultimately succeeded. Therefore, identifying novel and effective
prognostic models and drug targets is an urgent and critical task
not only for glioma management, but also for drug discovery.

Ferroptosis, first proposed by Dixon in 2012, is a newly
discovered type of programmed cell death (PCD) that occurs
through Fe(II)-dependent lipid peroxidation due to insufficient
cellular reducing capacity (Dixon et al., 2012; Fearnhead
et al., 2017; Stockwell et al., 2017). Previous studies have
shown that ferroptosis is closely related to the progression

Abbreviations: TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma
Genome Atlas; LASSO, least absolute shrinkage and selection operator; ROC,
receiver operating characteristic; OS, overall survival; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single sample
gene set enrichment analysis; GBM, glioblastoma; PCD, programmed cell death;
DEGs, differentially expressed genes; PRS, primary/recurrent/secondary; C-index,
concordance index; CMap, Connectivity Map; PPI, protein-protein interaction;
PCA, Principal component analysis; t-SNE, t-distributed stochastic neighbor
embedding; AUC, area under the curve; HR, Hazard ratio; CI, Confidence interval;
aDC, Activated dendritic cell; DC, dendritic cell; iDC, Immature dendritic cell; NK,
natural killer; pDC, Plasmacytoid dendritic cell; Tfh, T follicular helper cell; Th,
T helper; TIL, Tumor Infiltrating Lymphocyte; Treg, T regulation; APC, Antigen
presenting cell; CCR, Cytokine-cytokine receptor; HLA, Human leukocyte antigen;
MHC, major histocompatibility complex; IFN, interferon; OSCC, oral squamous
carcinoma; MT, metallothionein; HCC, hepatocellular carcinoma.

of tumors, such as hepatocellular carcinoma (HCC), renal
cell carcinoma, adrenocortical carcinomas, ovarian cancer and
pancreatic carcinoma (Belavgeni et al., 2019; Xia et al., 2019).
Accumulating evidence has demonstrated that ferroptosis has
emerged as a promising target in cancer therapeutics, especially
for malignancies resistant to traditional treatments (Hassannia
et al., 2019; Liang et al., 2019). Numerous genes have been
identified as mediators or modulators of ferroptosis. Ferroptotic
regulatory genes such as TP53 (Cao and Dixon, 2016), BAP1 (Di
Nunno et al., 2019), GPX4 (Liu et al., 2018), and DPP4 (Enz et al.,
2019) are critically involved in tumorigenesis and progression.
However, whether these genes correlate with the prognosis of
glioma patients has yet to be elucidated.

In the current study, we first identified the differential
expression of ferroptosis-related genes in glioma samples
according to publicly accessible mRNA expression profiles
and corresponding clinical data of glioma patients. Then,
we constructed a gene-based prognostic model in the TCGA
dataset and validated the signature of ferroptosis-related genes
in the CGGA dataset. We further performed the functional
annotation to explore the underlying mechanisms. Finally, we
selected several small molecule drugs as potential therapeutic
target for glioma.

MATERIALS AND METHODS

The flow chart of data collection and analysis is shown in
Figure 1.

Data Acquisition
In our current study, we collected four public cohorts containing
RNA-seq data (expression matrix has been transformed to
TPM) and clinical information of patients obtained from The
Cancer Genome Atlas (TCGA)1, Chinese Glioma Genome Atlas
(CGGA)2 database, GEO3, and GlioVis4. TCGA-LGG (Brat et al.,
2015) and TCGA-GBM (Brennan et al., 2013) combined (n = 703)
were used to find aberrantly expressed genes between cancer and
normal tissue, based on previously published ferroptosis related
genes, and to construct the prognostic signature model (Stockwell
et al., 2017; Bersuker et al., 2019; Doll et al., 2019; Hassannia
et al., 2019). Basically, we chose the mentioned protein-coding

1https://portal.gdc.cancer.gov/
2http://www.cgga.org.cn/
3https://www.ncbi.nlm.nih.gov/geo/
4http://gliovis.bioinfo.cnio.es/
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FIGURE 1 | Flow chart of the study.

genes from these studies and combined them as ferroptosis
related genes. The retrieved genes were listed in Supplementary
Table 1. CGGA dataset (Zhao et al., 2017) (n = 325), GSE16011
(Gravendeel et al., 2009) (n = 276) and Repository of Molecular
Brain Neoplasia Data (REMBRANDT) (Madhavan et al., 2009)
(n = 444) were used as validation cohorts to assess the efficacy of
our gene signature model.

Identification of Differentially Expressed
Genes (DEGs)
DEGs were identified by comparing the mRNA expression of 60
ferroptosis related genes between tumor and normal tissue in
TCGA datasets using Limma package version 3.44.3 in R software
version 4.0.3. The information of sample sources (TCGA-LGG

or TCGA-GBM) was included as covariates during the analysis.
Genes with p < 0.05 were selected for further analysis. The
DEGs between low- and high-risk group were also identified in
both TCGA and CGGA cohorts after the calculation of the risk
score using Limma package version 3.44.3 in R software version
4.0.3. Genes with fdr < 0.05 and |log FC| > 1 were selected for
further analysis.

