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Eccrine sweat glands (ESGs) play an important role in temperature regulation by
secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during
exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the
ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing
the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge
for dermatologists and bum surgeons. To promote and accelerate research on the repair
and regeneration of ESGs, we summarized the development, structure and function
of ESGs, and current strategies to repair and regenerate ESGs based on stem cells,
scaffolds, and possible signaling pathways involved.
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INTRODUCTION

As warm-blooded animals, humans regulate body temperature through various regulatory
mechanisms. Among them, ESGs play an important role in cooling down body temperature by
secreting primarily water that contains electrolytes (Saga, 2002). Human skin has two major types
of sweat glands: eccrine and apocrine. The apocrine sweat glands are appendage of the hair follicle
and release a cloudy, viscous fluid through the follicle orifice, which exclusively present in highly
localized hairy axillary regions, and they are non-thermoregulatory (Sato et al., 1989). Some patients
lack ESGs due to severe burns or genetic factors, while some patients suffered from congenital or
acquired factors resulting in ESG dysfunction. If the human body has no way to sweat, it means that
any hot weather or acute activity can cause them to get heatstroke or even die. Therefore, we focus
on the wound repair and regeneration of ESGs in this review.

First, it is necessary to understand the normal structure and functions of ESGs. On the surface
of the body, ESGs are small but very numerous (Sato et al., 1989), which directly open to the skin
surface. During exercise, fever or hot environments, humans are able to dissipate heat through
sweat to maintain body temperature within the optimal range (Shibasaki et al., 2006). In contrast,
for most domestic mammals, most of their body surface lack ESGs. Mouse is the common model for
ESG study because of the similarity of human ESG structure and function, which has ESGs solely
present in the pads of their paws (Lu et al., 2012).

The ESGs are small tubular structures situated in epidermis and dermis. They comprise a
relatively straight duct led to the skin surface and a secretory coil deep in the dermis. The duct
of the ESG is a straight channel, and the secretory portion of the ESG is a distinctive, coiled tubular
structure (Figure 1).
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There are three types of cells in the secretory coil: clear
cells, dark cells, and myoepithelial cells. Myoepithelial cells
provide power support for sweat secretion and support the
glands mechanically (Sato, 1977; Sato et al., 1989). The secretory
cells can be classified into clear cells and dark cells based on
their affinities to basic dyes and granule contents (Montagna
et al., 1953; Munger, 1961). The clear cells are without secretory
granules but have many mitochondria and membrane villi,
which contribute to generate water, electrolytes, and inorganic
substances in the sweat. By contrast, the dark cells contain many
Schiff-reactive granules, which are mainly in charge of generating
macromolecules such as glycoproteins (LobitzJr., and Dobson,
1961; Munger, 1961; Yanagawa et al., 1986). Furthermore, sweat
also contains various proteolytic enzymes (Horie et al., 1986),
IgA (Okada et al., 1988), active interleukin-1 (Sato and Sato,
1994) and several antimicrobial peptides (Schittek et al., 2001;
Niyonsaba et al., 2009), which likely to be conducive to the barrier
function of the skin.

The development of electron microscopy (EM) and the
ultrastructure that it revealed accelerated the studies of ESGs.
Ultrastructural observations on the development of ESG in
human embryos have been reported since the 1960s (Hashimoto
et al., 1965). From the perspective of embryonic development,
at 3 about months, the epidermal ridges on the palms begin to
form epithelial cell cords, which are the starting point for the
development of ESGs, and at 5 about months, ESGs in other parts
of the body begin to develop (Sato et al., 1989). By the eighth
month of the fetus, ESGs are morphologically mature (Sato et al.,
1989). In mice, ESG germs were spotted at E17.5 and the coiling
of secretory portions was at P1, and ESG formation was in essence
completed by P5 (Kunisada et al., 2009; Figure 1). In rats, ESG
germs were first detected at E19.5, straight ducts first appeared
at E21.5, and secretory coils began to form at P1 (Li et al.,
2017). During the ESG morphogenesis, the progenitor properties
change from multipotency to unipotency, and ultimately, they
form four unipotent adult stem cell populations: basal duct,
suprabasal duct, myoepithelial, and glandular luminal stem cells
(Lu et al., 2012). Proliferation is almost undetectable in the
mature glands and remain active only in the basal cells of the
sweat duct and the epidermis of the paw skin (Lu et al., 2012).

FEASIBILITY OF REGENERATION OF
ESG

Engineered skin is certainly developing rapidly today, while
it still lacks skin appendages. As skin appendages, ESGs play
important roles in the temperature regulation and maintenance
of homeostasis (Huang et al., 2010). So far, patients with
irreversible loss of functional ESGs still cannot receive effective
treatment. Current strategies for repair and regeneration of ESGs
are mainly based on stem cells, scaffolds, bioactive cytokine and
growth factors, and involved signaling pathways (Figures 2, 3).

