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Phosphorylation, which is mediated by protein kinases and opposed by protein
phosphatases, is an important post-translational modification that regulates many
cellular processes, including cellular metabolism, cell migration, and cell division. Due
to its essential role in cellular physiology, a great deal of attention has been devoted
to identifying sites of phosphorylation on cellular proteins and understanding how
modification of these sites affects their cellular functions. This has led to the development
of several computational methods designed to predict sites of phosphorylation based
on a protein’s primary amino acid sequence. In contrast, much less attention has
been paid to dephosphorylation and its role in regulating the phosphorylation status
of proteins inside cells. Indeed, to date, dephosphorylation site prediction tools have
been restricted to a few tyrosine phosphatases. To fill this knowledge gap, we have
employed a transfer learning strategy to develop a deep learning-based model to
predict sites that are likely to be dephosphorylated. Based on independent test
results, our model, which we termed DTL-DephosSite, achieved efficiency scores for
phosphoserine/phosphothreonine residues of 84%, 84% and 0.68 with respect to
sensitivity (SN), specificity (SP) and Matthew’s correlation coefficient (MCC). Similarly,
DTL-DephosSite exhibited efficiency scores of 75%, 88% and 0.64 for phosphotyrosine
residues with respect to SN, SP, and MCC.

Keywords: post-translational modification, deep learning, transfer learning, dephosphorylation, computational
prediction

INTRODUCTION

Protein phosphorylation is an important posttranslational modification (PTM) that regulates
many cellular activities and contributes to the etiology and progression of several pervasive
diseases, including cancer, diabetes, cardiovascular disease, and neurodegeneration. In eukaryotic
cells, phosphorylation, and subsequent dephosphorylation, occurs on serine (S), threonine (T),
and tyrosine (Y) residues located on the protein surface. To date, more than two-thirds of
the ∼21,000 proteins encoded by the human genome have been shown to be phosphorylated,
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making phosphorylation one of the most wide-spread and
broadly studied protein PTMs (Ardito et al., 2017). The
precise regulation of the phosphorylation status of a protein
depends on the opposing activities of protein kinases, which
catalyze the transfer of the γ-phosphate of ATP to their
downstream substrates, and protein phosphatases, which catalyze
the dephosphorylation (i.e., removal of the phosphate group)
from the modified site (Figure 1). While it is often assumed that
any site that can be phosphorylated can also be dephosphorylated,
this may not always be the case (Bechtel et al., 1977; Bornancin
and Parker, 1997; Keshwani et al., 2012; Senga et al., 2015).
Similarly, certain sites may be dephosphorylated more efficiently
than others. Though rare, there are instances of phosphorylation
sites that are resistant to dephosphorylation. For instance, once
phosphorylated, both T197 and S338 in cAMP-dependent protein
kinase (PKA) are resistant to dephosphorylation (Bechtel et al.,
1977; Keshwani et al., 2012). Similarly, protein kinase G (PKG),
protein kinase C (PKC), and calcium/calmodulin-dependent
protein kinase 1δ (CAMK1δ) each exhibit phosphatase-resistant
states (Bornancin and Parker, 1997; Keshwani et al., 2012; Senga
et al., 2015). The relative efficiency of dephosphorylation at a
particular site may be, at least partially, dependent on the local
protein environment and the ability of phosphatases to recognize
the phosphosite.

Phosphorylation site prediction has recently emerged as an
important problem in the field of bioinformatics. As a result,
many phosphorylation site prediction tools have been developed
to predict both general and kinase-specific phosphorylation
sites (Lumbanraja et al., 2019; Luo et al., 2019; Haixia et al.,
2020; Wang D. et al., 2020; Ahmed et al., 2021; Guo et al.,
2021). For instance, to predict general phosphorylation sites
based on the primary amino acid sequence of an input
protein, Ismail et al. developed the Random Forest (RF)-based
phosphosite predictor 2.0 (RF-Phos 2.0) (Ismail et al., 2016).
RF-Phos 2.0 assesses the relative importance of hand-selected
features to identify putative sites of phosphorylation across
many protein families. More recently, Luo et al. developed

FIGURE 1 | Phosphorylation and dephosphorylation, mediated by kinase and
phosphatase as a key reversible post translational modification.

Deep-Phos, a general and kinase-specific phosphorylation site
predictor based on multilayer convolutional neural networks
(CNN) (Luo et al., 2019).

