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Exercise training promotes physical and bone health, and is the first choice of
non-drug strategies that help to improve the prognosis and complications of many
chronic diseases. Irisin is a newly discovered peptide hormone that modulates energy
metabolism and skeletal muscle mass. Here, we discuss the role of irisin in bone
metabolism via exercise-induced mechanical forces regulation. In addition, the role of
irisin in pathological bone loss and other chronic diseases is also reviewed. Notably,
irisin appears to be a key determinant of bone mineral status and thus may serve as a
novel biomarker for bone metabolism. Interestingly, the secretion of irisin appears to be
mediated by different forms of exercise and pathological conditions such as diabetes,
obesity, and inflammation. Understanding the mechanism by which irisin is regulated
and how it regulates skeletal metabolism via osteoclast and osteoblast activities will
be an important step toward applying new knowledge of irisin to the treatment and
prevention of bone diseases such as osteolysis and other chronic disorders.
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INTRODUCTION

Exercise training is well known to have beneficial effects on physical fitness and bone health.
Physical activity reduces the risk of many chronic diseases and aging-related disorders, such as
diabetes mellitus, hypertension, obesity, and osteoporosis (Farmer, 2019). Lack of physical activity,
such as resembling bedridden patients, causes a lack of mechanical stimulation, leading to an
imbalance of bone formation and resorption and a speedy loss of bone mass (Benedetti et al.,
2018). Proper high impact physical activity enables bone to respond positively, and improve the
renew of bone metabolism, bone mineral density (BMD) and structural properties in the loaded
bone regions and whole body (Beck et al., 2017; Gomez-Bruton et al., 2017; Okubo et al., 2017).
Meanwhile, regular physical activity ameliorates bone health status and reduces the risk of trauma
fragility fracture and secondary functional disfunction (Kemmler et al., 2015; Troy et al., 2018).

Irisin is a newly discovered peptide hormone of 112 amino acids, which is the extracellular
domain of a transmembrane protein fibronectin type III domain-containing 5 (FNDC5). FNDC5
and its cleaved circulating form irisin are positively correlated with an active lifestyle (Tenorio et al.,
2017). Vigorous-intensity physical activity had a high serum level of irisin (Morelli et al., 2020),
which positively related to bone mechanical properties (Zhang et al., 2020). Furthermore, treatment
with irisin is found to improve BMD and biomechanical properties in murine models (Colaianni
et al., 2015). Here we review irisin as a key factor linking exercise and bone health and discuss the
different roles of irisin in musculoskeletal system and some chronic disease conditions mediating
bone metabolism in the context of exercise.
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ROLE OF EXERCISE IN REGULATING
BONE METABOLISM

Exercise regulates bone metabolism, mainly through direct action
(mechanical force) and indirect action (nerve and hormone
regulation). Mechanical force acts on bone via ground reaction
and muscle contraction forces (Usui et al., 2003). Loss of
mechanical force, such as hindlimb murine, the trabecular bone
volume was reported significantly reduced, and subsequent
reloading results in a significant increase in trabecular bone
volume (Colaianni et al., 2017; Cunningham et al., 2018).
The central nervous system, especially the cerebral cortex and
cerebellum regulates the neuromuscular and musculoskeletal
systems, leading to the activation and precise adjust of
bones (Cardozo and Graham, 2017). While, the hypothalamus
influences bone is mainly by regulating the secretion of
pituitary hormones (Dimitri and Rosen, 2017). Additionally,
the autonomic nervous system, including the sympathetic
(negative regulator) and parasympathetic (positive regulator)
nervous systems has also been found to affect bone metabolism
(Houweling et al., 2015; Idelevich and Baron, 2018).

Irisin is found to regulate bone cell metabolism by mechanical
force (Storlino et al., 2019), and to increases both cortical
and trabecular BMD subsequently (Colaianni et al., 2017).
Additionally, muscle strength is found to be enhanced after irisin
treatment (Reza et al., 2017b). Moreover, irisin participates in
the regulation process of the hypothalamus and the autonomic
nervous system (Scalzo et al., 2014; Poretsky et al., 2017)
and interacts with hormones related to bone metabolism
(Kim and Kim, 2018).

Regulation of Bone Cell Metabolism
Bone physiological functions are mainly maintained by the
activity of bone cells such as osteoblasts, osteoclasts and
osteocytes (Clarke, 2008). Osteoblast-led bone formation and
osteoclast-led bone resorption maintain bone homeostasis
simultaneously (Kular et al., 2012). Osteocytes are the chief
mechanosensory cells, and stellate cells embedded in calcified
bone matrix, which accounts for over 90% of the bone cells
(Klein-Nulend et al., 1995, 2012; Bonewald, 2011).