ESG Regeneration by Stem Cells
Adult tissue-specific stem cells are distributed in various tissues
and organs. In the skin, stem cells have long been found in

the epidermis and hair follicles, but it was not known until
recently that ESGs are also rich in stem cells (Lu et al., 2012). As
judged from immunohistochemical staining of nucleotide analog
incorporation and cell proliferation markers, proliferation occurs
rarely in the secretory coil cells, but frequently in the basal cells
of sweat ducts during homeostasis of adult ESGs (Morimoto and
Saga, 1995; Li et al., 2008, 2016b; Chen et al., 2014). With the use
of lineage tracing and pulse-chase studies, ESG stem cells have
been identified from both developing and mature mouse ESGs by
Lu et al. (2012). The multipotent K14+ bud progenitors in the
basal layer of embryonic ectoderm is the starting point of ESG
formation, which then develops into transient multipotent K14+

basal progenitors and K18+/lowK14 suprabasal progenitors (Lu
et al., 2012). Finally, in mature ESGs, the progenitor properties
change from multipotency to unipotency in the form of four
unipotent adult stem cell populations: basal duct, suprabasal duct,
myoepithelial, and glandular luminal stem cells (Lu et al., 2012).

Basal cells in paw epidermis and sweat ducts proliferate can
renew and replenish cells of scuffed suprabasal epidermis and
intraepidermal duct during homeostasis (Lu et al., 2012; Chen
et al., 2014; Li et al., 2016b). When epidermis is severely damaged
or excised, neighboring basal cells of epidermis and sweat duct,
not including secretory coil cells, rapidly proliferate to repair the
injured area (Lu et al., 2012; Chen et al., 2014; Li et al., 2016b).
The basal and suprabasal duct stem cells also contribute to repair
the skin epidermis and epidermal sweat ducts wound (Lu et al.,
2012; Chen et al., 2014; Li et al., 2016b).

There have been many studies that have shown the quiescent
nature of both luminal and myoepithelial cells of the secretory
coil in adult ESGs (Li et al., 2008, 2016b; Lu et al., 2012). Only
when localized injury occurs, do myoepithelial and glandular
luminal progenitors replenish their own descendants, and the
remarkable thing is that they act as unipotent progenitors during
repair (Lu et al., 2012). Luminal cells can proliferate to repair
neighboring injured luminal cells, and myoepithelial cells can
proliferate to repair neighboring injured myoepithelial cells (Lu
et al., 2012). Many studies have shown that the myoepithelial cells
of adult ESGs are quiescent (Li et al., 2008, 2016b; Lu et al., 2012).

There are also studies showing that ESG secretory cells not
only participate in their own repair, but also participate in
the repair of the epidermis, and their regeneration and repair
ability is stronger than that of sweat duct luminal cells (Rittie
et al., 2013; Pontiggia et al., 2014; Diao et al., 2019). As for
myoepithelial cells, it is not clear whether they are involved
in epidermal repair under physiological conditions. However,
studies have shown that engrafting purified myoepithelial cells to
back skin can generate epidermis (Lu et al., 2012). Investigators
also isolated cells with typical characteristics of mesenchymal
stem cells, from myoepithelial cells of secretory coils in adult
human ESGs, which may contribute to the study of wound repair
and ESG regeneration (Kurata et al., 2014; Ma Y. et al., 2018).

As is mentioned above, the stem cell populations in mature
ESGs are unipotent. However, some unipotent stem cells tend
to regain multipotency when leaving the original environment.
Based on cell-surface markers, Lu et al. (2012) exploited
fluorescent activating cell sorting (FACS), purified different cell
populations from mouse secretory coils and sweat ducts, and
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FIGURE 1 | Structure and cellular constituents of ESGs. The ESG is comprised of a relatively straight duct led to the skin surface and a secretory coil deep in the
dermis (left panel). The duct is formed of two layers of cells: the basal (outer) and luminal (inner) cells, where ions are partially reabsorbed (right upper panel). There
are three types of cells in the secretory coil: clear cells, dark cells, and myoepithelial cells (right lower panel).