Gene Correlation Analysis
The protein-protein association analysis of DEGs was performed
based on the STRING database version 11.0 (von Mering et al.,
2005)5. Genes having no predictive interaction with other DEGs
were not presented in the final figure.

5http://string.embl.de/
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Identification and Validation of
Prognostic Gene Signature
Univariate Cox regression analysis was performed to determine
the genes significantly associated with overall survival (OS) in
TCGA datasets. Due to the existence of missing value in overall
survival and survival status, only 665 patients were included in
the model construction in TCGA datasets. The overlapping genes
between DEGs and clinically associated genes were identified
using the Venn diagram. After that, the overlapping genes were
sent to further construct a ferroptosis-associated gene signature
by using the least absolute shrinkage and selection operator
(LASSO) Cox regression analysis with the aid of Glmnet package
version 4.0-2 (Tibshirani et al., 2012) in R software version 4.0.3.
Based on the prognostic gene signature, the risk score for each
patient can be calculated as followed:

riskScore =
n∑

i = 1

Coef (Xi) ∗ Exp(Xi) (1)

In formula (1), Coef (Xi) represented the coefficient of each
ferroptosis-related genes Xi, and Exp(Xi) represented the
expression levels of these genes. The calculated risk score divided
all the patients into low- or high-risk using median risk score as a
cutoff. The risk score of patients from CGGA datasets can also be
calculated to validate the efficacy of the prognostic gene signature.

Gene Enrichment Analysis
To functionally annotate differentially expressed gene sets during
the analysis, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were performed
in R software version 4.0.3 using ClusterProfiler version 3.16.1
(Yu et al., 2012) package. PFAM Protein Domains, INTERPRO
Protein Domains and Features enrichment were performed
directly in the STITCH database version 5.06 (Szklarczyk et al.,
2016). To estimate the immune cell infiltration and immune
function status in high-risk patients vs. low-risk ones, single
sample gene set enrichment analysis (ssGSEA) was performed
using GSVA version 1.36.3 (Hänzelmann et al., 2013) package in
R software version 4.0.3. In short, the immune-related gene set
enrichment score of each patient was first calculated. Then the
patients were divided into high- or low-risk groups based on the
formerly mentioned cutoff, after which the immune status was
compared between the two groups.

Nomogram Construction
The independent clinical factor validated by univariate
and multivariate Cox regression analysis were enrolled to
construct a nomogram for prognosis prediction, which included
primary/recurrent/secondary (PRS) type of glioma, grade, 1p19q
codeletion status and risk score. Patients with missing data
were excluded from the analysis and thus only 275 patients
were included in the univariate and multivariate Cox regression
analysis. Package Rms version 6.1-0 was utilized to perform the
construction and calculate the concordance index (C-index) to

6http://stitch.embl.de/

evaluate the model efficacy in prognosis prediction. The closer its
value is to 1, the better the performance. In addition, calibration
curves for 1–, 2–, and 3– year prediction were plotted to assess
the consistency between predicted and actual survival.

Candidate Small Molecule Drugs
Analysis and Downstream Target
Molecule Identification
The Connectivity Map (CMap) database version build 027 was
used to predict the putative drugs targeting DEGs in our
present analysis. CMap database (Lamb et al., 2006) can be
utilized to explore functional links between disease, genetic
interference and drug action. The enrichment scores ranging
from –1 to 1 were calculated for each putative drugs. The negative
enrichment score of a drug represented the reversing effects on
the input gene set, thus indicating its anti-tumor capacity when
it comes to cancer-related gene set. Besides, percent non-null
represented the percentage of meaningful results obtained in
the whole n times experiments conducted by CMap database.
The small molecule compounds were chosen with p < 0.05 and
enrichment scores <–0.85. Subsequently, all the small molecule
compounds with p < 0.05 were collected and analyzed in the
STITCH database version 5.0 (see text footnote 6) to identify
the target proteins and mechanism of action. The STITCH
database (Szklarczyk et al., 2016) is a platform for searching
known and predicted interactions between drug compounds
and proteins. The interactions between drug compounds and
proteins are verified through experiments, databases, and studies
in the literature.

Statistical Analysis
All the data were analyzed using the R software version 4.0.38.
Kaplan-Meier analysis was performed to compare the overall
survival curves between different patient groups, with a log-
rank test to evaluate the statistical significance. Spearman’s
rank correlation coefficient was calculated to evaluate the linear
correlation between risk score and the expression of immune
checkpoint related genes. Kruskal-Wallis H-test was used to
compare difference between groups. p < 0.05 was considered
statistically significant for all the analyses.

