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Cardiovascular disease (CVD) is the main cause of death worldwide. Atherosclerosis
is the underlying pathological basis of CVD. Mitochondrial homeostasis is maintained
through the dynamic processes of fusion and fission. Mitochondria are involved in
many cellular processes, such as steroid biosynthesis, calcium homeostasis, immune
cell activation, redox signaling, apoptosis, and inflammation, among others. Under
stress conditions, mitochondrial dynamics, mitochondrial cristae remodeling, and
mitochondrial ROS (mitoROS) production increase, mitochondrial membrane potential
(MMP) decreases, calcium homeostasis is imbalanced, and mitochondrial permeability
transition pore open (mPTP) and release of mitochondrial DNA (mtDNA) are activated.
mtDNA recognized by TLR9 can lead to NF-κB pathway activation and pro-inflammatory
factor expression. At the same time, TLR9 can also activate NLRP3 inflammasomes and
release interleukin, an event that eventually leads to tissue damage and inflammatory
responses. In addition, mitochondrial dysfunction may amplify the activation of NLRP3
through the production of mitochondrial ROS, which together aggravate accumulating
mitochondrial damage. In addition, mtDNA defects or gene mutation can lead to
mitochondrial oxidative stress. Finally, obesity, diabetes, hypertension and aging are
risk factors for the progression of CVD, which are closely related to mitochondrial
dynamics. Mitochondrial dynamics may represent a new target in the treatment of
atherosclerosis. Antioxidants, mitochondrial inhibitors, and various new therapies to
correct mitochondrial dysfunction represent a few directions for future research on
therapeutic intervention and amelioration of atherosclerosis.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory condition caused by abnormal lipid metabolism,
oxidative stress, endothelial injury and other factors and can involve large and medium-
sized arteries throughout the body (Gisterå and Ketelhuth, 2018). Atherosclerotic
cardiovascular disease (ASCVD) is a major cause of mortality in many industrialized societies
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(Commodore-Mensah et al., 2021). Lipid accumulation, local
inflammatory responses, and endothelial injury are important
factors in the development of atherosclerosis (Pham et al., 2021).

Over the past 20 years, studies have shown that mitochondrial
dysfunction can lead to the occurrence and development
of many diseases such as atherosclerosis (Sobenin et al.,
2013a). Mitochondria are highly dynamic organelles that
constantly produce adenosine triphosphate (ATP). Events, such
as mitochondrial DNA (mtDNA) mutation, imbalance in calcium
homeostasis, accumulation of oxidative stress products, and
metabolic dysfunction are hallmarks of mitochondrial damage
(Forte et al., 2019). When mitochondria are damaged or
dysfunctional, energy production is limited and large quantities
of reactive oxygen species (ROS) are produced. At the same
time, mitochondria are vulnerable to damage from ROS. Cardiac
cells, which are oxygen-hungry and mitochondria-rich, are also
vulnerable to ROS damage. Studies have shown that ROS-
mediated energy damage can induce systolic dysfunction of the
heart (Luptak et al., 2019). In addition, ROS promote mutations
and deletions in mtDNA (Li et al., 2021). Mitochondrial
fusion can serve as a strategy to repair irreversibly damaged
mitochondria, and at the same time, limit the accumulation
of mtDNA mutations during aging. Irreversibly damaged
mitochondria can also be repaired through fission (Yapa et al.,
2021). Here we discuss the role of mitochondrial dynamics and
its potential as a therapeutic target in this review.

MITOCHONDRIAL DYNAMICS AND
DYSFUNCTION IN ATHEROSCLEROSIS

Mitochondria are organelles with a double-membrane structure
and are the main components involved in aerobic respiration
in most eukaryotic cells (Navaratnarajah et al., 2021). The
mitochondrial membrane comprises three layers. The outer layer
is known as the outer mitochondrial membrane (OMM). The
mitochondrial intima contains enzymes responsible for oxidative
phosphorylation (OXPHOS), which are components of a multi-
protein complex of five large electron-transport (respiratory)
chains (Song et al., 2019; Figure 1A). Increased ROS levels
result in mitochondrial dysfunction in vascular cells, aggravated
endothelial injury and smooth muscle cell proliferation,
and are responsible for inducing vascular atherosclerosis
development and other pathological changes (Hughes et al.,
2020). Furthermore, in the mitochondria, the activity of ion
channels—which modulate Ca2+ signal transduction—is
regulated by the free radicals generated through the respiratory
chain functions, and these phenomenon subsequently affect
biosynthesis and degradation reactions in various organisms
(Gherardi et al., 2020). In addition, mitochondria are directly
and closely related to other organelles such as the endoplasmic
reticulum (Lackner, 2019). For example, mitochondria-
associated endoplasmic reticulum membranes (MAMs) play an
important role in atherosclerosis development, heart failure,
and other diseases by participating in lipid and calcium (Ca2+)
homeostasis, mitochondrial dynamics, inflammation, and
apoptosis (Gao et al., 2020).

Studies have shown that the continuous fission and fusion
of mitochondria are important for maintaining mitochondrial
morphology and function (Kyriakoudi et al., 2021). Mammals
contain two mitofusins, namely mitofusin (Mfn)-1 and Mfn2.
These proteins contain two hydrophobic heptapeptide repeats,
i.e., HR1 and HR2 at their N- and C-termini (located on
both sides of the transmembrane domain) (Xin et al., 2021)
(Figure 1B). In mammalian cells, mitochondrial fusion is
mainly mediated by members of the of the GTPase protein
family, i.e., Mfn1, Mfn2, and optic atropy-1 (OPA1) (Wolf
et al., 2020). OPA1 and Mfn1 cooperate to enable organelle
fusion. Transcript variants of OPA1 encode two OPA1 protein
isomers with different lengths, namely L-OPA1 and S-OPA1.
As L-OPA1 has a better fusion efficiency than S-OPA1, its
abnormal functioning can lead to reduced fusion activity, and
thereby mitochondrial rupture and apoptosis (Wang et al., 2021a;
Figure 1C). The collar structure comprising Drp1 polymer plays
a central role in mitochondrial fission, and post-translational
modification of Drp1 plays a major role in the formation of collar
structures during mitochondrial fission (Breitzig et al., 2018;
Figure 1D). Soluble substances can enter the mitochondria when
the mPTP—located in the inner mitochondrial membrane—
opens or closes, thereby affecting the MMP and inducing
apoptosis (Du et al., 2021).