FIGURE 2 | Schematic representation of regeneration of ESGs. With the 3D scaffolds, specific cells can be induced by specific cytokines and growth factors to
differeniate into sweat gland-like cells. There are three main types of cells that may be used to repair and regenerate ESGs: ESG-derived stem cells, non-sweat
gland-derived stem cells, and induced pluripotent stem cells. This process can take place in vivo or in vitro.
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FIGURE 3 | Cells and factors involved in ESG regeneration and their relationships. Stem cells are often used in the study of wound repair and regeneration of various
tissues due to their ability to self-renew and differentiate into multiple lineages. To date, eight types of cells have been reported to have the potential to regenerate
ESGs (Shikiji et al., 2003; Li et al., 2006, 2015b; Nolte et al., 2008; Sheng et al., 2009; Vierbuchen et al., 2010; Lu et al., 2012; Xu et al., 2012, 2016; Wang et al.,
2013, 2019; Hassan et al., 2014; Tao et al., 2014; Liang et al., 2016; Kolakshyapati et al., 2017; Sun et al., 2018; Yao et al., 2018, 2019, 2020; Chen et al., 2019;
Hu et al., 2019). Cytokines and growth factors play a role in inducing cells directed to differentiate into sweat gland-like cells during the process of ESG regeneration,
and the discovery of these factors involves research on the determination and development of ESGs (Shikiji et al., 2003; Cai et al., 2011; Zhao et al., 2015; Liang
et al., 2016; Xu et al., 2016; Kolakshyapati et al., 2017; Sun et al., 2018; Yao et al., 2018, 2019, 2020; Chen et al., 2019; Hu et al., 2019; Wang et al., 2019).
Selecting appropriate cells and appropriate factors to induce the differentiation of sweat gland-like cells makes the regeneration of ESGs possible.

studied their individual regenerative capacities in engraftment
experiments. Grafting the myoepithelial or basal duct stem cells,
but not luminal or suprabasal duct stem cells, into cleared
mammary fat pads or shoulder fat pads can regenerate de novo
ESGs (Lu et al., 2012). Notably, there have been many studies
that have shown the quiescent nature of myoepithelial cells
in adult ESGs (Li et al., 2008, 2016b; Lu et al., 2012; Leung
et al., 2013). Based on these findings, it is interesting that
adult progenitors show single-function nature in their native
environmemt. Therefore, further experiments will be needed to
analyze the molecular causes.

In a previous in vitro study, Li et al. (2013) demonstrated
that human ESG cells cultured in Matrigel not only build three-
dimensional (3D) tubular-like structures with lumens, but also
express α-SMA, epithelial membrane antigen (EMA), CK7, and
CK19, and then, they did in vivo experiment on this basis,
Matrigel-embedded ESG cells were subcutaneously implanted
into nude mice (Li et al., 2015a). Compared with ESGs formed
in vitro, ESGs formed in nude mice were more similar to natural
ones (Li et al., 2015a). Reconstituted 3D ESGs recapitulated
the polarization at the appropriate time points during spheroid
differentiation, and secreted fluid similar to native human ESGs
(Li et al., 2016a). In addition to the above, the authors also
demonstrated that the 3D-reconstituted ESGs were nourished by
blood vessels and mediated by both cholinergic and adrenergic
innervation (Zhang et al., 2018). Thus, the 3D-reconstituted ESGs

have the completeness of structural components, the prerequisite
for full functionality, from which the authors inferred that the
3D-reconstituted ESGs may function as the native ones do.
However, the secretory function of the 3D-reconstituted ESGs
remains to be fully established. All in all, it is an intriguing
development in the process of questing treatments burn patients.

The difficulty of using isolated ESG cells to reconstruct sweat
gland-like (SGL) structures is that ESG cells are dispersive in
the dermis and difficult to gather. Further, with extensive severe
burns, the ESGs of patients are destroyed and autologous mature
ESG cells and ESG stem cells are insufficient. The optimized cell
culture of Diao et al. (2019) can provid the appropriate cells in
sufficient quantity for mouse ESGs and skin regeneration, and
offers a new strategy for regenerating SGL structures.

In skin tissues, epidermal stem cells (EpiSCs), as the specific
stem cell type, can regenerate skin tissue, repair wound
and re-modeling (Boehnke et al., 2012). During embryonic
development, both ESGs and hair follicles (HFs) originate from
EpiSCs, so EpiSCs are the common progenitor cells of both ESGs
and HFs. Research has shown that young human keratinocytes,
including EpiSCs, can invade collagen gels and differentiate
into/toward ESG duct-like structures in vitro with fibroblasts,
epidermal growth factor (EGF) and fetal bovine serum (FBS)
(Shikiji et al., 2003). EGF, interferon regulatory factor 6 (IRF6)
and bone morphogenetic protein 4 (BMP4) have also been shown
to play a role in inducing EpiSCs to transform into ESG cells
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(Shikiji et al., 2003; Yao et al., 2018; Hu et al., 2019). Therefore,
EpiSCs can be induced directly and differentiate into ESG cells,
and is one of the most common means of ESG regeneration.
However, in the adult body, the number of EpiSCs is limited,
for merely 1–10 percent of basal stem cells (Cotsarelis et al.,
1999). As a result, producing a large number of SGL cells (SGLCs)
by epidermal cell reprogramming may be another method for
ESG regeneration. Yao et al. (2019) showed that overexpressing
the transcription factor FoxC1 can directly reprogram epidermal
cells to induce functional SGLCs. Since the epidermis of patients
with extensive severe traumatic burns is damaged and autologous
mature epidermal cells and EpiSCs is scarce, this method
of regeneration is more suitable for anhidrotic/hypohidrotic
ectodermal dysplasia patients (Yao et al., 2019).