During high impact and rapid loading physical exercise (Beck
et al., 2017), ground reaction forces exert mechanical forces
on the bones (Usui et al., 2003), and the deformation of the
bone matrix drives an interstitial fluid flow, which surrounds
the osteocytes (Knothe Tate et al., 2000). Stimulated by the fluid
mechanical signals, osteocytes regulate a cascade of biochemical
responses (Kulkarni et al., 2012). Simultaneously, osteocytes
convert mechanical strain into regulatory signals to stimulate
the adaptive response of osteoclasts, thereby activating the bone
resorption and subsequent formation process (Bonewald, 2011;
Troy et al., 2018).

Irisin prevents the decrease of living osteocytes and the
increase of empty cavities due to disuse (Storlino et al., 2019).
Previous studies have shown that mechanical load leads to
an increase of Wnt protein in osteocytes, thereby activating
the classic Wnt signaling pathway, adjusting its sensitivity
to mechanical load in the feedback loop (Tu et al., 2012).

Corresponding, FNDC5 knockdown cells show downregulated
Wnt expression (Ma et al., 2019). One study reveals that
irisin increases survival of osteocytes by activating the mitogen-
activated protein kinase (MAPK) extracellular signal-regulated
kinase 1 (ERK1) and ERK2, which increases the expression of
the transcription factor activating transcription factor 4 (ATF4)
through an ERK-dependent pathway. Besides, irisin has been
found to inhibit apoptosis in osteocytes (Storlino et al., 2019).

The osteoblast is the target of irisin as well. Irisin enhances
osteoblast differentiation, proliferation, mineralization, and
upregulates the expression of transcription regulators, such
as runt-related transcription factor-2 (Runx2) and osterix
(Colaianni et al., 2015; Zhang et al., 2017). Recent studies reveal
that the osteogenic effect is mediated by irisin through activation
of the p38 MAPK and ERK (Qiao et al., 2016), and differentiation
promotion effect might be associated with activation of AMPK
AMP-activated protein kinase (AMPK)-α signaling (Ye et al.,
2020) and Wnt/β-catenin pathway (Robinson et al., 2006). Other
studies indicate that the proliferation of osteoblasts can be
promoted by irisin via enhancing aerobic glycolysis (Zhang et al.,
2018), and the osteoblast apoptosis is suppressed by irisin via
upregulating nuclear factor E2-related factor 2 (Nrf2), inhibiting
pyrin domain containing protein 3 (NLRP3) inflammasome
and lowering the content of inflammatory factors, which cause
the reduction of the incidence of postmenopausal osteoporosis
(Xu et al., 2020). Besides, recent studies show that irisin not
only stimulates autophagy but also downregulates a senescence
effector p21 to promote osteoblastogenesis and maintain the
activity of osteoblast (Chen et al., 2020; Colaianni et al., 2021).

Osteoclast formation and differentiation are significantly
reduced by irisin treatment (Zhang et al., 2017), and nuclear
factor κB (NF-κB) ligand (RANKL) was found to be a key factor
(Kawao et al., 2018). Irisin suppresses the receptor activator of
RANKL/nuclear factor of activated T cells (NFAT) c1 pathway,
thereby inhibits osteoclast formation in mouse bone marrow cells
(Zhang et al., 2017; Kawao et al., 2018). A study of FNDC5
knockout mice indicates that the higher expression of RANKL
and increased number of osteoclasts cause a decrease in bone
strength and bone mass (Luo et al., 2020).

Potential Role in Regulating the
Crosstalk Between Muscle and Bone
Irisin was originally found to be secreted by muscle cells
(Bostrom et al., 2012), and muscle contraction increases irisin
secreted during exercise (Archundia-Herrera et al., 2017). Muscle
is the major tissue of irisin expression, although it is also
expressed in small amounts in bone, brain and other tissues
(Colaianni et al., 2015). Muscle force itself is capable of providing
sufficient stimulation to make bones respond (Judex and Rubin,
2010). Some investigations show that bone density is significantly
related to muscle strength (Nordstrom et al., 1998). For example,
the jumping force is positively correlated with increased bone
mineral content (BMC) in the tibial cortex (Zengin et al.,
2017), while, the decline of muscle function, such as sarcopenia,
can lead to bone mass loss (Bonewald, 2019). Besides, the
optimization of muscle strength, balance, and mobility brought
by exercise can minimize the risk of falls and subsequent
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fractures, which is especially important for people at high risk of
falls (Beck et al., 2017).