The expression of mitochondrial dynamin plays an important
role in the development of atherosclerosis (Sharp and Archer,
2015). Chiong et al. (2014) found that the expression of Mfn2
is significantly reduced in the background of atherosclerosis
in ApoE−/− mice and is also involved in the pathogenesis of
atherosclerosis. Heterozygous deletion of OPA1 in mice also
results in abnormal mitochondrial morphology, such as cleavage
of the mitochondrial cristae (Hu et al., 2020). In some cases,
inhibition of Drp1 expression can increase the depolarization of
mitochondria in heart cells (Ikeda et al., 2015). Drp1-induced
disturbances in mitochondrial homeostasis can cause a variety
of complex vascular diseases through mechanisms, such as
myocardial ischemia-reperfusion (I/R) injury, heart failure, and
endothelial dysfunction (Morales et al., 2020).

NOVEL MECHANISTIC INSIGHTS: FROM
MITOCHONDRIAL DYNAMICS TO
ATHEROSCLEROSIS

Mitochondrial ROS-Induced Oxidative
Stress in Atherosclerosis
The fusion and fission of mitochondria are closely related to
mitochondrial function. ROS are a byproduct produced during
mitochondrial respiration; when mitochondrial ROS (mitoROS)
levels are disturbed, interactions involving the structure and
function of mitochondria may eventuate (Forrester et al., 2018)
and play important roles in the development of inflammatory
and metabolic disorders (such as atherosclerosis and diabetes)
(Hu et al., 2020). Drp1 can affect mitochondrial fission by
regulating the levels of mitoROS and subsequent oxidative
stress (Cid-Castro and Morán, 2021). In addition, ROS also
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FIGURE 1 | Structure of mitochondria and mitochondrial dynamics. (A) The mitochondrion is mainly composed of OMM, mitochondrial membrane gap, IMM, and the
mitochondrial matrix. The intima folds inward to form mitochondrial cristae perpendicular to the mitochondrial long axis. Mitochondria produce reduced nicotinamide
adenine dinucleotide (NADH) through the Krebs cycle, which is then oxidized and phosphorylated to release ATP. (B,C) Mitochondrial fusion involves three types of
dyneins, namely MFN (Mfn1 and Mfn2), OPA1, and MSTO1. First, the transmembrane GTPases on the mitochondrial outer membrane, namely Mfn1 and Mfn2, fuse
through the HR structure. Subsequently, OPA1-mediated IMM fusion occurs in the mitochondrial inner membrane. OPA1 also includes L-OPA1 and the S-OPA1
formed after the removal of L-OPA1 via action of proteolytic enzymes OMA1 and YME1L1. Mitochondrial mitosis is mediated mainly by Drp1. Drp1 is recruited into
mitochondria by several ligand proteins (MFF, MIEF1/Mid51, and MIEF2/Mid49) that assemble into spiral fragments around the OMM, induce mitochondrial fission,
and complete division by the transport of microtubules and actin. (D) The fusion and fission of mitochondria is a cyclic process. IMM, inner mitochondrial membrane;
OMM, outer mitochondrial membrane; OPA1, optic atrophy protein-1; Drp1, dynamin-related protein; NADH, nicotinamide adenine dinucleotide.

regulate mitochondrial fusion. When ROMO1 (ROS regulatory
protein 1) is inactivated, OPA1 expression is reduced, resulting
in the remodeling of mitochondrial cristae and fragmented
mitochondria (Norton et al., 2014). Studies have shown that
high glucose levels can increase the activity of Drp1 in the
mitochondria of endothelial cells, leading to mitochondrial
fission and production of mitoROS. Mdivi-1 can reduce high
glucose induced oxidative stress and injury to aortic cells
(Wang et al., 2017b).

Lipid accumulation is an important link in the formation of
plaque during the early stages of atherosclerosis (Chistiakov et al.,
2018), and increased ROS levels induce endothelial dysfunction,
vascular inflammation, and accelerated accumulation of oxidized
low density lipoprotein (ox-LDL) in the arterial wall, a
phenomenon that promotes atherosclerosis (Naik and Dixit,
2011; Yu et al., 2017). As an activator of NLRP3, ox-LDL
can induce alterations in MMP, which leads to the generation
of mitoROS and activation of Ca2+ signals, calcium influx,
and mitochondrial damage (Triantafilou et al., 2013). In vitro
experiments have shown that lectin-type oxidized LDL receptor 1
(LOX-1), the main receptor for ox-LDL, expressed in response to
lipopolysaccharide (LPS) induction, can lead to ROS production,
mtDNA damage (Figure 2B), and the production of NLRP3
inflammasomes and play an important role in inflammatory

diseases such as atherosclerosis (Ding et al., 2014). Studies
have reported that ox-LDL and ROS can damage mitochondria,
release mitoROS, induce the activation of NLRP3, elevate levels
of IL-1β and IL-18, and cause inflammation (Huang et al.,
2020; Markin et al., 2021). At the same time, ROS leads
to endothelial nitric oxide synthase (eNOS) degradation by
increasing the activity of mitochondrial arginase II (Suárez-
Rivero et al., 2021). In vivo studies have found that Mfn2
inhibits ox-LDL-induced rabbit smooth muscle cell proliferation
and reduces atherosclerotic plaques by regulating Akt and ERK
phosphorylation (Guo et al., 2007b).

In addition to mitoROS produced by activity of the
mitochondrial electron transport chain (ETC), NADPH oxidase
(NOX), xanthine oxidase and cyclooxygenase can also release
large amounts of ROS (Yeh et al., 2018). Various sources
of ROS play an important role in angiogenesis (Fukai and
Ushio-Fukai, 2020). Angiogenesis has a significant impact
on the treatment of ischemic cardiovascular disease (CVD).
Restoring intravascular perfusion by enhancing or inhibiting
angiogenesis is an important means of treating peripheral arterial
disease (PAD) caused by atherosclerosis (Simons et al., 2016).
Mitochondria play a key role in angiogenic responses induced
by growth factors such as VEGF (Guo et al., 2017) by regulating
mitoROS-related activities (Wang et al., 2011). In vivo studies
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have shown that in presence of high glucose, the consumption
of PDIA1 in endothelial cells can induce Drp1 sulfenylation at
Cys644, promote mitochondrial fission, and increase ROS levels.
Therefore, PDIA1 or the Cys oxidation-defective mutant Drp1
can promote angiogenesis in diabetic mice (Kim et al., 2018).
Inhibition of Drp1 can result in the dysfunction of mitochondrial
respiratory function (Ota et al., 2020).

mtDNA Damage in Atherosclerosis
The mitochondrial genome comprises naked, independently
encoded, double-stranded DNA molecules that exist mainly
as small loops (in yeast and mammals) or linear molecules
(protozoa) (Suzuki et al., 2011). mtDNA is the only DNA
molecule that exists in the human cytoplasm. It is 16,569-
basepair long and includes the heavy chain of the outer ring
(high molecular weight) and the light chain of the inner ring
(low molecular weight). mtDNA encodes 37 genes, among them,
13 protein-coding regions have been identified to play a role
in maintaining normal cellular OXPHOS (Tang et al., 2020).
High levels of mitochondrial mutation represent an important

factor that leads to dysfunction of oxidative phosphorylation and
energy metabolism and endothelial injury (Ueda et al., 2015). As
opposed to genomic DNA, mtDNA in the mitochondrial matrix
or inner membrane does not contain any histones and is free
of structural protection; this DNA is in a state of continuous
synthesis throughout the cell cycle, with poor stability and is in
close proximity to the site where the electron transport system—
that continuously produces ROS—is located. Therefore, mtDNA
is more easily and extensively damaged (Ahmed et al., 2015).