Bone marrow-derived MSCs (BM-MSCs) are characterized by
lower immunogenicity and rarely destroyed in the event of skin
damage, so they have great potential for development (Zhang
et al., 2015). Although the mechanism of using BM-MSCs to
regenerate ESGs remains unclear, multiple cytokines appear to
play an important role in ESG regeneration and development.
Li et al. (2006) directly co-culture BM-MSCs with heat-shocked
ESG cells and found that it can differentiate BM-MSCs into
SGLCs. Then, transplanting SGLCs into the wounds of nude
mice showed a significantly promotion of damaged ESG repair
and regeneration (Sheng et al., 2009). Li et al. (2015b) have also
demonstrated that 3D co-culture of BM-MSCs and ESG cells in
Matrigel can help the transdifferentiation of BM-MSCs into ESG
cells, with the transdifferentiated BM-MSCs potentially able to
function as ESG cells. There are other ways to directly induce
BM-MSCs to differentiate into SGLCs, and involves various
cytokines and scaffolds, which will be described in the following
chapters. Even though there is a distinct advantage using BM-
MSCs for ESG regeneration, the number of BM-MSCs is limited
and it is difficult to maintain pluripotency after extensive passage
(Zhang et al., 2015). Recently, investigators have reported that
severely burned skin contains viable, undamaged cells that show
characteristics of human MSCs, and can be used to promote
wound healing without adverse side effects (Amini-Nik et al.,
2018). These findings provide an ideal source of MSCs for
treatment of severely burned patients.

3D Reconstitution Model of ESG
in vitro/vivo
The extracellular matrix (ECM), often used to refer to all the
substances surrounding cells in a multicellular organism except
for circulating fluids, is a 3D structural scaffold made of non-
cellular, fibrous, and non-fibrin proteins that exists in all tissues
and is a major component of the cellular microenvironment
(Theocharis et al., 2016). The ECM does more than provide
physical support for organizational integrity and resilience: it
is a dynamic structure that is constantly reshaped to control
organizational homeostasis and organ development, as well
as tissue repair and regeneration (Bonnans et al., 2014).
A highly dynamic 3D ECM provides environmental signals
that influence basic cell behaviors, such as cell proliferation,
adhesion, migration and differentiation, impact cell mechanics,

and regulate the fate of stem cells (Watt and Huck, 2013).
Therefore, the ECM plays essential roles not only in embryonic
development and homeostasis, but also in tissue engineering and
regenerative medicine (Blankenship, 1990; Watt and Huck, 2013;
Bonnans et al., 2014). 3D scaffolds are manufactured by removing
cellular content from source tissues while retaining the original
structural and functional molecular units of the ECM, and it
has been widely applied to the field of tissue engineering and
regenerative medicine (Costa et al., 2017).

So far, the studies on isolated sweat gland stem cells/progenitor
cells cultured in traditional monolayers have always rapidly
differentiated into keratinocytes and lost their specific phenotypic
characteristics (Rittie et al., 2013; Pontiggia et al., 2014).
Compared with the traditional 2D culture models, 3D culture
models recapitulate the function and physiological architecture
of the body (Kleinman and Martin, 2005; Kozowski et al.,
2011). Under 2D culture conditions, cells undergo proliferation
but have difficulty in inducing directional differentiation, but
under 3D culture conditions, they could be induced directional
differentiation (Petrakova et al., 2012; Li et al., 2015b). Therefore,
culturing cells under 3D conditions is a useful model for studying
cell proliferation and differentiation. To date, researchers have
developed several kinds of 3D organoid culture matrices for ESG
regeneration, aiming to achieve the enrichment and amplification
of cells while maintaining the specific characteristics of ESG cells.