RESULTS

Identification of 25 Prognostic
Ferroptosis-Related DEGs in the TCGA
Cohort
A total of 703 GBM patients from two TCGA cohorts (including
TCGA-GBM and TCGA-LGG) and 325 GBM patients from
CGGA cohort were included in the analysis. To evaluate the
expression differences of ferroptosis-related genes between tumor
tissues and adjacent normal tissues, we analyzed RNA-seq data
from TCGA dataset. Subsequently, 27 of 60 ferroptosis-related

7https://portals.broadinstitute.org/cmap/
8https://www.R-project.org/
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FIGURE 2 | Identification of prognostic ferroptosis-related DEGs in the TCGA cohort. (A) Venn diagram shows the differentially expressed genes between tumor and
adjacent normal tissues of prognostic value. (B) Gene expression levels of DEGs in the TCGA dataset. Red indicates up-regulated genes; blue indicates
down-regulated genes. (C) Results of univariate Cox regression analysis between candidate gene expression and OS. (D) PPI network among candidate genes
indicates that TP53 and PTGS2 are the hub genes. (E) The correlation between candidate genes. Red represents positive correlation; green represents negative
correlation.

genes were selected, and 25 of them were related to patient
survival (Figure 2A). Among the 25 overlapping genes, HSBP1,
FANCD2, PGD, SAT1, CD44, SLC1A5, LPCAT3, NFE2L2,
ACO1, ALOX12, ZEB1, TP53, KEAP1, PEBP1, FADS2, AKR1C3,
and CRYAB were upregulated, and AKR1C2, ACSL4, CISD1,
GLS2, GOT1, MT1G, CHAC1, and PTGS2 were downregulated
in tumor tissues (Figure 2B). The results of univariate Cox
regression analysis between gene expression and OS is shown
in Figure 2C (all p < 0.05). The protein-protein interaction
(PPI) network and functional analysis of these genes indicated
that TP53 and PTGS2 were the hub genes (Figure 2D). The
correlation of candidate genes is presented in Figure 2E.

Construction of a Gene-Based
Prognostic Model in the TCGA Cohort
To evaluate the risk of each patient, LASSO-Cox regression
analysis was applied to establish a gene-based prognostic model
using the expression profile of the 25 genes mentioned above. We
identified an 11-gene signature based on the LASSO regression
with the optimal value of λ and performed survival analyses
according to the optimal cut-off expression value of each gene
(Supplementary Figure 1). The results indicated that high
expression of CD44, FANCD2, HSBP1, MT1G, NFE2L2, SAT1,
and low expression of AKR1C3, ALOX12, CRYAB, FADS2, and

ZEB1 correlated with a poor prognosis. The calculated coefficient
was exhibited in Table 1. The distribution of risk scores in the
TCGA dataset is presented in Figure 3A. The patients were
divided into a high-risk group and a low-risk group based on
the median cut-off value. Principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE) analysis
were used to separate between the two different risk groups
(Figures 3B,D). The result indicated that patients in high-risk

TABLE 1 | The calculated coefficient of the 11 ferroptosis-related genes.

Gene Coefficient

AKR1C3 −0.120098473470357

ALOX12 −0.0122009713910145

CD44 0.214177710154476

FANCD2 0.684183489406273

CRYAB −0.104571744619555

MT1G 0.0523002991814781

SAT1 0.17208169582249

HSBP1 0.0301696571931318

ZEB1 −0.371498258625237

FADS2 −0.0378977482917486

NFE2L2 0.452805076174773
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FIGURE 3 | Construction of the gene signature in the TCGA cohort. (A,C) Distribution and median value of risk scores in the TCGA cohort. (B) PCA plot of the
TCGA cohort. (D) t-SNE analysis of the TCGA cohort. (E) Kaplan-Meier survival curve for the OS of patients in the high-risk group (red line) and low-risk group (blue
line) in the TCGA cohort. (F) AUC of time-dependent ROC curve analysis for evaluating the prognostic performance of the risk score for OS in the TCGA cohort.

group and low-risk group were distributed in discrete directions.
The OS status in the high-risk group was significantly poorer than
that in the low-risk group (Figure 3C). Consistently, Kaplan-
Meier survival curve in the TCGA cohort indicated that a high-
risk score was correlated with a worse prognosis (Figure 3E,
p < 0.001). Time-dependent ROC curve analysis was applied

to measure the predictive performance of the risk score for
OS. The signature of the 11 ferroptosis-related genes exhibited
remarkable prognostic validity, with the area under the curve
(AUC) reaching 0.879 (0.843–0.915, 95%CI) at 1 year, 0.903
(0.871–0.935, 95%CI) at 2 years, and 0.919 (0.884–0.954, 95%CI)
at 3 years (Figure 3F).
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Validation of the Signature of 11
Ferroptosis-Related Genes in the CGGA,
GSE16011, and REMBRANDT Cohorts
To test the robustness of the model constructed by the
TCGA cohort, we performed prognostic analyses in the CGGA,
GSE16011, and REMBRANDT validation cohorts. In the CGGA
cohort, the patients were also divided into high-risk and low-
risk groups according to the median value with the same
calculation formula as the TCGA cohort (Figure 4A). Likewise,
PCA and t-SNE analysis in the CGGA cohort confirmed that

patients in high-risk group and low-risk group were distributed
in two directions (Figures 4B,D). Similar to the results from
the TCGA cohort, patients with a high-risk score were more
likely to have a significantly shorter OS and poorer prognosis
in the CGGA dataset (Figures 4C,E). The AUC of the signature
was 0.790 (0.741–0.839, 95%CI) at 1 year, 0.875 (0.835–0.915,
95%CI) at 2 years, and 0.878 (0.836–0.919, 95%CI) at 3 years
(Figure 4F). The GSE16011 cohort (Supplementary Figure 2)
and the REMBRANDT cohort (Supplementary Figure 3)
exhibited a pattern similar to the CGGA cohort. Heat maps