In humans, mtDNA damage has been confirmed in
atherosclerotic diseases, and may be attributed to the damage
of this DNA by ROS produced by the adjacent respiratory
chains (Muñoz-Carvajal and Sanhueza, 2020; Figure 2A). As
such, mitochondria are the site of activation of the NRLP3
inflammasome. When mitochondria are dysfunctional, changes
in the production of ROS, mtDNA release, cardiolipin, and
NAD/NADH can activate NLRP3. mtDNA damage may
therefore result in mitochondrial dysfunction and increased IL-
1β levels through the aforementioned mechanisms of promoting
atherosclerosis (Freigang et al., 2013). Furthermore, mtDNA

FIGURE 2 | The mechanism of atherosclerosis formation caused via dysfunction of mitochondrial function and dynamics. (A) ROS produced in the respiratory
chains of mitochondria can cause damage to mtDNA. (B) Ox-LDL induced the change of MMP, lead to Ca2+ influx, ROS production and mitochondrial damage. In
addition, the decrease of MFN and OPA1 levels can also lead to the change of MMP and damage of mitochondria. (C) PPAR deletion decreases Mfn2 expression
and PGC-1 expression, and leading to mitochondrial dysfunction; AMPK activates endothelial cells through the phosphatidyl inositol 3 kinase protein kinase B
(PI3Kb) pathway, stimulates eNOS activation, and generates NO to protect endothelial cells; Mfn2 can inhibit the PI3K/Akt pathway by activating the mitochondrial
apoptotic pathway, resulting in VSMC apoptosis. (D) DAMP promotes inflammation by activating PRRs. mtDNA can activate NF-κB and trigger TLR9 signaling
pathway to mediate p38 pathway. Mitochondrial damage induces NLRP3 activation, and NLRP3 amplify the production of ROS. (E) Silencing Drp1 can inhibit
mitochondrion fission, decrease ROS levels and inhibits smooth muscle cell migration. (F) Mfn2 deficiency leads to the increase of Ca2+ expression in
cardiomyocytes, mitochondrial swelling, and eventually leads to cardiac hypertrophy. (G) Diabetes mellitus, insulin resistance, dyslipidemia, obesity, hypertension and
aging may damage mitochondrial function, and lead to the development of atherosclerosis. mtDNA, mitochondrial DNA; Drp1, dynamin-related protein; Mfn1,
mitofusin 1; Mfn2, mitofusin 2; OPA1, optic atropy-1; Fis1, mitochondrial fission protein 1; MMP (1ψm), mitochondrial membrane potential; mPTP, mitochondrial
permeability transition pore open; Cyt c, cytochrome C; ROS, reactive oxygen species; LOX-1, lectin-type oxidized LDL receptor 1; ox-LDL, oxidized low density
lipoprotein; DAMP, damage-associated molecular pattern; PI3K, phosphatidyl inositol 3; NF-κB, nuclear factor-κB; TyrRS-PARP1, tyrosyl transfer- RNA synthetase
(TyrRS) and poly (ADP-ribose) polymerase 1 (PARP1).
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damage leads to mitochondrial dysfunction, resulting in the
removal of abnormal mitochondria, which may be detrimental
to cell function under conditions of oxidative stress. Altered
membrane potential in cells lacking MFN or OPA1 may cause
mitochondrial damage, which can be compensated by the
dynamic cycle of mitochondrial fusion and fission (Chen
et al., 2007; Weaver et al., 2014). Studies have reported that
mitochondrial fusion possesses a dual function, and that it not
only protects the integrity of mtDNA, but also maintains the
mtDNA function under conditions of mutational pressure.
Therefore, mitochondrial fusion may have some compensatory
effects on mtDNA mutation (Chen et al., 2010). Liu et al.
(2020) found that overexpression of Mfn2 can increase MMP,
enhance mitochondrial fusion, reduce mitoROS accumulation,
activate the AMPK/SIRT3 signaling pathway, and prevent
cardio-cerebrovascular ischemia/reperfusion (I/R) damage.

Furthermore, somatic mutations in the human mitochondrial
genome may play a role in the development of atherosclerosis
(Sazonova et al., 2017; Volobueva et al., 2019). Investigations
on 12 aorta samples from male have revealed that compared
with non-atherosclerotic intima, lipofibrous plaques have
a high frequency of MT-RNR1 A1555G, MT-TL1 C3256T,
MT-CYB G12315A, and MT-TL2 G15059A (Sobenin et al.,
2013b). In addition, compared with healthy vascular tissue,
atherosclerotic plaques exhibit significant differences in the
frequency of C3256T, T3336C, G12315A, and G14459A
mutations (Sazonova et al., 2009). The C5178A mutation is
more common in normal vascular tissues than in atherosclerotic
plaques (Matsunaga et al., 2001).

Pathways Related to Mitochondria in
Atherosclerosis
Peroxisomal proliferator-activated receptor (PPAR) is a
transcription factor activated by nuclear receptor superfamily
ligands; it activates target genes and affects lipid metabolism,
glucose homeostasis, cell proliferation, differentiation,
apoptosis, and inflammatory responses (Teixeira et al.,
2021). Previous studies have confirmed that PPARs are
expressed in atherosclerotic plaques, suggesting that PPARs
are closely related to atherosclerosis-related mechanisms such
as transcriptional regulation of pro-inflammatory genes, e.g.,
cytokines, chemokines, vascular endothelial cell adhesion
factors, and metallostromal proteases (Corona et al., 2014).
Studies have shown that cardiac defects involving PPARs can
also lead to abnormal mitochondrial morphology, excessive
lipid deposition, and other phenotypic changes (Cheng
et al., 2004). PPARα induces the downregulation of Mfn2
expression in high-fat or high-glucose treated cardiomyocytes
by promoting mitochondrial fusion. Exogenous supply of Mfn2
in this background can restore MMP, inhibit mitochondrial
oxidative stress, and improve mitochondrial function (Hu et al.,
2019). Additionally, studies have revealed that PPAR deletion
significantly decreases PGC-1 expression in C57BL/6J mice,
thereby leading to mitochondrial dysfunction at the structural
and functional levels (Zhou et al., 2016b). Yang et al. found
that resveratrol could inhibit palmitic acid-induced damage to

human umbilical vein endothelial cells (HUVECs), increase the
expression of Mfn1, Mfn2, and OPA1, inhibit mitochondrial
fragmentation, and reduce oxidative damage in endothelial cells
by regulating mitochondrial fusion through the TyPRS-PARP1
signaling pathway (Yang et al., 2019; Figure 2C).