Irisin is positively correlated with muscle mass (Kim et al.,
2016) and muscle strength, such as hand grip strength and leg
strength (Martinez Munoz et al., 2019). Studies have established
that the injection of irisin in murine induces significant
hypertrophy of skeletal muscle and enhances muscle strength
(Reza et al., 2017b), even reduce necrosis and fibrotic tissue (Reza
et al., 2017a). The effect of irisin on hypertrophy is due to muscle
stem cell activation and enhanced protein synthesis (Reza et al.,
2017b). Muscle movement also induces peroxisome proliferator-
activated receptor-γ coactivator 1 α (PGC1α), a transcriptional
coactivator (Handschin and Spiegelman, 2008). PGC1α in muscle
is reported to stimulate an increase in FNDC5 expression in vitro
and in vivo (Bostrom et al., 2012). A recent study indicates that
exercise increases mitochondrial fission and selective autophagy
by PGC1a/FNDC5/irisin pathway, and promotes recovery of
ischemic muscle (He et al., 2020). These studies suggest that irisin
may play an important role in exercise relieving skeletal muscle
atrophy, thereby maintaining bone load and bone mass.

Exercise-Mediated Cell Factors in Bone
Metabolism
Some cell factors are regulated by irisin during exercise to balance
bone metabolism. Bone cells, especially osteocytes modify the
production of a large number of signaling molecules when
triggered by mechanical stimulation (Janik et al., 2018). At the
same time, some central nervous system related hormones are
also changed due to exercise, affecting bone metabolism (Kim and
Kim, 2018; Liu et al., 2021).

Sclerostin is a protein produced by osteocytes, and causes
endogenous inhibition of bone formation, which regulates bone
remodeling (van Bezooijen et al., 2004). People who have more
physical activities are tested as less sclerostin, and regular physical
training results in a significant decrease of sclerostin level
(Cheung and Giangregorio, 2012; Janik et al., 2018). Sclerostin
is found to be a Wnt antagonist and blocks the Wnt/β-catenin
signaling pathway (Singh et al., 2019). Therefore, sclerostin
inhibitors can be expected to increase osteoblastogenesis
(Lewiecki, 2011). Researches indicate that circulating irisin and
sclerostin are highly negatively correlated (Colaianni et al.,
2017). Additionally, irisin treatment inhibits the increase of
sclerostin and restores osteoblastogenesis (Colaianni et al.,
2017). On the contrary, one study reveals that irisin treatment
upregulates sclerostin expression in osteoin-like cells (MLO-Y4)
in a dose-dependent manner, and knockout of FNDC5 prevents
ovariectomy mice from BMD loss by inhibiting osteolysis and
bone resorption. The conflicting conclusion may be related to
the different regulatory effects of irisin on osteogenesis and
osteoclastogenesis under different conditions (Kim et al., 2018).
This situation may be similar to the bidirectional regulation
of bone by parathyroid hormone, in which intermittent
administration leads to bone formation, while continuous
administration causes bone loss (Rattanakul et al., 2003).

Leptin has been reported to regulate bone metabolism mainly
by acting on the brain, especially via the hypothalamus and

sympathetic nervous system (Motyl and Rosen, 2012; Reid et al.,
2018). Leptin is a negative regulator of bone, and multiple
lines of evidence show that high bone mass phenotype can be
caused by leptin gene deletion accompanied with a massive
increase in bone formation (Ducy et al., 2000; Karsenty, 2006). In
addition, intraventricular injection of leptin reduces bone mass
and volume by increasing osteoclast activity (Ducy et al., 2000).
Exercise decreases leptin level, evidence suggests that running
wheels exercise reduces circulating leptin levels in both adults
and adolescents rats (Soch et al., 2016). Notably, circulating irisin
and leptin are positively related in children and adults (Palacios-
Gonzalez et al., 2015; Pena-Bello et al., 2016). In a study of
rats, intraperitoneal irisin injections decreased the leptin level in
circulation (Tekin et al., 2017). Interestingly, leptin has also been
found to up-regulate the expression of FNDC5 through a nitric
oxide-dependent mechanism (Rodriguez et al., 2015).