While many phosphorylation site prediction tools have been
developed over the past decade to identify putative sites of
S, T, and Y phosphorylation (Ismail et al., 2016; Luo et al.,
2019; Wang D. et al., 2020), computational prediction of
dephosphorylation sites has been much more limited (Wang
et al., 2016). Information about dephosphorylation sites is
important because it can provide insights into the molecular
determinants of phosphatase recognition and may offer clues
about the biological half-life of a given phosphorylation event.
To date, computational methods for dephosphorylation site
prediction have focused on a relatively small group of tyrosine
phosphatases consisting of protein tyrosine phosphatase 1B
(PTP1B) and the Src homology 2 (SH2) domain-containing
phosphatases, SHP-1 and SHP-2 (Wu et al., 2014; Wang
et al., 2016; Jia et al., 2017). For instance, Wu et al.
developed a method that uses the k-nearest neighbor algorithm
to identity the substrate sites of PTP1B, SHP-1, and SHP-
2 based on the sequence features of manually collected
dephosphorylation sites (Wu et al., 2014). Meanwhile, Wang
et al. developed two sophisticated models for predicting the
substrate dephosphorylation sites of these phosphatases. The
first model, which they termed MGPS-DEPHOS, is modified
from the Group-based Prediction System (GPS) while the second
model, termed CKSAAP-DEPHOS, utilizes a combination of
support vector machine (SVM) and the k-spaced amino acid pairs
(CKSAAP) encoding scheme. Finally, Jia et al. (2017) combined
the sequence-based bi-profile Bayes feature extraction technique
and SVM to predict sites for the same three phosphatases.

One of the primary reasons for the proliferation of
phosphorylation site predictors over the past decade is the
availability of large databases cataloging experimentally
identified phosphorylation sites, such as PhosphoSitePlus and
PhosphoELM (Dinkel et al., 2011; Hornbeck et al., 2019).
Unfortunately, similar databases have not been available for
dephosphorylation sites. However, with the recent curation of
the DEPOD database of S, T, and Y dephosphorylation sites, the
development of dephosphorylation site predictors is now feasible
(Damle and Köhn, 2019). In this study, we compiled a dataset of
S, T, and Y dephosphorylation sites from the DEPOD database
(Damle and Köhn, 2019) and further extended the available
dataset through literature mining, increasing the database more
than threefold. We then developed a transfer learning approach
utilizing the phosphorylation dataset and a bidirectional long
short-term memory (Bi-LSTM) deep learning-based model to
predict dephosphorylation sites on proteins. To our knowledge,
this is the first study to develop a general dephosphorylation
predictor for Y residues and the first to predict general
dephosphorylation sites for S/T residues. Our models, which we
termed DTL-DephosSite-ST and DTL-DephosSite-Y, performed
well when assessed using both five-fold cross-validation and an
independent test set.

Here we have developed the first general phosphatase site
prediction tool. Unlike phosphatase-specific methods, which are
designed to predict both the site of dephosphorylation and
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the phosphatase mediating the dephosphorylation event, our
general dephosphorylation site prediction method is able to
identify putative sites of dephosphorylation irrespective of the
phosphatase mediating the dephosphorylation event. This is
analogous to the results obtained by MS/MS-based experiments,
where information about the responsible phosphatase is not
known. Importantly, phosphatase-specific methods are currently
restricted to predictions for only three phosphatases (i.e., PTP1B,
SHP1, and SHP2), which represent a very small fraction of
phosphatases encoded by the human genome. This is likely due,
in part, to limited information about the specific phosphatase
that mediates a given dephosphorylation event. Therefore,
general dephosphorylation site prediction methods offer distinct
advantages when the primary goal is to predict whether or not a
given site is dephosphorylated.

MATERIALS AND METHODS

Datasets
The human DEPhOsphorylation Database, DEPOD, is a database
of dephosphorylation sites that was recently expanded in an
updated version in 2019 (Damle and Köhn, 2019). DEPOD
accounts for 241 active and 13 inactive human phosphatases
in total. Among the active phosphatases, 194 include substrate
data. This database provided the starting point to create
dephosphorylation datasets for S, T, and Y residues. To this end,
we collected all the FASTA sequences from the UniProt database
(UniProt Consortium, 2019) and extracted windows with the
targeted S/T/Y residue at the center and 16 residues on each
side. Negative sequences were extracted using all S/T/Y residues
except those that are known positive sites (i.e., all residues
except those sites that are known to be dephosphorylated).
During the generation of sequences, no fillers (i.e., “-”) were
used. To minimize the loss of sequences occurring at the ends,
a maximum window size of 33 was chosen. Any redundant
sequences within and between the positive and negative sites were
removed to obtain a non-redundant set. Similar to our previous
studies (Chaudhari et al., 2020; Thapa et al., 2020), we used
an under-sampling strategy to balance the dataset, which had
more negative sites than positive sites prior to balancing (Aridas
GLitaFNaCK, 2017). Under-sampling allows random selection of
negative sequences to make the number of negative sites equal to
the number of positive sequences, thus balancing the dataset.