AMPK is a cellular energy receptor activated by AMP that
affects sugar, fatty acid, and protein metabolism (Dehnavi et al.,
2021). Importantly, AMPK activation can lead to inhibition
of cell proliferation when cardiomyocytes and vascular smooth
muscle cells (VSMCs) are in a state of ischemia and hypoxia,
thus playing an important role in the regulation of cardiovascular
diseases and in the prevention and treatment of atherosclerosis
(Yan et al., 2018). Moreover, AMPK activates endothelial cells
through the phosphatidyl inositol 3 kinase protein kinase B
(PI3Kb) pathway, stimulates eNOS activation, and generates NO
to further protect endothelial cells; these phenomenons play
important roles in the prevention of atherosclerosis (Tousoulis
et al., 2012; Xing et al., 2015; Figure 2C). Studies have
shown that the AMPK-SIRT3 pathway also affects mitochondrial
function (Karnewar et al., 2016). In addition to affecting cell
function and metabolism, AMPK can also affect mitochondrial
homeostasis by promoting mitochondrial fission. Antimycin
A (complex I inhibitor) and antiretroviral drug antimycin A
(complex III inhibitor) were discovered based on the theory
that AMPK could induce mitochondrial fission (Toyama et al.,
2016). Previous studies have shown that MFF is a new substrate
of AMPK and plays an important role in AMPK-mediated
regulation of mitochondrial morphology (Ducommun et al.,
2015). Phosphorylation of AMPK-induced MFF by SAMP155
at Ser172, for example, is a potential mechanism used to
explain mitochondrial fission due to diminished mitochondrial
respiration. Additionally, MFF in human osteosarcoma cells
has been shown to induce mitochondrial fission (Toyama
et al., 2016). Notably, AMPK regulates mitochondrial fission
through an autophagy-dependent Drp1 degradation mechanism.
Observation of the aorta of PRKAA2/AMPKa2-deficient mice
revealed that the number of autophagosomes in the aorta
of PRKAA2/AMPKa2-deficient mice is significantly reduced,
suggesting abnormal mitochondrial mitosis (Wang et al., 2017a).

The phosphoinositide 3-kinase/protein kinase B (PI3K/Akt)
signaling pathway is known to regulate cell growth,
differentiation, and proliferation (Shao et al., 2021). Studies
have shown that knockout of a PI3Kγ subunit, i.e., P110γ can
reduce the size of atherosclerotic plaques in ApoE−/− and
LDLr−/− mice. Moreover, the Class IA PI3K signaling pathway
can significantly reduce the levels of serum free fatty acids
(FFA), cholesterol, and triglycerides in mice and inhibit the
production of intracellular ROS (Wang et al., 2021b). Akt also
plays an important role in glucose metabolism, apoptosis, cell
proliferation, and other aspects of cell growth (Linton et al.,
2019). Furthermore, Mfn2 can inhibit the PI3K/Akt pathway
by activating the mitochondrial apoptotic pathway, resulting
in increased mitochondrial outer membrane permeability and
ultimately VSMC apoptosis (Guo et al., 2007a; Figure 2C). Fang
et al. found that decreased Mfn2 expression might be related to
pulmonary arterial smooth muscle cell (PASMC) proliferation
under hypoxic conditions (Fang et al., 2016).
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Role of Mitochondria in Inflammation
and Immunity Related in Atherosclerosis
Inflammation and immunity are inseparable in atherosclerosis,
as the two influence each other to accelerate the progression
of atherosclerosis (Saigusa et al., 2020). Atherosclerosis is not
only an inflammatory disease, but it is also an autoimmune
disorder. Additionally, atheromatous plaques and phenotypic
changes in vascular cells are the main manifestations of
atherosclerosis, and most of these immune responses are can be
attributed to Th-1 cells (Kuznetsova et al., 2019). Furthermore,
ox-LDL, ROS, and advanced glycation end products (AGEs)
further aggravate the occurrence of inflammatory reactions and
vulnerable plaque rupture events.

Inflammation is related to innate defense and tissue damage.
Pattern recognition receptors (PRRs) are located on the
surface of cell membranes or inside cells. They recognize and
bind to pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) to trigger the
inflammatory cascade in innate immunity (Zhang et al., 2010).
PRRs, LPS receptors, Toll-like receptors (TLRs), and Nod like
receptors (NLRs) play important roles in the pathogenesis of
atherosclerosis (Shimada et al., 2012). In contrast, mtDNA that
functions as a DAMP plays an important role in the inflammatory
response. DAMPs can accumulate when mtDNA is damaged
or degraded, and these promote inflammation by binding to—
and activating—PRRs (Mathew et al., 2012; Picca et al., 2017).
Studies have shown that cytokines produced by mitochondrial
DAMPs play a key role in the inflammatory signaling pathway in
atherosclerosis (Goossens et al., 2010; Yu et al., 2013; Tumurkhuu
et al., 2016). NLRs are scaffold proteins that play key roles
in regulating innate immune responses by triggering the NF-
κB and mitogen-activated protein kinase (MAPK) signaling
pathways, and by controlling caspase activation (Zhang et al.,
2014). Mitochondrial antiviral signaling protein (MAVS) is a
key signaling protein activated by viral RNA sensors RIG-1 and
MDA5, which can promote gene expression by activating the NF-
κB pathways (Loo and Gale, 2011). In addition, MAVS associates
with NLRP3 and promotes its oligomerization, which leads to
the activation of caspase-1 (Mohanty et al., 2019). It has recently
been demonstrated that the activation of NLRP3 caused by the
synthetic TLR7 ligand imiquimod is the result of the production
of mitoROS induced by complex I of the respiratory redox chain
and the quinone oxidoreductase NQO2 (Groß et al., 2016).

In recent years, increasing numbers of studies have
demonstrated that mtDNA regulates the development of
inflammation in disease states by activating the immune system
(West and Shadel, 2017). In mice, inflammatory arthritis was
induced upon the intra-articular injection of mtDNA, which
induced the secretion of TNF by spleen cells; this was the first
report on the immunological potential of mtDNA (Kepp et al.,
2011). mtDNA can induce the activation of the NF-κB pathway
and the release of TNF-α and IL-6 after being sensed by TLR9
(Zhong et al., 2016). mtDNA accumulation also results in the
activation of caspase-1 and promotes the secretion of IL-1β

and IL-18 in macrophages, thereby participating in a series of
inflammatory responses (Mottis et al., 2019). Further, mtDNA

activates the p38 and p42-44 MAPK pathways and chemotaxis
of neutrophils to endothelial injury sites by triggering TLR9
signaling (Zhang et al., 2010). This induces the development of a
range of inflammatory diseases, including rheumatoid arthritis,
atherosclerosis, and non-alcoholic steatohepatitis. NLRP3
inflammasome, whose formation is triggered by mitochondrial
damage and IRF3-signaling-induced endothelial inflammation
also contributes to the progression of atherosclerosis (Mao
et al., 2017). In addition, mitochondrial dysfunction may also
amplify the activation of NLRP3 through the production of
mitoROS (Figure 2D).