Brain-derived neurotrophic factor (BDNF) is found to be
more expressed in bone than in the brain, as a neuroprotective
factor (Camerino et al., 2016; Kowianski et al., 2018), and is
involved in regulating the formation and fracture healing process
of bone (Kilian et al., 2014). A report shows that BDNF promotes
bone marrow mesenchymal stem cells osteogenesis by binding to
the tropomyosin-related kinase B (TrkB) receptor, downstream
Erk1/2 phosphorylation, and BDNF indirectly promotes
osteogenesis by increasing neurogenesis as well (Liu et al., 2018).
Exercises may have a regulatory effect on BDNF secretion, as
studies reveal that a 3-months crossfit training increases BDNF
level in young people (Murawska-Cialowicz et al., 2015), while
sedentary rats have lower BDNF than the exercised ones, both
young and aged (Belviranli and Okudan, 2018). Analogously,
overexpression of irisin significantly upregulates BDNF
expression, while irisin interference significantly downregulated
the level of BDNF (Huang et al., 2019). To date, there is a lot of
uncertainty in the role of irisin in cell factors expression level,
which requires further research.

ROLE OF EXERCISE IN REGULATING
CHRONIC DISEASES

Some chronic diseases, such as diabetes mellitus (Mahapatra
et al., 2016), inflammatory bowel diseases (Ali et al., 2009),
hyperthyroidism (Novack, 2003), and relative adiposity (Dolan
et al., 2017) are shown to be associated with low BMD
and bone loss (Amin et al., 2011; Dimitri and Rosen, 2017).
Exercise is the first line for treating various diseases, which also
improves the prognosis and complications (Jin et al., 1999). The
previous studies have established that exercise and irisin promote
osteogenesis in some chronic diseases (Dieli-Conwright et al.,
2018; Palermo et al., 2019).

Diabetes Mellitus
Type 1 diabetes mellitus (T1DM) has an important link with
osteoporosis which begins in childhood, and leads to lower peak
bone mass and high risk of osteoporotic fractures in adults
(Weber et al., 2015; Devaraja et al., 2020). Poor glycemic control
and glycated hemoglobin (HbA1c) are found to be negatively
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TABLE 1 | Irisin regulates bone metabolism by different factors.

Factor Action References

MAPK Improve osteocyte
survival, inhibit
apoptosis

Storlino et al., 2019

P38 MAPK and ERK Improve osteoblast
osteogenic

Qiao et al., 2016

Nrf2 Inhibit osteoblast
apoptosis

Xu et al., 2020

AMPK-α Improve osteoblast
differentiation

Ye et al., 2020

RANKL Inhibit osteoclast
differentiation

Zhang et al., 2017;
Kawao et al., 2018

Sclerostin Improve osteocyte
survival and
osteoblastogenesis

Colaianni et al.,
2017; Kim et al.,
2018

Muscle stem cell-derived factors Increase muscle mass
and strength

Reza et al., 2017b

PI3K Improve insulin
sensitivity, reduce
fasting glycemia

Liu et al., 2015

NF-κB Inhibit inflammation Mazur-Bialy et al.,
2017

correlated with BMD (Fuusager et al., 2019). Studies of diabetic
mellitus rats demonstrate that running exercise increases the
irisin level, glycemic control, bone mass and muscle strength,
probable due to the activation of the Wnt/β-catenin signaling
pathway and decreased systemic inflammatory process (Andrade
et al., 2018; Yang et al., 2018; Sadeghipour et al., 2020).

Irisin levels are indicated significantly correlated negatively
with HbA1c, years of diabetes, and positively associated with
better glycemic control and bone health in TD1M children
(Kurdiova et al., 2014; Faienza et al., 2018; Gouda et al.,
2018). Furthermore, persistent subcutaneous perfusion of
irisin improves insulin sensitivity, reduces fasting glycemia
by inhibiting gluconeogenesis via phosphoinositide 3-kinase

(PI3K)/serine/threonine kinase (Akt)/forkhead box transcription
factor O1 (FOXO1) mediated phosphoenolpyruvate
carboxykinase (PEPCK) (Liu et al., 2015). A recent study
shows that irisin regulates glucose metabolism by promoting
hepatic glycolysis and inhibiting hepatic gluconeogenesis (Yang
et al., 2020). Therefore, irisin may improve bone metabolism of
diabetic patients by regulating glycemic levels through exercise.

Obesity
Some studies indicate that overweight children have lower bone
mass than normal weight children, relative to their size and
poorer bone structure parameters (Goulding et al., 2000; Farr
et al., 2010). Another report shows bone strength is related to
lean mass rather than fat mass (Bogl et al., 2011), and excess
fat seems to limit the effect of lean mass on bone maturation
(Farr and Dimitri, 2017).