FIGURE 4 | Prognostic validation of the 11-gene signature in the CGGA cohort. (A,C) Distribution and median value of risk scores in the CGGA cohort. (B) PCA plot
of the CGGA cohort. (D) t-SNE analysis of the CGGA cohort. (E) Kaplan-Meier survival curve for the OS of patients in the high-risk group (red line) and low-risk group
(blue line) in the CGGA cohort. (F) AUC of time-dependent ROC curve analysis in the CGGA cohort.
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showed clinical and molecular features and different expression
levels of 25 selected genes using hierarchical clustering in the
TCGA dataset (Supplementary Figure 4) and CGGA dataset
(Figure 5). Consistent with the calculated risk score, patients
were roughly clustered into two groups by risk score. In the
CGGA dataset, with an increase in risk score, the expression
levels of CRYAB, AKR1C3, FADS2, AKR1C2, PEBP1, CISD1,
GLS2, and GOT1 were downregulated; the expression levels
of SAT1, SLC1A5, CD44, NFE2L2, ACSL4, PTGS2, CHAC1,
MT1G, ALOX12, HSBP1, KEAP1, FANCD2, PGD, TP53, ZEB1,
LPCAT3, and ACO1 were upregulated. Clinical and molecular
features, such as methylated MGMTp, 1p19q non-codeletion,
IDH wild types, recurrent/secondary tumor types were enriched
in high-risk-score samples. In the TCGA dataset, there are
only 443 samples with both clinical data and RNAseq data,
so blank and missing data existed when clinical parameters
were added to the heatmap. The incomplete clinical data may
not be completely random, leading to bias in the clinical
correlation analysis. The result in the TCGA dataset was basically
consistent with CGGA dataset. These results indicated that the
risk score of the ferroptosis-related gene signatures positively
correlated with glioma.

Independent Prognostic Value of the
11-Gene Signature
Univariate and multivariate Cox regression analyses of the
11-gene signature were performed in the TCGA, CGGA,
GSE16011, and REMBRANDT datasets to determine whether
the ability of the prognostic signature in predicting OS
was independent. The results of univariate Cox regression
analyses determined that the risk score was significantly
related to OS in both the TCGA cohort and the CGGA
cohort (TCGA cohort: HR = 3.107, 95% CI = 2.506–3.853,
p < 0.001; CGGA cohort: HR = 1.943, 95% CI = 1.737–2.174,
p < 0.001) (Figures 6A,B). In multivariate Cox regression
analyses, the risk score still proved to be an independent
predictive factor for OS (TCGA cohort: HR = 1.568, 95%
CI = 1.100–2.235, p < 0.05; CGGA cohort: HR = 1.651,
95% CI = 1.415–1.926, p < 0.001) (Figures 6A,B). These
consistent results were also validated in the GSE16011 and
REMBRANDT datasets (Supplementary Figure 5). Based on the
independent prognostic parameters for the OS in the TCGA
dataset, we constructed a nomogram to predict 1, 2, and 3-
year survival (Figure 6C). Besides, the calibration curve for
the probability of 1, 2, and 3-year OS showed an optimal

FIGURE 5 | Hierarchical clustering showing correlation between signature risk score, different expression levels of selected ferroptosis-related genes, and clinical or
molecular features in the CGGA dataset. Heatmap showed the different expression levels of 25 ferroptosis-related genes and clinical or molecular pathological
features using hierarchical clustering in CGGA dataset. Methylguanine methyltransferase promotor (MGMTp); isocitrate dehydrogenase (IDH); co-deletion (Codel);
without co-deletion (Non-codel); primary/recurrent/secondary type of glioma (PRS_type); survival status (fustat).
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FIGURE 6 | Independent prognostic value of the 11-gene signature in the TCGA and CGGA cohorts and construction of the predictive nomogram from the CGGA
cohort. Univariate and multivariate Cox regression analyses of the signature in the TCGA derivation cohort (A) and the CGGA validation cohort (B). (C) A nomogram
of the 11-gene signature for predicting 3-year survival in the TCGA dataset.

agreement between observation and prediction in the TCGA
dataset (Supplementary Figure 6). The C-index was calculated
as 0.83 after bias correction, showing relatively high performance
in clinical diagnosis. Therefore, these results indicated that
the 11-gene signature may serve as a potential diagnostic
factor in glioma patients. Meanwhile, the above findings
also provided us with useful information that upregulated
expression of ferroptosis-related genes has an impact on the
prognosis of glioma.