Mitochondrial Associated Endothelial
Injury and Smooth Muscle Proliferation
in Atherosclerosis
Endothelial dysfunction leads to the development of
atherosclerosis in patients with diabetes, and induces many
changes in terms of mitochondrial dynamics and mitochondrial
fission, and increases ROS production (Ago et al., 2010).
Mitochondrial NOX4 promotes the production of ROS by
mitochondria, which in turn can induce mitochondrial damage
(Vendrov et al., 2015) and endothelial injury (Kim et al.,
2016). Metformin can inhibit the expression of NOX4, reduce
the production of ROS, and improve endothelial function
(Cheng and Lanza-Jacoby, 2015; Victor et al., 2015). D-chiro
inositol can inhibit the expression of Drp1, reduce the levels
of NOX4, and enhance the production of NO in mouse aortic
endothelial cells to protect against endothelial injury (Zhang
et al., 2017). After hypoxia/reoxygenation (H/R) injury, ROS
levels increase significantly, and ROS promote mitochondrial
fission in myocardial endothelial cells through JNK-mediated
phosphorylation of Drp1 (Chen et al., 2021b).

Epigenetic modifications induced in response to mtDNA
damage have become a research hotspot in the domains of aging
and atherosclerotic diseases (Schiano et al., 2015). In vivo studies
have shown that even if ROS levels do not increase significantly,
mtDNA damage can reduce mitochondrial respiration and ATP
content in smooth muscle cells, promote apoptosis of VSMCs
and aggravate atherosclerosis (Yu et al., 2014). After endothelial
injury, proliferation, migration, and vascular remodeling of
VSMCs are important for the rupture of atherosclerotic plaques,
wherein the fission of mitochondria and deregulated secondary
morphological functions play an important role (Wang et al.,
2015; Hong et al., 2017). Once mitochondrion fission is inhibited
by silencing Drp1, the protons leak across the mitochondrial
inner membrane, resulting in decreased ROS levels in primary
mouse smooth muscle cells, a phenomenon that inhibits smooth
muscle cell migration (Wang et al., 2015; Figure 2E).

Mitochondria-Related Fibrosis and
Hypertrophy in Atherosclerosis
Mitochondrial damage is involved in myocardial cell loss and
myocardial fibrosis, both of which eventually manifest as cardiac
ischemia (Bonnans et al., 2014; Humeres and Frangogiannis,
2019; Nielsen et al., 2019). Atherosclerosis is the pathological
basis for a variety of cardiovascular and cerebrovascular diseases,
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eventually leading to cardiac dysfunction (Jonsson and Bäckhed,
2017). Compared with cardiomyocytes, cardiac fibroblasts have
lower mitochondrial respiratory function and expression of
mitochondrial complexes I, II, III, IV, and V, and this is the
main cause of cardiac fibrosis (Zhao et al., 2019). In vivo
studies have found that mitochondrial respiratory chain complex
dysfunction, mtDNA damage, increased ROS abundance, and
secondary oxidative stress in myocardial infarction models lead
to the activation of many protein kinases and transcription
factors involved in hypertrophy signals (Rababa’h et al., 2018;
Bugger and Pfeil, 2020).

STAT3 plays an important role in maintaining the
physiological balance in the heart and protecting the heart
from harm (Heusch et al., 2011; Gent et al., 2017; Kleinbongard
et al., 2018). If myocardial cells are stimulated by H2O2 or
treated with rotenone, mitochondrial function is impaired, and
STAT3 signaling is inhibited. Cardiac fibroblasts also express
STAT3. In cardiac fibroblasts, STAT3 activation promotes cardiac
fibroblast proliferation (Haghikia et al., 2014) and hyaluronic
acid accumulation during wound healing after acute myocardial
infarction (Müller et al., 2014).

Mitochondrial dynamics play an important role in the
development of cardiac hypertrophy (Jong et al., 2019). The
MMP of cardiomyocytes in mice lacking Mfn2 is decreased and
cells exhibit a certain degree of cardiac hypertrophy. The reason
may be that the level of Ca2+ in mitochondria deficient in
Mfn2 increases and the mitochondria swell. In addition, reduced
cell death in cardiomyocytes lacking Mfn2 is related to the
inhibition of mPTP (Qiu et al., 2020; Figure 2F). It has been
reported that Drp1 expression is related to the pathogenesis of
cardiac hypertrophy (Pennanen et al., 2014). In cardiomyocytes
of hypertensive rats, high levels of ROS—associated with
overexpression of Drp1—can activate calcineurin and CaMKII,
and lead to aggravation of cardiac hypertrophy. Mdivi-1 can
reduce the production of ROS and inhibit the expression of
Drp1 (Hasan et al., 2018). L-2286 induced the translocation
of mitochondrial Drp1, reduced Drp1 expression, inhibited
mitochondrial fission, and reduced the number of mitochondrial
cristae. At the same time, it increased the expression of OPA1 and
Mfn2 to prevent the development of spontaneous left ventricular
hypertrophy in rats (Ordog et al., 2021).

Mitochondrial Dynamics and Risk
Factors for Atherosclerosis
Diabetes Mellitus, Insulin Resistance, and
Mitochondrial Dynamics
Atherosclerosis is the most common macrovascular complication
of diabetes. Imbalance between oxidative and antioxidant systems
in vivo leads to increased levels of ROS, a phenomenon that
results in linear DNA strand breaks, an important factor
in progression of atherosclerosis and functional damage to
endothelial cells (Fetterman et al., 2016). Hyperglycemia can
trigger this mechanism through the ETC, leading to endothelial
cell injury and dysfunction (Forrester et al., 2018). Patients
with diabetes exhibit altered mitochondrial dynamics and
endothelial cell morphology; for example, the mitochondria of

the immortalized endothelial cell line Eahy926 will rupture in
the presence of high glucose (Paltauf-Doburzynska et al., 2004).
In vivo studies showed that mitochondrial debris and ROS
production increased in endothelial cells isolated from coronary
arteries of diabetic mice (Makino et al., 2010). Furthermore, the
expression of Drp1 and Fis1 is increased and the production
of ROS augmented in HUVECs under high glucose conditions;
Silencing of Drp1 can prevent the damage caused by insulin,
calcium ionophores, and eNOS phosphorylation (Shenouda et al.,
2011; Figure 2G).