The Matrigel basement membrane matrix (abbreviated as
Matrigel) is a dissolved basement membrane preparation that
contains fetal collagens, laminin, entactin, heparan sulfate
proteoglycans, and several matrix-bound growth factors, which
help cell growth as organoids (Kleinman and Martin, 2005; Li
et al., 2015a). Using 3D culture method to culture cells in a gel
basement membrane matrix, many cells will differentiate into
tissue-specific structures, and vascular endothelial cells are one
of the earliest cell types showing morphological differentiation
(Kleinman and Martin, 2005; Arnaoutova et al., 2009). The
differentiation of endothelial cells in Matrigel mimics the process
of angiogenesis in vivo, which indicates that Matrigel can be
used to obtain a large amount of information about angiogenesis
regulators, genes that play an important role in angiogenesis
in endothelial cells, and the characterization/identification of
endothelial progenitor cells (Auerbach et al., 2003). Besides this,
Matrigel has been widely used to study tumor cell invasion,
and an altered ECM has been shown to promote tumorigenesis
(Bissell and Labarge, 2005). Salivary gland cell lines cultured on
Matrigel are widely used to study cell differentiation, such as
glandular-like morphogenesis, acinus formation and branching
morphogenesis (Barka et al., 2005). Maria et al. (2011) obtained
cells from parotid and submandibular glands, expanded in vitro,
and then cultured on Matrigel. On Matrigel-coated substrates,
cells formed 3D acinar-like units, adopting a large number
of secreted granular acinar phenotypes, expressing α-amylase
and the water channel protein, aquaporin-5. Experiments by
Kozowski et al. (2011) show that the bovine mammary epithelial
cell line BME-UV1 cultured on Matrigel could form 3D acinar
structures with a hollow lumen in the center, which is similar to
the mammary gland alveoli in a functionally active mammary
gland. To study ESG progenitor/stem cells, Lu et al. (2012)
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suspended four sorted ESG cells in Matrigel and injected them
individually into cleared mammary or shoulder fat pads from
female Nu/Nu mice. In rare cases, purified adult ductal basal
cells produce glands and ducts, while purified myoepithelial cells
continue to form ESGs, and luminal or suprabasal duct cells did
not show this diverse behavior (Lu et al., 2012). Subsequently,
Matrigel was applied to the regeneration of ESGs. Li et al.
(2013, 2015a) inoculated ESG cells into the tissue structure
formed by a Matrigel basement membrane matrix in vitro or in
nude mice to simulate the growth microenvironment of natural
ESGs, and successfully reconstructed SGL structures using the
isolated ESG cells. These studies indicate that the interactions
between Matrigel and ESG cells play important roles in the 3D
reconstruction of SGL structures. On this basis, Diao et al. (2019)
added some growth factors and small molecules, such as EGF,
bFGF, and EDA, in order to increase the differentiation efficiency.
Although there are some differences between the reconstructed
SGL structures and the original ESGs, these studies demonstrated
that Matrigel can induce ESG cells to reconstitute SGL structures.
Maybe subsequent work could implant Matrigel-embedded ESG
cells subcutaneously into burn victims to reconstitute ESGs.
However, in practice, the implanted ESG cells do not reconstruct
ESGs with complete structure and function as we had hoped.
Therefore, in the following scientific research work, there are still
many problems for us to explore and solve.

Three-dimensional bioprinting has become a promising
technology for manufacturing complex tissue structures
with tailor-made biological components and mechanical
properties (Murphy and Atala, 2014). By using this revolutionary
technology, bio-inks, including growth factors, cells, and
hydrogels, can be precisely positioned to create 3D in vitro
culture environments (Ma X. et al., 2018). Pati et al. (2014)
decellularized adipose, cartilage and heart tissue to make bioink,
and adopted a 3D bioprinting technique to construct a 3D
structure in vitro, successfully inducing adipose-derived MSCs
to express specific markers of cardiomyocytes and chondrocytes.
By building 3D printing scaffolds that continuously release a
variety of growth factors, Lee et al. (2014) successfully treated
sheep with damaged menisci by inducing endogenous MSCs
to differentiate into menisci in vivo. The findings strongly
suggest that 3D bioprinting has great potential in simulating
the microenvironment to induce stem cell differentiation and
promote tissue regeneration. Through 3D bioprinting, Fu’s
research team successfully induced EpiSCs to differentiate into
ESG cells using gelatin-alginate hydrogels and mouse ESG-ECM
protein components (Huang et al., 2016; Liu et al., 2016; Li et al.,
2018). They subsequently adopted 3D bioprinting to mimic
the regenerative microenvironment to direct of MPCs or MSCs
to specifically differentiate into ESGs, and ultimately guide
the formation and function of glandular tissue (Wang et al.,
2019; Yao et al., 2020). Alginate/gelatin hydrogel can serve as
bio-ink due to its good cell compatibility, printability, and stable
structure during long-term culture (Huang et al., 2009). Wang
et al. (2019) used gelatin-alginate hydrogels to combine with
ESG-ECM protein to form a characteristic bio-ink, which made
it possible to induce the transformation of mammary progenitor
cells to ESG cells (Yao et al., 2020). Although its mechanism still

needs further exploration, it may be used as an effective tool
to induce ideal cells or tissues in vitro through an engineered
microenvironment in the future.