Functional Annotation of the 11-Gene
Signature
To identify the potential biological functions and pathways
of the 11-gene signature, the DEGs between the high-risk
group and the low-risk group were used to conduct GO
analysis and KEGG pathway analysis. Based on GO analysis,
the DEGs were enriched in iron-related molecular functions,
such as gated channel activity in the TCGA and CGGA
cohorts, and channel activity and ion channel activity in
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the CGGA cohort. In addition, DEGs in the TCGA cohort
were highly enriched in several immune-related biological
processes, such as adaptive immune response based on somatic
recombination of immune receptors built from immunoglobulin
superfamily domains, leukocyte migration, interferon-gamma-
mediated signaling pathway, response to interferon-gamma,
regulation of immune effector process, neutrophil activation
and neutrophil mediated immunity (Figure 7A). Two immune-
related biological processes were validated in the CGGA
cohort, including leukocyte migration and adaptive immune
response based on somatic recombination of immune receptors
built from immunoglobulin superfamily domains (Figure 7C).
KEGG pathway analysis indicated that DEGs were enriched
in immune-related pathways, which was consistent with the
results of GO analysis. The terms included phagosome,
complement and coagulation cascades, allograft rejection, human
T-cell leukemia virus 1 infection, antigen processing and
presentation, cell adhesion molecules and graft-vs.-host disease
in both the TCGA dataset (Figure 7B) and the CGGA
dataset (Figure 7D), TNF signaling pathway and cytokine-
cytokine receptor interaction in the CGGA dataset (Figure 7D).
Besides, several cancer-related terms were included in the
two datasets, such as proteoglycans in cancer and Epstein-
Barr virus infection in the TCGA and CGGA datasets, and
human papillomavirus infection in the TCGA dataset. The
aforementioned results indicate that the 11-gene signature highly
correlates with cancer progression, particularly by affecting
immune-related functions.

The Ferroptosis Related Gene Signature
Is Highly Correlated With Immune
Function and Immune Checkpoint
Molecules in Glioma
To further explore the correlation between risk scores and
immune status, ssGSEA was performed to quantify the
enrichment scores of different immune cell subpopulations and
related functions or pathways in the TCGA (Figures 8A,B),
CGGA (Figures 8C,D), GSE16011 (Figures 8E,F), and
REMBRANDT (Figures 8G,H) cohorts. As expected, contents
of immune response had higher scores in the high-risk group,
including macrophages, pDCs, T helper cells, TIL, and Treg in
all datasets. The score of NK cells was lower in the high-risk
group in the TCGA, GSE16011, and REMBRANDT datasets,
while exhibited the opposite in the CGGA dataset. Moreover,
the scores of DEGs in immune-related biological processes
or molecule functions were statistically different between two
risk groups in all cohorts, including APC co-inhibition, APC
co-stimulation, CCR, check-point, cytolytic activity, HLA,
inflammation-promoting, MHC class I, parainflammation, T cell
co-inhibition, T cell co-stimulation, type I IFN response, type
II IFN response. Subsequently, we calculated Spearman’s rank
correlation coefficient to evaluate the linear correlation between
the expression of immune checkpoint related genes (CD274,
CD276, CTLA4, HAVCR2, LAG3, and PDCD1) and risk scores
in the TCGA, CGGA (Supplementary Figure 7), GSE16011, and
REMBRANDT (Supplementary Figure 8) datasets. The results

FIGURE 7 | Results of GO and KEGG analyses. (A) GO analysis in the TCGA dataset. (B) KEGG pathway analysis in the TCGA dataset. (C) GO analysis in the
CGGA dataset. (D) KEGG pathway analysis in the CGGA dataset.
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FIGURE 8 | The ssGSEA results of different risk groups in the TCGA cohort (A,B), CGGA cohort (C,D), GSE16011 cohort (E,F), and REMBRANDT cohort (G,H).
The scores of 16 immune cells (A,C,E,G) and 13 immune-related functions (B,D,F,H) were shown in boxplots. Adjusted p were showed as: ns, not significant;
*p < 0.05; **p < 0.01; ***p < 0.001.

indicated that the expression of immunosuppression-related
genes had positive correlation with risk scores in all cohorts.
Furthermore, in order to preliminarily determine which of the
11 genes may be the most related to immune response, we
performed the correlation analysis for each ferroptosis-related
gene and immune checkpoint gene (| r| > 0.4) (Supplementary
Figure 9). The results revealed that key genes in the TCGA
dataset were CD44, FANCD2 and SAT1, and key genes in the
CGGA dataset were AKR1C3, ALOX12, CD44, SAT1, and
NFE2L2. The common critical genes in the two datasets were
CD44 and SAT1. A previous study has revealed that CD44 was
identified as a key positive regulator of PD-L1 expression in
triple-negative breast cancer and non-small cell lung cancer
(Kong et al., 2020). SAT1 has been reported to contribute to
p53-mediated reactive oxygen species (ROS) response and
ferroptosis (Ou et al., 2016). Therefore, it can be speculated that
CD44 and SAT1 may regulate immune checkpoints to involve
in tumor immunity. Collectively, the results above indicated
that the 11-gene signature was correlated with the initiation and
progression of glioma.