Studies have shown that activation of various pro-
inflammatory factors and signaling pathways during the
development of atherosclerosis is closely related to insulin
resistance (Boudina et al., 2009; Watanabe et al., 2014). The
increase in ROS levels after endothelial injury can lead to the
activation of the AMPK pathway, increase the level of eNOS,
trigger insulin resistance, and promote the development of
atherosclerosis (Förstermann et al., 2017). Insulin resistance
also alters lipid and protein metabolism. Increased ROS and
pro-inflammatory cytokine levels impair insulin signaling,
activate the NF-κB pathway, perpetuate the inflammatory
and oxidative environment, prolong insulin resistance, and to
some extent prolong atherosclerosis. Changes in mitochondrial
activity caused by mitochondrial number and functional
abnormalities induced by abnormal Mfn2 expression are some
of the characteristic features associated with insulin resistance
(Peyravi et al., 2020).

Dyslipidemia, Obesity, and Mitochondrial Dynamics
Inappropriate changes in lifestyle and dietary habits and
alterations to metabolism are responsible for the globally
increasing incidence of obesity, even in developed countries
(Blüher, 2019). As an important mechanism associated with
obesity development, deregulated lipid metabolism also results
in the development of atherosclerosis and other diseases (Laslett
et al., 2012). When various factors lead to substantial LDL
deposition, enhanced HDL transport capacity and increased
macrophage-mediated lipid phagocytosis occur, and finally, foam
cell deposition occurs in damaged areas of blood vessels, thereby
leading to the subcutaneous formation of atherosclerotic plaques
(Everts et al., 2014; Cader et al., 2016). Excessive LDL deposition
can induce vascular cell apoptosis through a mitochondria-
dependent pathway after oxidative modification (Nazzal et al.,
2006). Ox-LDL mediates the opening of mPTP through the
activation of cysteine proteases, and then the mitochondria
release cytochrome C and activated caspase-3, thereby releasing
interleukins and other inflammatory factors (Vindis et al., 2005;
Figure 2G).

Aortic mtDNA damage and protein nitrification are
significantly increased in ApoE−/− mice exposed to secondhand
smoke, suggesting that mtDNA damage caused by high
cholesterol is one of the important mechanisms for the
development of atherosclerosis. Additionally, Mfn2 is expressed
at relatively low levels in the muscle tissues of obese people
compared to those of lean individuals (Knight-Lozano et al.,
2002). In some patients with extrahepatic cholestasis, Mfn2
expression in the liver is decreased, suggesting that Mfn2 plays an
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important role in regulating lipid metabolism and mitochondrial
function (Chen et al., 2013).

Hypertension and Mitochondrial Dynamics
Mitochondria play an important role in maintaining the
stability of arterial blood pressure by regulating the superoxide
content and energy metabolism (Vaka et al., 2018). Energy
metabolism disorders involving myocardial mitochondria may
be an important mechanism in hypertension (Marshall et al.,
2018). For example, the arterial blood pressure of SOD2-deficient
mice is significantly increased with age under conditions of
a high-salt diet, and oxidative stress in SOD2-deficient mice
might explain this increase; this leads to inflammatory cell
infiltration and promotes sodium retention (Rodriguez-Iturbe
et al., 2007). Additionally, studies have found that cholesterol
and blood pressure are elevated in patients aged approximately
30 years, and that the degree of elevation is related to age; further,
mitochondrial tRNA mutation and decline in mitochondrial
function may be important factors leading to the onset of the
disorder in these patients (Wilson et al., 2004; Bernal-Mizrachi
et al., 2005). In pulmonary arterial hypertension, mdivi-1 inhibits
the mitochondrial fragmentation of PASMCs isolated under
hypoxic conditions and improves the function of these cells, while
overexpression of Drp1 increases mitochondrial fragmentation
(Zhuan et al., 2020). Dikalova et al. (2020) studied an animal
hypertension model involving SIRT3−/− mice and found
that decreased expression of mitochondrial deacetylase SIRT3
resulted in SOD2 inactivation and mitochondrial oxidative stress
injury. Subsequently, mtDNA release activates inflammasomes
and other inflammatory cells to stimulate accumulation of
inflammatory cells, thereby damaging vascular endothelial cells
and promoting the development of hypertension and vascular
aging (Dikalova et al., 2020). Studies have shown that excessive
ROS levels induced in response to altered mitochondrial
morphology and apoptosis via dynein-mediated cytochrome C
release are important mechanisms leading to the development
of hypertension-associated left ventricular hypertrophy (López
Farré and Casado, 2001; van Empel and De Windt, 2004;
Figure 2G).

Abnormal mitochondrial function and changes in mtDNA
are important factors affecting vasoconstriction (Zhou et al.,
2016a). Liu et al. (2016) found that mitochondrial dynamics are
closely related to the functional state of blood vessels. They also
found that changes in arterial vascular state caused by changes in
mitochondrial dynamics of smooth muscle cells caused changes
in arterial blood pressure (Liu et al., 2016). Additionally, studies
have shown that the mitochondria of pulmonary VSMCs affect
respiratory function and oxidative metabolism by regulating
intracellular calcium homeostasis and also affect pulmonary
vascular contraction, which is a key factor in the pathogenesis of
pulmonary hypertension (Tuder et al., 2012).

Aging and Mitochondrial Dynamics
A considerable number of studies have shown that the
mechanisms involved in age-related cardiovascular dysfunction,
such as mitochondrial fusion and fission disorder, mtDNA
mutation, excessive ROS production, mitochondrial respiratory

chain function, and metabolic dysfunction are closely related
to mitochondrial functional homeostasis (Ames, 2004; Koltover,
2017). During cardiac aging, mitochondrial structures are
destroyed and mitochondrial size increases (Duicu et al., 2013).
Mitochondria promote fusion or inhibit fission to promote
cell aging (Picca et al., 2018). MFN-1/2 and OPA1 modulate
mitochondrial morphology in adult cardiomyocytes (Faelber
et al., 2019). Sebastián et al. (2016) found that Mfn2 expression
decreased with skeletal muscle aging and triggered increased
numbers of damaged mitochondria. D’Amico et al. (2019)
showed that MFF expression of RNA-binding protein Pumilio2
(PUM2) decreases with age, which further leads to reduced
mitotic division and dysfunction.

The decline of mitochondrial energy metabolism in the heart
is associated with aging, and aging leads to mtDNA damage,
and ROS (Elorza and Soffia, 2021). Studies have shown that
with age, mitochondrial volume increases, and a considerable
amount of ROS is produced during oxidative phosphorylation
(Figure 2G). mtDNA mutations are found in disease states in
patients with age-related diseases, including chronic coronary
artery disease (Phillips et al., 2014). Strutynska et al. (2016)
found that the concentration of nitric oxide (NO) and hydrogen
sulfide in the mitochondria of aged rats is decreased, while the
level of ROS is increased, resulting in increased sensitivity of
mPTP to calcium. Foote et al. (2018) observed aorta and carotid
arteries in mice and found that at 44 weeks if age, carotid
artery wall elasticity decreased, aortic collagen content and
elastin fragmentation increased, arterial mtDNA copy number
decreased, mitochondrial respiration decreased, and blood vessel
aging accelerated.