Gelatin is not only an irreversible form of denatured
collagen, it has the ability to form a scaffold suitable for
dermal regeneration without adding any other polymers,
but also has the ability to control the release of growth
factors for a long time (Shevchenko et al., 2014). Therefore,
Huang et al. (2009, 2010) developed gelatin microspheres
containing EGF as multifunctional vehicles on which ESG cells
could be cultured, and delivered these ESG cell-microsphere
complexes into an engineered skin for wound repair. Later, they
delivered BM-MSCs by an EGF microsphere-based engineered
skin model to repair ESGs and improve cutaneous wound
healing (Huang et al., 2012). Analogously, Kolakshyapati et al.
(2017) combined the collagen-chitosan porous scaffold with
Lipofectamine 2000/pDNA-EGF complexes to yield a gene-
activated scaffold (GAS) on which BM-MSCs are cultured.
Such GAS/BM-MSCs could accelerate the wound healing and
induce full-thickness skin regeneration with SGL structure in situ
(Kolakshyapati et al., 2017). These engineered skin constructs are
promising tools for ESG regeneration in skin repair and are a
valuable engineering strategy for constructing engineered skin
models containing appendages.

MECHANISM OF ESG DEVELOPMENT
AND REGENERATION

Up to now, studies have revealed involvement of Wnt, EDA,
Shh, BMP, and ERK signaling pathways in ESG determination
and development (Figure 4). These findings lead to a series of
explorations into the regeneration of ESG.

Wnt/β-Catenin Signaling Pathway
Wnt/β-catenin signaling pathway is a relatively conservative cell-
cell communication system in evolution, which is very important
for embryogenesis, stem cell renewal, cell proliferation and cell
differentiation (Steinhart and Angers, 2018). When cytokines
activate the Wnt signaling pathway, β-catenin accumulates and
enters the nucleus, associates with DNA binding factors of the
TCF/LEF family, and activates the expression of target genes
(Xu et al., 2017). The Wnt/β-catenin signaling pathway is active
in the appendages of embryonic ectoderm and is necessary for
their formation. Whether the Wnt signaling is upstream or
downstream of the EDA signaling is controversial in the basal
formation process of the ectodermal appendage, but now, there is
mounting evidence that Wnt signaling is an upstream regulator
of EDA signaling (Cui et al., 2014). As ESG germs start to form,
Wnt activity declines quickly in the dermis and rises strongly
in the basal layer of epidermis, and then stays active at the tip
of the growing ducts until it disappears when the sweat ducts
starts to coil (Cui et al., 2014). According to reports, Wnt10a
mutations account for 16% of human hyperhidrosis ectodermal
dysplasia (HED) patients (Cluzeau et al., 2011). After further
study, researchers have found that Wnt10a/β-catenin signaling
is necessary for ESG germ development and postnatal ESG duct
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FIGURE 4 | The signaling pathways involved in ESG development and regeneration. From left to right are the Wnt, EDA-A1, Shh, BMP, and ERK signaling pathways.
Wnt signaling pathway (Nusse and Clevers, 2017; Routledge and Scholpp, 2019): in the absence of Wnt signals, GSK-3β/Axin/APC/β-catenin/CK1 is a destruction
complex. GSK-3β phosphorylates β-catenin, thereby inhibiting its activity and then β-catenin is degraded by ubiquitination. When Wnt proteins bind to a receptor
complex, it induces the association of Axin and Dvl with LRP5/6 and Frizzled. Dvl inhibits GSK-3β and the destruction complex falls apart, and thus prevents the
degradation of β-catenin, permitting β-catenin accumulation, leading to binding TCF/LEF in the nucleus to upregulate target genes. EDA signaling pathway
(Oeckinghaus et al., 2011; Sisto et al., 2016): in the absence of EDA-A1 signals, NF-κB dimers (P50–P65) are bound to inhibitory IκB proteins, which sequester
inactive NF-κB complexes in the cytoplasm. When EDA-A1 binds to EDAR, stimulation of EDAR leads to the binding of EDARADD, for IKK activation. Shh signaling
pathway (Fattahi et al., 2018; Xin et al., 2018): in the absence of Shh signals, Ptc inhibits the activity of Smo by affecting its localization to the cell surface, and protein
kinases (PKA, CK1, and GSK3β) constitutively phosphorylate Gli proteins to inhibit the Gli. The secreted active Shh ligand binds to Ptc and relieves the repressive
effect of the Ptc on Smo, activating the Smo, which then translocates to the cell membrane to inhibit PKA, CK1, and GSK3, providing an assembly platform for the
recruitment of Kif7, Sufu and Gli, thus activating the Gli. Subsequently, the activated Gli forms (GliAs) translocate into the nucleus and activate Shh target genes.
BMP signaling pathway (Gonzalez and Medici, 2014): when BMPs bind to BMPRs, intracellular Smad1 becomes phosphorylated. The phosphorylated Smad1 binds
to Smad4 and then translocates into the nucleus and activates BMP target genes. ERK signaling pathway (Calvo et al., 2010; Gallo et al., 2019): Phosphorylated
RTK binds to GRB2, and GRB2 binds to SOS, which stimulates RAS. RAS initiates activation of the MEK-ERK cascade by converting a molecule from GDP to GTP.