Drug Screening Using the 11-Gene
Signature With CMap and STITCH
Database
In order to test whether the selected 11 ferroptosis-related genes
are good candidates for therapy target, CMap (the connectivity
map) analysis was performed to screen small molecule drugs
using the selected prognostic genes as up signature or down
signature. Of the 27 prognostic genes, 18 genes with positive
cox coefficient were set as the up-regulated signature and the
other nine genes were set as the down-regulated signature. Seven
candidate small molecule drugs (butacaine, CAY-10397, BAS-
012416453, PHA-00816795, STOCK1N-35696, piperlongumine,
sanguinarine) with potential value were identified with p < 0.05

and enrichment score <–0.85 (Table 2). Among the seven
small molecule drugs, butacaine and CAY-10397 (p < 0.001)
showed significantly negative correlation with selected mRNAs
and potential to be used as putative drugs. To understand the
correlation between candidate drugs and immune checkpoints,
the network of interacting proteins and candidate drugs with
p < 0.05 was constructed in the STITCH database (see text
footnote 6) (Supplementary Figure 10). The results showed
that the direct downstream target genes of candidate drugs
included HDAC1, ESR2, CYP19A1, ESR1, AR, ADRA1A, PGR,
ESRRA, NR3C1, and KCNJ11. We further performed GO, PFAM
Protein Domains, INTERPRO Protein Domains and Features
enrichment analyses on the above genes, and found that steroid
hormone related functions were enriched, especially estrogen
receptor (ER) related functions (Supplementary Table 2).
A previous study has revealed that in cells with low ER
expression, ferroptosis was easier to be triggered by sulfasalazine
in breast cancer cells (Ou et al., 2016). Besides, the correlation
between ER and tumor immunity has been also extensively
researched (Kurozumi et al., 2019; Romero et al., 2020; Smida
et al., 2020). Therefore, the candidate drugs targeting estrogen
receptor are likely to involve in the downstream tumor immunity
through ferroptosis.

TABLE 2 | Drugs selected by CMap.

CMap name n Enrichment p Percent non-null

Butacaine 4 −0.881 0.00048 100

CAY-10397 3 −0.92 0.00092 100

BAS-012416453 3 −0.886 0.00288 100

PHA-00816795 2 −0.956 0.00421 100

STOCK1N-35696 2 −0.884 0.02696 100

Piperlongumine 2 −0.876 0.03078 100

Sanguinarine 2 −0.871 0.03306 100
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DISCUSSION

Glioma is the most common primary malignant brain tumor
characterized by rapid progression and treatment resistance,
causing significant mortality and morbidity (Gusyatiner and
Hegi, 2018; Liu et al., 2020). Ferroptosis is a novel form
of PCD. Previous studies have identified the critical role of
ferroptosis in tumorigenesis and therapies (Liu et al., 2020). In
the current study, we used comprehensive bioinformatics analysis
to investigate variations in expression profiling of 60 ferroptosis-
related genes in glioblastoma and their association with OS. We
identified the signature of 11 ferroptosis-related genes associated
with progression and prognosis of GBM patients and validated
the novel prognostic model in an external cohort. Functional
analyses indicated that immune-related biological processes were
highly enriched. In addition, we selected several small molecule
compounds as potential therapeutic drugs.

The 11 prognostic genes consist of AKR1C3, ALOX12,
CD44, CRYAB, FADS2, FANCD2, HSBP1, MT1G, NFE2L2,
SAT1, and ZEB1. Previous studies have illustrated that
most of these ferroptotic genes are critically involved in
tumorigenesis, including glioma. AKR1C3 involves in steroids,
prostaglandins and lipid aldehydes metabolism and plays a role
in tumorigenesis of breast carcinoma, endometrial carcinoma
and prostate carcinoma (Park et al., 2010). ALOX12, a hotpot of
monoallelic deletion in cancers, plays an important role in p53-
mediated ferroptosis. ALOX12 missense mutations diminishes
polyunsaturated fatty acids oxidation and p53-mediated
ferroptosis (Chu et al., 2019). CD44 is a single-pass type I
transmembrane protein that has shown to be closely related
to tumor development. Ferroptotic responses correlate with
the transcriptional regulation of SLC7A11, a key component
of the cystine-glutamate antiporter. The level of CD44 can
regulate the sensitivity of tumor cells to ferroptosis and the
stability of SLC7A11, a key component of the cystine-glutamate
antiporter related to ferroptosis regulation (Liu et al., 2019).
CRYAB, secreted via exosomes, has been reported to be up-
regulated in GBM and exert anti-apoptotic activity (Kore and
Abraham, 2014). FADS2 has been shown to overexpress in
colorectal cancer and facilitate cancer cell proliferation by
increasing the metabolism of PGE2, an oncogenic molecule
associated with colorectal cancer tumorigenesis (Tian et al.,
2020). Previous studies have demonstrated that FANCD2 is
overexpressed in high-grade gliomas and depletion of FANCD2
may serve as a potential strategy for the treatment high-
grade gliomas (Metselaar et al., 2019). HSBP1 expression has
reported to be elevated in oral squamous carcinoma (OSCC)
and increased HSBP1 expression enhances the sensitivity of
OSCC cells in radiation (Shen et al., 2014). MT1G, a member of
metallothioneins (MTs), is frequently downregulated in HCC,
which can be regarded as an early event in HCC progression
(Ji et al., 2014). NFE2L2 is a redox-sensitive transcriptional
factor mainly located in cytoplasm. The expression of NFE2L2
has been shown to positively correlate with the expression of
immune checkpoint markers in brain lower grade glioma (Ju
et al., 2020). A previous study has demonstrated that SAT1
causes resistance to radiation in GBM through an shRNA screen.
SAT1 also involves in cell migration, proliferation and tumor

growth (Thakur et al., 2019). ZEB1 has been reported to increase
in gliomas and positively correlate with tumor progression
(Chen et al., 2017).