ANTI-ATHEROSCLEROTIC TREATMENT
TARGETING THROUGH MITOCHONDRIA

Mitochondria are considered to be one of the main targets for the
design and development of new drugs in CVD and other diseases
(including cancer and neurological diseases), and represent a
promising strategy to treat atherosclerosis by modulating the
mitochondria (Zielonka et al., 2017).

Diet and Lifestyle
Diet
Studies have shown that controlling cardiovascular risk factors
by adjusting diet, correcting obesity and properly controlling
blood sugar levels, can prevent mitochondrial stress and reduce
mitochondrial damage (Stanzione et al., 2021). The increase
in FFAs contributes to the activation of oxidative stress,
mitochondrial stress and pro-inflammatory signals (Kaludercic
and Di Lisa, 2020). Trans-fatty acids (TFAs), which are found
in many fast foods and meats, are unsaturated fats. TFAs
increase TG, LDL, and decrease LDL particle size and HDL
levels. TFAs also increase pro-inflammatory cytokine abundance,
inducing endothelial dysfunction and insulin resistance (Micha
and Mozaffarian, 2009). Artificial TFAs are associated with an
increased risk of atherosclerosis and CV events (Valenzuela et al.,
2019). The level of plasma FFA was increased with carotid
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atherosclerotic plaque in 320 patients with type 2 diabetes
mellitus (T2DM) through carotid artery ultrasound examination
and reporting, so reducing plasma FFA levels may be an effective
way to reduce T2DM (Tibaut et al., 2019). Previous studies have
reported that FFA can increase NO production, damage mtDNA
and induce apoptosis (Li et al., 2015a).

Lifestyle
In addition, sedentary time is an independent risk factor for
atherosclerosis and CVD, and at least one-third of deaths from
coronary heart disease or T2DM are associated with sedentary
time (Thijssen et al., 2010; Fletcher et al., 2018). In turn, exercise
enhances endothelial function, protects against oxidative stress
and inflammation, reduces the levels of TG, ApoB, and LDL,
and increases HDL (Cai et al., 2018). Studies have shown that
long-term aerobic exercise can reduce the formation of ROS
and mitochondrial swelling in aortic endothelial cells of aged
rats, increase the content of mtDNA, and reduce the vascular
sclerosis and endothelial dysfunction caused by aging (Gu et al.,
2014). However, it should be noted that excessive and overloaded
exercise can also induce mitochondrial disorders, cause heart
abnormalities, chronic fatigue syndrome and other diseases
(Ostojic, 2016). Studies have confirmed that strenuous exercise
can cause muscle dysfunction and increase mitochondrion fission
(Pataky and Nair, 2021).

Anti-atherosclerotic Drugs Targeting
Mitochondria
Antioxidants
Selective mitochondrial-targeting drugs such as mitochondrial
antioxidants are being tested in preclinical and clinical trials
(Kiyuna et al., 2018). Some natural Chinese medicine ingredients
with antioxidant effects have also been gradually discovered
(Table 1). For example, luteolin exhibits antioxidant properties
in HUVECs that significantly reverse the symptoms of oxidative
stress in atherosclerosis (Wu et al., 2018). Resveratrol has
been shown to promote mitochondrial fusion and can improve
endothelial cells by maintaining mitochondrial membrane
proteins and reducing ROS, and may be used in the prevention of
atherosclerosis (Yu et al., 2019). Studies have found that Ilexgenin
A inhibits palmitate-induced Drp1 expression and mitochondrial
fission by regulating proteases, reduces the production of ROS
and inflammatory factors, improves endothelial dysfunction,
and reduces atherosclerosis (Zhu et al., 2019). Salidroside is
considered to be an antioxidant with anti-cardiovascular and
vascular protective effects. It can inhibit VSMC proliferation,
Drp1 expression and oxidative stress, and up-regulate Mfn2
expression, which may improve the proliferation of VSMCs
induced by high glucose (Zhuang et al., 2017). Corylin, a
flavonoid compound, inhibits the proliferation of VSMCs
induced by platelet-derived growth factor-BB (PDGF-BB) by
regulating mTOR/Drp1, and reduces atherosclerotic lesions in
ApoE−/− mice (Chen et al., 2020).

Mitochondrial Homeostasis Regulator
Therapeutic strategies for maintaining mitochondrial
homeostasis are already under study. MitoTEMPO, a

mitochondrial-targeted SOD mimic, can reduce mitochondrial
superoxide anions in high-fat diet mice, reduce the production of
mitoROS, and prevent cardiomyocyte hypertrophy in the hearts
of diabetic mice (Ni et al., 2016). Currently, specific inhibitors of
mitochondrial fusion (M-hydrazone) and fission (MDIVI-1 and
P110) are under investigation (Cassidy-Stone et al., 2008; Qi et al.,
2013). mtDNA is an important cause of ROS production and
mitochondrial damage. Mitochondrial miRNA is involved in the
post-transcriptional regulation and metabolism of mitochondrial
gene expression, ROS production and lipid metabolism, and
can lead to abnormal mitochondrial function and increased
oxidative stress, such as miR-484 inhibition of Fis1 expression. In
addition, related research regarding mtDNA and mitochondrial
miRNA may be a future direction for diagnosis and treatment of
mitochondrial-related diseases (Song et al., 2019).

AMPK Regulator
Some drugs are aimed at regulating the levels of mitochondrial
fusion and fission proteins by activating AMPK kinase, inhibiting
ROS and inflammation and thereby improving endothelium,
and prevent and treat atherosclerosis (Apostolova et al.,
2020). For example, Coenzyme Q10 (CoQ10) is one of the
components of the mitochondrial respiratory chain, which
performs electron transfer, reduces oxidative stress damage and
improves mitochondrial function. In vivo studies have shown
that CoQ10 may negatively regulate YAP by activating AMPK
and promote the expression of OPA1 to improve mitochondrial
function, inhibit ROS production, and improve atherosclerosis
(Xie et al., 2020). Thiazolidinediones such as pioglitazone as
PPARγ inhibitors can activate AMPK and increase the expression
of genes related to mitochondrial function. Studies have shown
that AMPK activation regulates Drp1 phosphorylation to help
inhibit the activation of mitochondrial ROS and TXNIP/NLRP3,
thereby improving endothelial dysfunction (Li et al., 2015b).