development (Xu et al., 2017). It will be interesting in the future
to apply Wnt10a to ESG regeneration.

EDA/EDAR/NF-κB Signaling Pathway
Hypohidrotic ectodermal dysplasia is a well-characterized human
disease characterized by absent or malformed HFs, teeth, and
ESGs (Cui and Schlessinger, 2006; Mikkola, 2009). Much
of the information known about ESG determination and
development related to signaling pathways originated from
research on HED patients. As a member of the TNF family of
signaling molecules, ectodysplasin-A (EDA) exists as two highly
homologous isoforms, EDA1 and EDA2, and the EDA-A1 gene,
specific for the type I transmembrane protein EDA receptor
(EDAR), is one of the genes that regulates the determination
and development of ESGs (Srivastava et al., 2001). The main
axis of the pathway comprises EDA (encoded in mice by tabby),
EDAR (encoded by downless), and EDAR-associated death
domain (EDARADD, encoded by crinkled) (Srivastava et al.,
1997; Monreal et al., 1999). Any mutation in the components of
these pathways will cause HED, which is phenocopied in mice
(Headon et al., 2001; Cui and Schlessinger, 2006). In addition,

mice deficient for nuclear factor-κB (NF-κB) activity also showed
a phenotype identical to HED, leading researchers to realize that
EDA/EDAR sends signals through the NF-κB pathway during
skin appendage development (Doffinger et al., 2001; Kumar et al.,
2001; Schmidt-Ullrich et al., 2001). Studies have found that EDA
mainly regulates ESG maturation through activating NF-κB after
binding to EDAR in the early stages of embryonic development
(Doffinger et al., 2001; Kumar et al., 2001).

The almost complete restoration of ectodermal appendages
(including ESG) is caused by the transgenic expression of the
mouse EDA-A1 isoform in Tabby (EDA-less) (Srivastava et al.,
2001), but wild-type mice overexpressing EDA-A1 showed larger
ESGs with greater activity (Mustonen et al., 2003). Furthermore,
Gaide et al., found that treating pregnant Tabby mice with EDA-
A1 recombinant protein can permanently rescue the tabby defect
in the offspring (Gaide and Schneider, 2003). Thus, researchers
have hypothesized that activation of the EDA gene could induce
the regeneration of ESGs. In support of this, the reprogramming
of BM-MSCs to SGLCs was successfully induced by the high
expression of EDA gene in BM-MSC (Cai et al., 2011). In
addition, the findings of Sun et al. (2018) demonstrate that
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induction of EDA gene overexpression via transfection with an
RNA-guided dCas9-effector could promote the transformation of
BM-MSCs into SGLCs. These results indicate that the potential of
EDA-modified MSCs for the repair and regeneration of ESGs.

As downstream effectors of EDA and EDAR signaling,
IKK pathway activates the NF-κB transcription factors for
development of skin appendages, and the activated NF-κB
transcription factors can enter the nucleus to promote the
expression of NF-κB target genes, such as keratins, cyclin D1, Shh
and fox family genes (Schmidt-Ullrich et al., 2006). In different
stages of ESG development, these genes are essential (Kunisada
et al., 2009). Thus, researchers have sought to determine whether
NF-κB could induce the regeneration of ESGs in vitro. Zhao
et al. (2015) found that human fibroblasts could be directly
reprogrammed into SGLCs by introducing NF-κB and Lef-
1 (a downstream transcription factor of β-catenin signaling)
genes into human fibroblasts. Chen et al. (2019) also noted
increased expression of NF-κB during the reprogramming of
BM-MSCs into SGLCs by determining the differential expression
of miRNAs between BM-MSCs and SGLCs. These results indicate
that EDA/EDAR/NF-κB signaling is not only associated with
the occurrence and development of ESGs but also plays a vital
role in ESG regeneration. However, many other aspects of the
EDA/EDAR/NF-κB pathway for ESG regeneration still need
to be thoroughly explored, such as receptor activation, ligand
binding sites, desensitization, and transportation. It indicates
that EDA/EDAR/NF-κB signaling are not only related to the
determination and development of ESGs, but also important in
ESGs regeneration.