Once constructed, the dataset was further divided into training
and test sets, such that 80% of the data was used to train the
models and the remaining 20% of the data was kept aside for
independent testing. This training-test dataset, which we termed
the DEPOD-19 dataset (Table 1), consists of 133 positive sites for
S, 58 positive sites for T, and 101 positive sites for Y (Table 1).

Though phosphorylation is one of the most wide-spread
and well-studied PTMs in eukaryotes, comprehensive lists of
dephosphorylation sites are scarce. This is likely due to the lack
of computational studies in the field and technical challenges
associated with the detection of dephosphorylation sites.
Therefore, in order to enlarge the dephosphorylation site dataset
(Damle and Köhn, 2019), we did a comprehensive literature

review to identify phosphorylated sites that were down-regulated
in cells following treatment with various agents. For a given
site to be considered dephosphorylated, there must have been
no co-stimulation during treatment and the analysis must have
been conducted less than an hour after stimulation (to prevent
changes in protein expression from substantially contributing
to the observed changes in phosphorylation state). Moreover,
because many phosphorylation sites have been identified in
human cells, we only considered publications using human cells.
Finally, to avoid errors stemming from heterogeneity in the
phosphorylation patterns in different phases of the cell cycle, our
analyses only included cells that had been arrested in the mitotic
phase. Using these criteria, we developed the “Downreg” dataset,
which consists of 949 dephosphorylation sites in 624 proteins.
These included 772 S, 152 T, and 25 Y residues, which represents
an ∼3.25-fold increase relative to the DEPOD-19 dataset, as
summarized in Table 1 and Supplementary Table 2. A summary
of the data sources and the corresponding descriptive statistics
for each study (e.g., false discovery rate and data distribution)
are included in Supplementary Table 1 and all the newly added
dephosphorylation sites from the “Downreg” dataset have been
added in Supplementary Table 12.

During sequence extraction, a sub-sequence with window
size of 33 centered around the site of interest was created
in a manner similar to that described for the DEPOD-19
dataset above. Supplementary Table 1 summarizes the literature
sources and the number of dephosphorylation sites identified.
Removal of common sequences within and between the positive
and negative sets was performed to obtain a non-redundant
dataset. Finally, the “combined dephosphorylation site” dataset
was obtained by merging the DEPOD-19 and Downreg datasets
and removing any duplicate protein sequences of window size
33. The combined dephosphorylation dataset (ComDephos) is
summarized in Table 1. For model development, the DEPOD-19
and the ComDephos datasets were used.

Bidirectional LSTM Model
Long Short-Term Memory (LSTM) models are known to
provide good performance with sequence data (Hochreiter and
Schmidhuber, 1997). LSTM uses different memory cells and
an additive gradient function helps to overcome the vanishing
and exploding gradient problems in recurrent neural networks
(RNN). Importantly, the use of memory cells can keep sequence
information in the network for long periods of time.

TABLE 1 | Summary of the training and test datasets used for model development
based on sites extracted from the DEPOD-19, Downreg (literature resources) and
composite ComDephos datasets.

Dataset Residue Train Test Total positive Total negative

DEPOD-19 ST 304 78 191 191

Y 161 41 101 101

Downreg ST 1478 370 924 924

Y 40 10 25 25

ComDephos ST 1,806 446 1,112 1,112

Y 201 50 125 125
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FIGURE 2 | Schematic illustrating the Bi-LSTM deep learning architecture and the parameters used. The input sequence is first fed into embedding layer with
dimension of 21, then through two Bi-LSTM layers with 128 neurons and then followed by a time-distributed layer of 128 neurons, which was followed by a flatten
layer and then followed by dense layer with 2 neurons with softmax activation.

A single LSTM cell consists of three gates: “input,” “forget,”
and “output” gates (Figure 2). The input layer (zt) consists of
a sigmoid layer and a tanh layer. The sigmoid layer filters the
previous state to select the relevant cell states for the context
while the tanh layer provides a range of values to take to the
selected states. The forget layer (rt) consists of a sigmoid layer,
which filters the irrelevant previous cell states by dropping them
out. The output layer (hþt) employs a tanh layer to provide
an update to the selected states, as provided by the input layer
(Hochreiter and Schmidhuber, 1997).