We further demonstrated that a high-risk score was associated
with worse prognosis. Time-dependent ROC curve of the
signature of 11 ferroptosis-related genes predicted patient OS. To
investigate the correlation between the risk signature and glioma
grade, we further studied the levels of risk score stratified by
the grade in the TCGA, CGGA, GSE16011, and REMBRANDT
cohorts (Supplementary Figure 11). The risk score increased
as the grade of glioma increased. In the TCGA and CGGA
datasets, WHO grade IV patients had the highest increase in
the risk score, while WHO grade II patients had the lowest
increase in the risk score. Patients with WHO grade III were
assigned a medium risk score in both the TCGA and CGGA
datasets (p < 0.001). In the GSE16011 and REMBRANDT
datasets, due to the limited samples of patients with WHO
grade I and II, the results of WHO grade I and II exhibited
no statistical difference. Therefore, we reassigned the samples
to WHO grade I-III and WHO grade IV, and the results were
statistically different. Besides, we also plotted Kaplan-Meier
curves for glioma patients with low and high risk scores classified
as WHO grade II to IV in the TCGA, CGGA, GSE16011,
and REMBRANDT datasets (Supplementary Figure 12). In
consideration of the limited samples of patients with Grade I
and II in the GSE16011 and REMBRANDT datasets, we also
plotted Kaplan-Meier curves of Grade I-III. The results showed
that patients with high risk had significantly shorter OS than
patients with low risk in WHO grade II, WHO grade III, and
WHO grade IV groups. Exceptionally, the survival plot between
low- and high- risk in WHO IV patients from TCGA and
REMBRANT cohorts showed no significance because there were
almost no patients with WHO IV were low-risk. Similarly, the
survival plot between low- and high- risk in WHO II patients
from CGGA and GSE16011 cohorts showed no significance,
also because there were almost no patients with WHO II were
high-risk. In addition, the prognostic values based on the 11-
gene signature were independent of other clinical variables,
including grade, age, radiotherapy status, IDH mutation status.
It can be noticed that differences existed in the prognostic
value for grade, age, and IDH status in the four datasets. It
is probably due to the data of the four datasets coming from
people in different regions. To adjust the differences caused by
populations, it requires a wider range of multi-center clinical
verification. Besides, the clinical data in the TCGA cohort are
incomplete, some of which have missing value. The lack of data
may not be completely random, leading to bias in the clinical
correlation analysis. This is also the limitation of using public
data to conduct analysis. Among the 11 genes, functional analysis
showed that these genes were involved in immune-related
biological processes and pathways. It can be reasonably assumed
that ferroptosis may be critically involved in tumor immunity.
To further explore potential mechanism of the signature of 11
ferroptosis-related genes, ssGSEA analysis was performed. The
enrichment scores of macrophages, pDCs, T helper cells, TIL
and Treg were statistically different between two risk groups and
exhibited a similar pattern in the TCGA, CGGA, GSE16011,
and REMBRANDT datasets. The scores of macrophages were
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the most statistically different between the low risk group and
the high risk group. Previous studies have reported that tumor-
associated macrophages are closely related to tumor-promoting
inflammation and contribute to tumor progression (Mantovani
et al., 2017; Ngambenjawong et al., 2017). Plasmacytoid dendritic
cells (pDCs) are an immune subgroup specialized in the
production of Type I Interferons (IFNs) that critically involve
in the anti-viral and anti-tumor immunity (Greene et al., 2020).
However, chronic infections and cancer cause pDC functional
exhaustion and inhibit pDC-derived IFN-I. In addition to the
protective functions of T helper populations, they are also
involved in the pathogenesis of chronic inflammatory disorders
(Cosmi et al., 2014). Tumor infiltrating lymphocytes (TIL)
were previously reported to play a predictive role in mediating
response to chemotherapy and increasing overall survival, while
the increase in immunosuppressive regulatory T-cells (Tregs) has
correlation with poor prognosis (Santoiemma and Powell, 2015;
Stanton and Disis, 2016). Given that high-risk group exhibited
poorer prognosis, we speculated that patients with high risk
may suffer pDC functional exhaustion and weakened anti-tumor
immunity. Besides, the inflammatory effect of T helper cells
and immunosuppression of Tregs play a dominant role in the
tumor immunity, rather than the protective functions of T helper
populations or TIL. Moreover, the high-risk groups in the TCGA,
GSE16011, and REMBRANDT cohorts had lower fractions of NK
cells, indicating that impaired antitumor immunity in patients
of high-risk group may contribute to their poor prognosis. The
score of NK cells between two groups in the CGGA cohort
was the opposite. We speculated that the result may be due
to limited samples and individual differences of the patients in
the CGGA cohort. Interestingly, although high-risk groups have
higher scores of functions related to antitumor immunity in both
cohorts, including the activity of the type I IFN response and
type II IFN response, the prognosis of the high-risk group still
proves poorer than that of the low-risk group. We also noticed
that cells or functions associated with immunosuppression such
as the fractions of Treg cells and the activity of T cell co-
inhibition in both cohorts are higher in the high-risk group. One
possible speculation is that the effect of immunosuppression may
play a dominant role in the immune response. Therefore, we
analyzed the correlation between the expression of genes related
to immunosuppression and the risk scores in the TCGA, CGGA,
GSE16011, and REMBRANDT cohorts. The results indicated that
the expression of immunosuppression-related genes (CD274,
CD276, CTLA4, HAVCR2, LAG3, and PDCD1) had a positive
correlation with risk scores in all cohorts. Notably, the expression
of B7-H3 exhibited a significant correlation with risk scores,
with the regression coefficient reaching 0.73 in the TCGA
cohort, 0.81 in the CGGA cohort, 0.57 in the GSE16011 cohort
and 0.59 in the REMBRANDT cohort. B7-H3 (CD276) is a
critical immune checkpoint molecule belonging to B7-CD28
families (Picarda et al., 2016). Induced on antigen-presenting
cells, B7-H3 was previously shown to act as a T cell co-
inhibitor associated with diminished NFAT, NF-κB and AP-1
transcriptional factor activity (Zhang et al., 2009). Numerous
studies have demonstrated that B7-H3 is highly overexpressed
in human malignancies and correlates with negative prognosis