Shh Signaling Pathway
The Shh signaling pathway plays a vital role in embryonic
development and tissue regeneration (Xu et al., 2015). The
Shh signaling pathway is downstream of the EDA/EDAR/NF-κB
signaling pathway. Some studies have shown that Shh signaling
is involved in the development of ESG, especially in the process
of ESG induction and/or early development, but not in the
process of maturation and/or maintenance (Kunisada et al.,
2009; Lu and Fuchs, 2014; Lu et al., 2016). Conversely, many
studies have also shown that Shh signaling inactivation does
not affect the formation of ESG germ or subsequent ducts,
but the secretory coil formation is still blocked in the primary
stage (Cui et al., 2014; Cui and Schlessinger, 2015). In the
process of ESG cells regeneration, it is unclear whether there
is a specific connection between the two experimental results.
Liang et al. (2016) reported that Shh is an important factor in
conditioned medium that influences the differentiation and the
formation of ESG tubule-like structures during the differentiation
of amniotic fluid stem cells into SGLCs. However, the underlying
mechanism is unknown and the exact role of Shh signaling in
ESG morphogenesis remains to be clarified.

BMP Signaling Pathway
Bone morphogenetic proteins (BMPs) are multi-functional
growth factors belonging to the transforming growth factor
(TGF)-β superfamily (Botchkarev and Sharov, 2004). Previous
experiments have shown that the ESGs in the mouse paws can

be converted into HFs by suppressing the BMP signaling (Plikus
et al., 2004). Lu et al. (2016) investigated it further and found that
the selection of appendages depends on the antagonism between
Shh signaling and BMP signaling in different skin areas in the
mesenchyme after epidermal bud formation. When the BMP
signaling is in the active state, it determines the formation of
ESGs. When BMP signaling is weaker than Shh, it determines
the formation of HFs. Hu et al. (2019) cocultured EpiSCs
with embryonic paw pad tissue, which demonstrated glandular
structure. Moreover, BMP4 concentration was detected in the
medium and a BMP receptor inhibitor could effectively block
the EpiSC differentiation to ESGs (Hu et al., 2019), implying the
possibility of BMP4 application in the regeneration of ESGs.

ERK Signaling Pathway
Epidermal growth factor and FGF, as cytokines, can activate the
ERK signaling pathway. EGF can specifically trigger proliferation
or differentiation by leading to population-averaged transient
or sustained ERK (Marshall, 1995; Santos et al., 2007). By
activating ERK through FGFRs, FGF can regulate development,
wound healing, and angiogenesis (Ornitz and Itoh, 2015). Some
studies have shown that EGF or KGF (also called FGF7) could
induce stem cell differentiation into SGLCs (Xu et al., 2016;
Kolakshyapati et al., 2017). All of these show that the ERK
pathway is important in ESG regeneration.

CONCLUSION AND FUTURE
PERSPECTIVES

Recently, skin tissue engineering research has been greatly
developed. However, current skin substitutes do not contain skin
appendages. Therefore, current skin substitutes can only be used
to cover the wound, but cannot play physiological functions
of normal skin, which is far from enough for patients with
severe burns. Studies on the development, structure and function
of ESGs have been intensively conducted. On this basis, ESG
regeneration has been studied and great advances have been
made. The study of skin tissue engineering is often divided into
several aspects of cells, scaffolds and biomolecules, and ESG
regeneration research is also similar. In this review, ESG and its
regeneration have been systematically reviewed. There are three
main categories must be considered in ESG regeneration: stem
cells, scaffolds, and possible signaling pathways involved.

It is clear from the works herein reviewed that ESG
regeneration research involves combination of different types of
stem cells, scaffolds, and signaling pathways. So far, researchers
successfully reconstructed SGL structures via a variety of
methods. However, whether the 3D-reconstituted ESGs can
perform physiological functions needs further verification.
In addition, the detailed mechanism of how a variety of
biomolecules induces ESG differentiation remains to be further
studied. Current methods of regenerating ESGs are inefficient,
mainly due to the limited number of stem cells, low cell
differentiation efficiency and other unpredictable factors. In
conclusion, ESG regeneration research is still at a very early
stage. We expect to be able to regenerate ESGs to compensate
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for the inability of tissue-engineered skin to secrete sweat. With
the development of stem cells study, molecular biology and
biomaterials, ESG regeneration will be achieved in future.
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