The forget gate layer takes previous hidden cells and inputs for
each previous cell state. The sigmoid node in the forget gate adds
in 0 or 1 to the previous hidden state, deciding whether it would
be passed over to the next hidden state. The input gate layer has
sigmoid and tanh nodes, where the sigmoid acts as a selection
node and selects the values that need to be updated. Meanwhile,
the tanh nodes provide a vector of new candidate values for the
selected states, acting as the update node. Finally, the output is
obtained by adding previous values for old states and updated
values for the selective nodes.

In this architecture, we have employed a bidirectional LSTM
layer (Bi-LSTM), which uses twice the number of neurons as a
conventional LSTM layer. The double neurons create two sets of
networks, moving in both the forward and the reverse directions
(Schuster and Paliwal, 1997). Thus, a Bi-LSTM layer is able to
predict the context of the target residue from the residues from
both directions. For example, given a window sequence:

NYTPTSPNYSPTSPSYSPTSPSYSPTSPSYSPS

where the S (red) in the center represents the target residue,
the forward LSTM network would predict the probability of
having S, given the knowledge of the residues preceding it (i.e.,
“NYTPTSPNYSPTSPSY”) while the backward/reverse LSTM
network would predict the probability of having S, given the
knowledge of residues following it (i.e., “PTSPSYSPTSPSYSPS”).
The window sequences were integer encoded, such that each
character in the sequence was replaced by its corresponding
integer value. The integer encoded sequences were then fed to
the embedding layer, which provides an embedding dimension of
21, which is known to be optimal based on our previous studies
(Chaudhari et al., 2020; Thapa et al., 2020). The embedding layer
helps in capturing the latent representation of the encodings
using a look-up table (Keras, 2015). For model development, a Bi-
LSTM layer with 128 neurons was used, with timesteps equivalent
to the window size, and return sequences kept as “true.” Next,
it was followed with a time-distributed layer of 128 neurons.
The time-distributed layer applies dense layer operation to every
timestep of the 3D tensor (Keras, 2015). This was followed by
a flatten layer with a dropout of 0.4 to avoid overfitting and
a dense layer of 64 neurons, which was then followed by the
output dense layer with 2 neurons with softmax activation. The
model was compiled on binary cross-entropy loss using the Adam
optimizer (Kingma and Ba, 2014). We used two callbacks while
fitting the model: ModelCheckpoint and reduce learning rate on
Plateau. ModelCheckpoint obtains the best model with respect
to validation accuracy while the reducing learning rate helps in
learning the parameters better, especially when the data size is
small (Li and Hoiem, 2018). Parameters have been optimized to
the settings shown in Table 2.
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TABLE 2 | Parameters used in LSTM Model for dephosphorylation.

Parameters Settings

Embedding output dimension 21

Learning rate 0.01

Batch size 512

Epochs 30

LSTM_layer1_neurons 128

Dropout 0.4

Dense_layer_neurons 128, 64, 2

Transfer Learning
As molecular counterparts, phosphorylation and
dephosphorylation are closely related to one another but
the cellular enzymes catalyzing each event (as well as the
molecular determinants underlying recognition of the sites) are
different. Moreover, the extensive study of phosphorylation sites
has resulted in a comparatively large dataset of phosphosites,
while the amount of information about dephosphorylation
events has led to a relatively sparse dataset. Taken together, these
observations suggest that a transfer learning strategy could be
applied to dephosphorylation site prediction.

Recently, deep learning has been used to solve various
problems in bioinformatics (Li et al., 2019; Tang et al., 2019;
Chaudhari et al., 2020; Thapa et al., 2020; Wang D. et al.,
2020; Wang Y. et al., 2020). One of the most serious problems
associated with deep learning stems from data dependence. For
instance, a significant challenge is posed by the lack of labeled

data for the task-of-interest, e.g., dephosphorylation. Indeed, the
problem of insufficient training data is an inescapable problem
in various areas of bioinformatics. For dephosphorylation, the
expense of data acquisition makes it particularly difficult to
construct a large-scale, well-annotated dataset.

Previous studies suggest that, when trained on images, deep
learning networks tend to learn first-layer features that do not
appear to be specific to a particular task (Yosinski et al., 2014).
Such first layer features are general in that they are applicable to
many datasets and tasks. Exploiting this fact, transfer learning
relaxes the hypothesis that the training data and test data are
not required to be “independently and identically distributed”
and that the model in the target domain does not need to be
trained from scratch, which can significantly reduce the burden
of training data size (Tan et al., 2018). Transfer of knowledge
through shared parameters and weights of the source model and
the target domain is one of the strategies in transfer learning
(Weiss et al., 2016).