and poor clinical outcome, including glioma (Wang et al., 2018;
Zheng et al., 2019), HCC (Zheng et al., 2019), pancreatic cancer
(Inamura et al., 2018), ovarian carcinoma (Zang et al., 2010),
colorectal cancer (Ingebrigtsen et al., 2014), and bone cancer (He
and Li, 2019). Therefore, B7-H3 may serve as an attractive target
for immunotherapy against cancers. The immune checkpoint
molecules, CTLA4 and PDCD1 (PD-1), send a negative signal
to T cells, thereby suppressing effector T-cell responses (Dyck
and Mills, 2017). Immunotherapy targeting immune checkpoints
CTLA4 and PD-1/PD-L1 (CD274) have been used in cancer
patients (Chen and Mellman, 2017; Lee et al., 2017). However,
only a small portion of patients exhibit durable responses and a
large number of cancers such as colorectal cancer remain largely
refractory to the therapy (Chen and Mellman, 2017; Das et al.,
2017). HAVCR2 (TIM-3), highly expressed on innate cells, acts
as a negative regulator of Th1 and CTL responses and critically
involves in tumor growth (Das et al., 2017; Joller and Kuchroo,
2017). LAG3 is also a potential target for cancer immunotherapy
due to its negative regulatory role on T cells (Andrews et al.,
2017). Therefore, we might suppose that the signature of 11
ferroptosis-related genes was critically involved in tumorigenesis
and progression of glioma probably by regulating immune-
related biological processes and pathways, which correlated with
the poor prognosis of glioma. In addition, we performed a
CMap analysis to screen small molecule drugs using the selected
prognostic genes. Some of the candidate drugs in our results
have been proven to have anti-cancer effects, including butacaine
(Mizuno and Ishida, 1982), piperlongumine (Duan et al., 2016;
Liu et al., 2017; Chen et al., 2019), and sanguinarine (Ma
et al., 2017; Zhang et al., 2017, 2018). Piperlongumine has
been reported to rapidly induce the death of human pancreatic
cancer cells through, at least in part, the induction of ferroptosis
(Yamaguchi et al., 2018). A previous study has revealed that
sanguinarine can block PPM1A phosphatase activity to restore
c-Jun N-terminal kinase (JNK) activation, resulting in increased
apoptosis of M. tuberculosis (Mtb)-infected macrophages (Schaaf
et al., 2017). To explore the potential mechanisms of these
putative drugs, we further constructed the network of protein
and drug compound interactions from the STITCH database, and
found that the candidate drugs were likely to involve in tumor
immunity through ferroptosis by targeting estrogen receptors.
Considering that all these drugs may share similar mechanisms
because of the principles of CMap database, drugs with no
previous publications may also have the anti-tumor effects via
targeting estrogen receptors and ferroptosis. Therefore, the 11-
gene signature in the current study has the potential to be used as
drug targets for therapy.

This study exists some limitations. First, all the data used
to construct and validate the prognostic model in the current
study were obtained from publicly available datasets. This
is a retrospective study. A prospective study is needed to
assess the potential application of the signature we have built
to predict survival. Second, though functional analysis has
revealed the correlation between the ferroptosis related gene
signature and immune-related biological processes, in vivo
and in vitro experiments are needed to further elucidate the
specific mechanism.
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CONCLUSION

Our present study identified a ferroptosis related 11-genes
prognostic model for glioma patients. This model proved to have
relatively high efficacy and to be clinically independent of other
factors, providing insight into the prediction of glioma patients’
prognosis. We also noticed that the differentially expressed
ferroptosis genes were highly correlated with both pro-tumor
and anti-tumor pathways, yet the latter seemed to be suppressed
during the progression of glioma, indicating the putative effects
of immunotherapy on glioma. Several potential drugs were also
predicted based on the differentially expressed ferroptosis genes.
The curative effect of the drugs and the underlying mechanisms
between ferroptosis and tumor immunity in glioma remained
lack of research and warranted further investigation.
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