NLRP3 Regulator
In atherosclerosis, oxidative stress and mitochondrial
dysfunction are important mechanisms leading to NLRP3
activation. NLRP3 activation is closely related to mitochondrial
damage (Ding et al., 2014). Fatty acid-mediated mitochondrial
cartilage uncoupling promotes the release of NLRP3-dependent
interleukin-1α (IL-1α) and aggravates the progression of
atherosclerosis (Freigang et al., 2013). Both in vivo and
in vitro studies have shown that Drp1-mediated mitochondrial
fission is the cause of the activation of NADPH and NLRP3
inflammasomes in endothelial cells (Li et al., 2016). Statins
mainly act by inhibiting 3-hydroxymethyl-3-glutaryl CoA
(HMG-COA) reductase to reduce intracellular cholesterol
biosynthesis. Approximately 40% of patients who fail to achieve
their target levels after high doses of statins are treated with a
combination of statins and other drugs (Boekholdt et al., 2014).
In addition to lowering cholesterol, statins can also improve
the endothelium through antioxidant activity to play an anti-
atherosclerotic effect (Oesterle et al., 2017). In vivo studies found
that mitochondrial ROS levels in mice treated with rosuvastatin
are decreased, NLRP3, caspase-1 and IL-β levels decreased,
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TABLE 1 | Natural compounds target mitochondrial to ameliorate atherosclerosis.

Natural
compounds

Sources Cell types Changes to
mitochondrial

Effects on mitochondria and
atherosclerosis

References

Resveratrol Polygonum
cuspidatum

HUVECs Mfn1, Mfn2 and OPA1↑,
fission↓, ROS↓

Attenuated endothelial oxidative injury
by regulating mitochondrial fusion,
inhibiting mitochondrial fission via
TyrRS-PARP1 signaling pathway.

Yang et al.,
2019

Salidroside Component of
Rhodiola rosea

VSMCs isolated from
aorta of male

Sprague Dawley (SD)
rats

Drp1↓,Mfn2↑, fission↓,
ROS and NADPH↓

Inhibits high glucose induced
proliferation of VSMCs by inhibiting
mitochondrial fission and regulating
oxidative stress

Zhuang et al.,
2017

Corylin Psoralea
corylifolia L.
(Fabaceae)

HUVECs A7r5 VSMC
and RAW264.7 cells

Drp1 and Drp1
phosphorylation↓, fission↓,

ROS↓

Inhibited the proliferation and migration
of mammalian VSMC, in which
rapamycin target protein
(mTOR)/Dynamin-1 like protein 1
(Drp1) played an important role.

Chen et al.,
2020

Ilexgenin A Ilex hainanensis
Merr.

RAECs and HUVECs Drp1↓, fission↓ ROS↓,
NO↑

Promote the expression of PSMB5,
inhibit ROS production and Drp1 in a
Nrf2 dependent manner, thereby
inhibiting mitochondrial fission and
improving endothelial dysfunction.

Zhu et al., 2019

Berberine Coptis
chinensis
Franch

mouse podocytes Drp1↓, MFF↓, Fis1,
fission↓, ROS↓

Improve the mitochondrial damage of
glomerular podocytes in DKD mice by
inhibiting Drp1, Fis1 and mitochondrial
fission.

Qin et al., 2019

Quercetin Component of
hawthorn

Calcifying VSMCs Drp1↓, fission↓, ROS↓ Improve mitochondrial cristae rupture,
inhibit mitochondrial fission, reduce
ROS production, reduce apoptosis of
VSMCs, thus alleviate adenine induced
aortic calcification in rats.

Cui et al., 2017

Vitexin Component of
hawthorn

H9c2 cells Mfn2↑, Drp1↓, fission↓,
ROS↓, inhibited the release

of Cyt-c, MMP(1ψm)↑,
ATP↑

Protects H9c2 cells from I/R-induced
mitochondrial dysfunction and
significantly reduces ROS level by
alleviating myocardial I/R injury in rats.

Xue et al., 2020

Crocin Ingredient of
saffron

Cells from muscle
tissue of rats

Mfn2↑, Drp1↓ Change insulin resistance index and
glucose homeostasis in diabetes by
improving mitochondrial fusion and
fission indices.

Peyravi et al.,
2020

Baicalin Baikal Skullcap Rat
pheochromocytoma

PC12 cells

Drp1↓, fission↓, Mfn2↑,
Drp-1 Ser637

phosphorylation↑,
MMP(1ψm)↑, ROS↓,

Protected against hyperglycemia
aggravated I/R injury by regulating
mitochondrial functions in a manner
dependent on AMPK.

Li et al., 2017

HUVECs, human umbilical vein endothelial cells; RAECs, rat aortic endothelial cells; VSMCs, vascular smooth muscle cells; Drp1, dynamin-related protein; Mfn1, mitofusin
1; Mfn2, mitofusin 2; OPA1, optic atropy-1; ROS, reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; MFF, mitochondrial fission protein;
Fis1, mitochondrial fission protein 1; Cyt c, cytochrome C; MMP (1ψm), mitochondrial membrane potential; DKD, diabetic kidney disease; I/R, ischemia/reperfusion.

mitochondrial damage was reduced, and myocardial fibrosis and
infarct size were significantly reduced (Chen et al., 2021a).

CONCLUSION AND PERSPECTIVES

Atherosclerosis is a disease caused by multiple complex factors.
A high-fat and high-calorie diet leads to the deposition of lipid
particles, and ox-LDL produces a series of complex oxidative
stress and inflammatory responses to endothelial stimulation,
eventually forming foam cells and typical atheromatous
plaques. In recent years, an increasing number of studies have
shown that atherosclerosis may be related to mitochondrial
fusion and fission. Cardiomyocytes consume substantial
amounts of energy, and mitochondria produce ATP through
oxidative phosphorylation. The dynamic homeostasis of
mitochondria is essential to ensure normal functioning.

Multiple studies have shown that mitochondrial dynamic
dysfunction, such as mitochondrial over-division due to the
absence of the fusion protein Mfn2 or overexpression of Drp1,
can lead to CVD progression. The mechanisms involved
in atherosclerosis may be closely related to mitochondrial
fusion and fission.

In addition to lifestyle improvements and drugs such as
statins, new types of antioxidants and mitochondrial regulators
such as mdivi-1 have become research hotspots for the
treatment of atherosclerosis. Exploration of treatment options
for atherosclerosis is warranted; however, this is difficult
because only a few classes of drugs are available for treatment,
lipid-lowering therapy standards have not been agreed upon,
and the cost of new drugs remains unaffordable. Moreover,
the mechanisms involved in mitochondrial dynamics are
relatively complex and their study is limited as the models
are affected by many factors. Therefore, studies on the
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role of mitochondrial dynamics in atherosclerosis are at the
basic research stage and lacks validation based on large-scale
clinical studies. While mitochondrial dynamic homeostasis may
play a role in atherosclerotic therapy, this hypothesis needs
further confirmation.
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