With the exception of a handful of dual specificity kinases
and phosphatases, most kinases and phosphatases recognize
either S/T or Y residues. Therefore, as is common in
phosphorylation site prediction, we considered two models: one
for S and T residues and another for Y residues. Thus, distinct
phosphorylation and dephosphorylation datasets were formed
and designated the Phos-ST and Phos-Y datasets and the Dephos-
ST and Dephos-Y datasets.

During transfer learning, three important questions need to
be answered: (a) what to transfer, (b) when to transfer, and
(c) how to transfer. Therefore, to allow our framework to

FIGURE 3 | Schematic illustrating the transfer-learning. Green dotted box depicts the training on source task, phosphorylation (S,T), to obtain the Phos-ST model.
Once the Phos-Model was obtained the Bi-LSTM model was instantiated with the Phos-Model weights before being trained on the dephosphorylation data. Blue
dotted box depicts the transfer learning on the target task, dephosphorylation for ST residues, to obtain the DTL-DephosSite-ST model. During transfer learning, all
layers were allowed to re-train and none of the layers were frozen. (We tried various options with various layers frozen but this version produced the best results).
Orange dotted box depicts the transfer learning from DTL-DephosSite-ST, to obtain the DTL-DephosSite-Y model.
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accommodate smaller datasets, we applied a two-step transfer
learning scheme that included a pre-training step and a fine-
tuning step (Figure 3). The pre-training step results in a source
model, which is then available to adapt on the target dataset
through fine-tuning.

The pre-training step involves the training of our Bi-LSTM
model (as described in section “Bidirectional LSTM Model”) on
the available phosphorylation data (Wang D. et al., 2020), which
are provided in Supplementary Table 3. This resulted in a Phos-
model that contains learned weights to classify a given motif as
phosphorylated or not, specifically the S/T residues. During the
fine-tuning step, the weights learned by the source Phos-model
were transferred to a new instance of the Bi-LSTM architecture.
The model was then trained on the Dephos data containing
the S/T residues in the center, thus obtaining a transfer-learned
Dephos model for S/T residues. We experimented with different
combinations of frozen and re-trained layers and identified a
model, where all layers are allowed to re-train, that learned
better than others.

Similarly, for the prediction of Y dephosphorylation sites,
we experimented with performing transfer learning from Phos-
ST-to-Dephos-Y as well as Phos-Y-to-Dephos-Y. These studies
suggested that the Dephos-ST-to-Dephos-Y transfer worked the
best. Thus, the pre-training step involved training the Dephos-ST
model, initialized with transfer-learned weights from Phos-ST on
the Dephos-ST dataset. During the fine-tuning step, we retrained
all layers on the Dephos-Y dataset. Though varying the layers that
were kept frozen or re-trained had less impact in performance,
retraining all layers helped in attaining more consistent results.

Finally, we also employed the transfer learned Dephos-Y
model on the available phosphatase specific datasets (Wang et al.,
2016) for PTP1B, SHP1, and SHP2 (Supplementary Table 9).

Performance and Evaluation
To evaluate the performance of each model, we used a confusion
matrix to determine Sensitivity (SN), Specificity (SP), Accuracy
(ACC) and the Receiver Operating Characteristic (ROC) curve as
the performance metrics. The models were evaluated using five-
fold cross-validation on the benchmark training dataset and an
independent test set.

ACC describes the correctly predicted residues out of the
total residues (Eq. 1). Meanwhile, SN defines the model’s ability
to distinguish positive residues (Eq. 2) and SP measures the
model’s ability to correctly identify the negative residues (Eq. 3).
Matthews Correlation Coefficient (MCC) is the calculated score
that takes into account the model’s predictive capability with
respect to both positive and negative residues (Eq. 4). Likewise,
the ROC curve provides a graphical representation of the
diagnostic ability of the classifier. The area under the ROC curve
(AUC) is used to compare various models, with the models
having the highest AUC scores generally performing better in
classification than those with lower AUC scores.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (1)

Sensitivity =
TP

TP + FN
× 100 (2)

Specificity =
TN

TN + FP
× 100 (3)

MCC =
(TP) (TN)− (FP)(FN)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(4)