Exercise can alleviate bone loss caused by obesity. A recent
study suggests that subsequent 8 weeks of swimming relieves the
reduced BMD, bone microstructure, and bone metabolic factors
on obese rats (Kang et al., 2019). In obese breast cancer survivors,
whole body and trochanter BMD have an upward trend after a
4-months exercise (Dieli-Conwright et al., 2018). Although the
relevance to gender is unclear (Anastasilakis et al., 2014; Ruan
et al., 2019), circulating irisin is shown positive correlated with
adiposity indices, such as percent body fat and fat mass (Jang
et al., 2017). Notably, a 6-months moderate physical exercise
increases the irisin level, decreases body mass index and waist
circumferences in obese men (Rashid et al., 2020). Therefore,
irisin may be an important factor in maintaining the bone health
of obese people.

Inflammation
Lack of exercise also activates the inflammatory pathway
network, which promotes the development of a cluster of
diseases (Pedersen, 2009). Chronic inflammatory diseases cause

FIGURE 1 | The effects of irisin in exercise-mediated bone metabolism.
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excessive bone absorption and impaired bone formation,
leading to periarticular and systemic bone loss (Straub
et al., 2015; Metzger et al., 2019). Exercise promotes irisin
expression and induces anti-inflammatory effects (Wiecek
et al., 2018). Serum irisin levels are negatively correlated with
inflammation-related symptoms, such as disease duration,
severity evaluation, and stiffness duration in rheumatoid
arthritis patients (Gamal et al., 2019). Anti-inflammatory
property of irisin is associated with the downregulation of the
Toll-like receptor 4 (TLR4)/myeloid differentiation primary
response protein 88 (MyD88) downstream pathway and
decreased the phosphorylation of NF-κB, consequently decreased
phosphorylation and activation of crucial pro-inflammatory
cytokines (Mazur-Bialy et al., 2017). Recently, in the study of
a rat model of disuse osteoporosis, irisin treatment increases
the bone formation rate of unloading hindlimbs and reduce the
expression of pro-inflammatory factors such as tumor necrosis
factor (TNF)-α and Interleukin (IL)-17 (Metzger et al., 2020).

POTENTIAL DEVELOPMENT OF IRISIN
AS THERAPEUTIC AGENT AND
BIOMARKERS FOR BONE DISEASES

Increasing the level of physical activity is considered to be the
preferred non-pharmacological intervention for the prevention
and treatment of chronic bone diseases (Compston et al., 2017).
Some resistance trainings during early life improve BMD and
bone structural properties, and have a direct preventive effect
on bone diseases in later life (Gomez-Bruton et al., 2017), and
irisin also plays a key role in this process (Elizondo-Montemayor
et al., 2018). Although different types of exercise training have
conflicting results on irisin, most studies suggest that high-
moderate intensity (Tsuchiya et al., 2014; Rashti et al., 2019;
Torre-Saldana et al., 2019) and resistance exercises (Nygaard
et al., 2015; Tsuchiya et al., 2015; Kim et al., 2016) lead to more
significantly enhanced in irisin level, and improve bone loss in
patients with osteoporosis (Watson et al., 2019). This means that
irisin has become a new target in promoting bone health, and the
possibility of treating some bone diseases.

Irisin is also considered a biomarker in the musculoskeletal
system. In postmenopausal women, irisin can be used as a

biomarker for sarcopenia and hip fracture, because irisin is
inversely related to the degree of muscle wasting and the risk
of hip fractures (Yan et al., 2018; Park et al., 2019; Ruan et al.,
2020). In body composition of children, Irisin is also used
as a biomarker owing to the positive correlation with BMD,
regardless of lean or fat body mass (Eloranta et al., 2018).
Remarkably, according to multiple regression analysis, irisin is
even a stronger determinant of bone mineral status than bone
alkaline phosphatase (Colaianni et al., 2019).

SUMMARY

Since the discovery of irisin, owing to many findings relevant to
bone metabolism, irisin has attracted much attention. In exercise-
mediated bone metabolism, irisin ameliorates bone metabolism
by regulating muscle and bone cells, modulates the expression
of cell factors, and alleviates bone loss under pathological
conditions, as shown in Table 1 and Figure 1. Interesting, irisin is
expected to serve as a biomarker for detecting bone metabolism.
Finally, exercise is beneficial for maintaining bone health partly
via regulation of irisin, and this may also apply to people with
underlying pathological conditions.
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