RESULTS AND DISCUSSION

Bidirectional Model on Dephos Datasets
(Without Transfer Learning)
To efficiently identify sites that are likely to be dephosphorylated
in proteins, we sought to develop a dephosphorylation site
prediction tool using the recently expanded DEPOD-19 dataset
(Table 1). To this end, we first extracted FASTA sequences
from the DEPOD-19 dataset. During extraction, we limited
the window size to 33 in order to minimize the loss of
sequences at the ends of the sequences. We then applied a
bidirectional long short-term memory (Bi-LSTM) deep learning
strategy to the dataset. During these analyses, we trained on
the train dataset and the performance of the resulting model
was evaluated using an independent test set (representing 20%
of the original dataset) that was kept aside from the training
set. These analyses suggest that our preliminary model had
reasonable sensitivity (SN) and receiver operating characteristic
(ROC) scores of 0.85 and 0.79, respectively. However, this
preliminary model suffered with respect to specificity (SP) and
Matthew’s correlation coefficient (MCC), where it exhibited
scores of 0.49 and 0.36, respectively (Table 3). A feature-based
machine learning strategy employing random forest (RF) yielded
similar results (Supplementary Table 4).

Though the DEPOD-19 dataset has recently been expanded
to include 584 total sites, it still represents a relatively small
dataset for model development using machine learning strategies.
Therefore, to further expand the dataset, we conducted a
comprehensive literature search for dephosphorylation sites. This
yielded an additional 1,898 sites whose phosphorylation status
decreased within an hour of treatment in mitotically arrested
cells (Table 1; see section “Materials and Methods” for details).
Combining this so called “Downreg” dataset with those sites that
had already been curated in the DEPOD-19 dataset resulted in
a composite “ComDephos” dataset containing 2,503 total, non-
redundant dephosphorylation sites (composed of 1,806 S, 446
T, and 251 Y sites) (Table 1). We then repeated our Bi-LSTM-
based learning scheme using the newly developed ComDephos
dataset and assessed performance based on our independent test
set (Table 3 and Supplementary Table 5). This led to marginal

TABLE 3 | Performance of Deep learning model on Depod19 and ComDephos
datasets.

Dataset MCC Specificity Sensitivity ROC_AUC

Depod19 0.36 0.49 0.85 0.79

ComDephos 0.46 0.71 0.76 0.81

Independent test results using the DEPOD-19 and the ComDephos datasets for
ST residue.
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improvements in model performance using the independent
datasets. For instance, while ROC increased marginally (2.5%),
SP increased by 44.8% and SN decreased by 10.5%. Together,
these changes resulted in a 27.8% increase in overall model
performance, as assessed by MCC.

The observed gains are likely due to an increase in the size
of the dataset, consistent with several reports that suggest that
deep learning models perform well on large datasets and that an
increase in the size of the dataset can increase the performance
of the resulting model (Zhao, 2017; Feng et al., 2019). However,
despite these gains, performance of the model developed using
the ComDephos dataset was still relatively poor. Therefore, we
asked if model performance could be enhanced using a transfer
learning strategy.

Development of S/T Dephosphorylation
Site Predictor Using Transfer Learning
on the Phosphorylation Site Database
In contrast to dephosphorylation sites, phosphorylation sites
have been extensively annotated, totaling 484,110 sites in 20,217
proteins (PhosphoSitePlus; Hornbeck et al., 2019), as 1/31/2021).
Given the inherent similarities in the physiochemical properties
of the modified sites and the potential differences in the molecular
determinants used by kinases and phosphatases to recognize
sites of phosphorylation and dephosphorylation, respectively, we
reasoned that a transfer learning approach could be applied to
develop a model to predict sites of dephosphorylation (Figure 3).
Therefore, we used the phosphorylation dataset described by
Wang et al. (2017). This dataset, which is composed of 31,944
experimentally determined phosphorylation sites and an equal
number of negative sites (i.e., S, T, or Y residues that are
not known to be phosphorylated), was used to generate a
source model (Supplementary Table 3). First, we explored
the effect that window size had on phosphosite prediction.
To this end, progressively smaller window sizes were created,
starting with a window size of 33. This was achieved by
removing one residue from each end of the sequence in
successive steps to yield windows of 33, 31, 29, 27, 25, and 23.
We then trained the Bi-LSTM model on the phosphorylation
training dataset using each window size and tested on the
independent test set (Supplementary Table 6). This led to our
source phosphorylation model (Phos-Model) for their respective
windows, which was used for transfer learning to the target
dephosphorylation dataset.

Next, to apply the knowledge gained from phosphorylation
site prediction to dephosphorylation, the Bi-LSTM model was
instantiated with the Phos-Model weights before being trained
on the DEPOD-19 and ComDephos datasets. During transfer
learning, all layers were allowed to re-train in the fine-tuning
step. This yielded a transfer-learned dephosphorylation model
for each window size. To determine the optimal window size,
we then conducted five-fold cross-validation of the transfer-
learned dephosphorylation dataset based on the ComDephos
dataset (Table 4). These analyses suggested that window sizes
of 29 and 31 led to the best predictors based on MCC.
A similar trend was also observed for the phosphorylation

TABLE 4 | Five-fold cross-validation of various window sizes for prediction of S/T
residues following transfer learning using Phos-Model (source) and ComDephos
dataset (target).

Window
size

MCC ± SD Specificity
± SD

Sensitivity
± SD

Accuracy
± SD

ROC_AUC

23 0.58± 0.05 0.78± 0.04 0.80± 0.01 0.79± 0.02 0.86

25 0.60± 0.04 0.78± 0.02 0.82± 0.03 0.80± 0.02 0.86

27 0.60± 0.05 0.79± 0.04 0.81± 0.02 0.80± 0.02 0.87

29 0.61 ± 0.04 0.79 ± 0.02 0.82± 0.03 0.80± 0.02 0.86

31 0.61 ± 0.04 0.77± 0.03 0.83 ± 0.03 0.80± 0.02 0.87

33 0.60± 0.05 0.78± 0.04 0.82± 0.03 0.80± 0.02 0.87

The highest scores in each metric are highlighted in boldface.

dataset (Supplementary Table 6) and for a transfer-learned
model trained on the DEPOD-19 dataset (Supplementary
Table 7). Since a window size of 31 performed marginally better
with respect to SN and ROC, we selected this window for
further analysis. We termed this transfer learned, deep learning-
based S/T dephosphorylation site predictor, DTL-DephosSite-
ST. Importantly, compared to the S/T model developed using
deep learning alone, DTL-DephosSite-ST exhibited an increase
in all performance metrics. This resulted in an ∼3.26-fold
increase in overall performance for S/T, as assessed by MCC.
Likewise, using our independent dataset, DTL-DephosSite-
ST outperformed similar transfer-learned dephosphorylation
site prediction models that had been trained using either
different deep learning architectures, such as conventional LSTM
or CNN, or the recently developed DeepPhos (Luo et al.,
2019) phosphorylation site predictor, which utilizes densely
connected CNNs (Table 5). Taken together, these data suggest
that DTL-DephosSite-ST effectively predicts putative sites of
dephosphorylation on S/T residues.

Transfer Learning Dephos-Y
With a transfer-learned S/T dephosphorylation site model in
hand, we used a similar strategy to identify putative sites of
Y dephosphorylation. Specifically, transfer learning was applied
to the Y residues in the ComDephos dataset using DTL-
DephosSite-ST as the source model. To obtain the DTL-
DephosSite-Y, the model was instantiated with the weights
of DTL-DephosSite-ST and all layers were re-trained on the
ComDephos-Y dataset. Similar to the results for the S/T models,

TABLE 5 | Comparison between DTL-DephosSite-ST and transfer-learned
models developed using other deep learning architectures based on an
independent test set.

Architecture MCC Specificity Sensitivity ROC_AUC

CNN 0.60 0.74 0.86 0.89

LSTM 0.64 0.79 0.85 0.86

DeepPhos (DC-CNN): (Luo
et al., 2019)

0.64 0.82 0.83 0.89

DTL-DephosSite-ST (Bi-LSTM) 0.68 0.84 0.84 0.90

CNN, Convolutional Neural Network; LSTM, Long short-term memory; DC-CNN,
Densely connected CNN; Bi-LSTM, bidirectional LSTM. The highest scores in each
metric are highlighted in boldface.
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five-fold cross-validation suggested that window sizes of 27 and
31 performed the best, with a window size of 31 exhibiting
slightly higher values for the majority of performance metrics
(Table 6). Interestingly, models that were trained in the same
manner using the smaller DEPOD-19 dataset resulted in a
more sporadic distribution across windows, with a window
size of 27 achieving the best specificity, and a window size
of 31 producing the highest values for MCC and Sensitivity
(Supplementary Table 7). Such a sporadic distribution may
suggest that we are approaching a lower limit with respect
to the size of the dataset, beyond which transfer learning
becomes less effective.

Similarly, models that were trained using different
combinations of source models and target datasets
(e.g., Phospho-Y as source and ComDephos as target
or Phospho-Y as source and DEPOD-19 as target)
yielded models that performed well in most metrics, but
not as well as the window size 31 Y dephoshorylation
model generated using DTL-DephosSite-ST as the source
model and the ComDephos dataset as the target dataset
(Supplementary Table 8). For instance, window sizes
of 27 and 31 exhibited similar MCC, with window size
of 31 achieving the best specificity, accuracy and ROC
scores. Therefore, we chose this model, which we named
DTL-DephosSite-Y, for further analysis. Similar to DTL-
DephosSite-ST, the newly developed DTL-DephosSite-Y
performed well when evaluated using an independent test
set (Table 7).

CONCLUSION

Here, we describe a strategy that combines deep learning with
transfer learning to develop general dephosphorylation site
predictors of S/T and Y residues. To our knowledge, the resulting
models, termed DTL-DephosSite-ST and DTL-DephosSite-Y,
are the first general dephosphorylation site predictors for S/T
and Y dephosphorylation, respectively. Deep learning-based
models have recently been developed for several important
PTMs, including phosphorylation, methylation, acetylation, and
succinylation, to name a few (Wang et al., 2017; Luo et al.,
2019; Wu et al., 2019; Al-barakati et al., 2020; Chaudhari
et al., 2020; Thapa et al., 2020; Ahmed et al., 2021). Similar

TABLE 6 | Five-fold cross-validation of various window sizes for prediction of Y
residues following transfer learning using DTL-DephosSite-ST (source) and
ComDephos dataset (target).

Window
size

MCC ± SD Specificity
± SD

Sensitivity
± SD

Accuracy
± SD

ROC_AUC

23 0.53± 0.09 0.76± 0.11 0.76± 0.07 0.76± 0.04 0.81

25 0.49± 0.13 0.76± 0.12 0.72± 0.09 0.74± 0.06 0.79

27 0.59 ± 0.06 0.78± 0.10 0.80 ± 0.09 0.79± 0.03 0.82

29 0.50± 0.07 0.74± 0.06 0.76± 0.06 0.75± 0.03 0.82

31 0.59 ± 0.10 0.83 ± 0.09 0.76± 0.06 0.80 ± 0.05 0.83
33 0.58± 0.08 0.78± 0.07 0.80 ± 0.04 0.79± 0.05 0.82

The highest scores for each metric are highlighted in boldface.

TABLE 7 | Independent test results of DeepPhos (Luo et al., 2019),
DTL-DephosSite-ST and DTL-DephosSite-Y on ComDephos independent set,
using the optimized parameters.

Predictor MCC Specificity Sensitivity Accuracy ROC_AUC

DeepPhos 0.44 0.48 0.92 0.70 0.86

DTL-DephosSite-ST 0.68 0.84 0.84 0.84 0.90

DTL-DephosSite-Y 0.64 0.88 0.75 0.82 0.89

Here, results of DeepPhos model is provided to show the performance of a
model trained on just Phosphorylation sites. The highest scores in each metric
are highlighted in boldface.

to previous deep learning-based models, our models did not
require any hand selected features during model development.
However, unlike many of the other deep learning-based
models that were developed using extensive PTM data, the
number of experimentally identified dephosphorylation sites
was relatively low. As a consequence, our initial attempts to
develop dephosphorylation site predictors based solely on deep
learning yielded models that did not predict sites efficiently.
This is consistent with reports that deep learning does not
perform as well on small datasets (Zhao, 2017; Feng et al.,
2019). To overcome this limitation, we developed a transfer
learning-based approach. Specifically, we generated a source
model based on knowledge gained about phosphorylation
using a Bi-LSTM deep learning architecture and then applied
this information to the ComDephos dataset using transfer
learning. The resulting models performed markedly better
than those developed using Bi-LSTM alone. This suggests
that our approach is able to learn solely through the
patterns of motif sequences. Importantly, by utilizing a
transfer learning-based strategy, we were able to capitalize
on the richness of phosphorylation site datasets in order
to improve the efficacy of dephosphorylation prediction.
This provides an attractive solution to the scarce data
problem and may be applicable in the development of
other PTM predictors.

During this project, we also expanded the DEPOD-19
dephosphorylation dataset 3.25-fold to create computational
datasets of dephosphorylation. Importantly, this study
relies upon the correlation between the cellular processes
of phosphorylation and dephosphorylation. We have
attempted to measure the level of transferability between
phosphorylation and dephosphorylation. Similar correlations
are also likely to be found for other PTMs where the
forward and reverse reactions are catalyzed by different
classes of enzymes, such as methylation/demethylation
and acetylation/deacetylation. Prediction of sites of these
modifications may thus be amenable to transfer learning.
Likewise, PTMs that differ in the molecular characteristics
of the PTM itself, but which utilize related enzymes,
such as ubiquitin E3 ligases and SUMO E3 ligases,
may also be amenable to transfer learning. Finally, all
datasets and code developed during this study has been
made freely available to the bioinformatics community at
https://github.com/dukkakc/DTLDephos to further contribute
toward the study of dephosphorylation.
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