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An organoid, a self-organizing organ-like tissue developed from stem cells, can exhibit
a miniaturized three-dimensional (3D) structure and part of the physiological functions
of the original organ. Due to the reproducibility of tissue complexity and ease of
handling, organoids have replaced real organs and animals for a variety of uses,
such as investigations of the mechanisms of organogenesis and disease onset, and
screening of drug effects and/or toxicity. The recent advent of tissue clearing and
3D imaging techniques have great potential contributions to organoid studies by
allowing the collection and analysis of 3D images of whole organoids with a reasonable
throughput and thus can expand the means of examining the 3D architecture, cellular
components, and variability among organoids. Genetic and histological cell-labeling
methods, together with organoid clearing, also allow visualization of critical structures
and cellular components within organoids. The collected 3D data may enable image
analysis to quantitatively assess structures within organoids and sensitively/effectively
detect abnormalities caused by perturbations. These capabilities of tissue/organoid
clearing and 3D imaging techniques not only extend the utility of organoids in basic
biology but can also be applied for quality control of clinical organoid production and
large-scale drug screening.
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INTRODUCTION

Directed differentiation of human pluripotent stem cells (PSCs) to generate target organ cells is
currently the most promising method to create artificial organs for regenerative medicine. To date,
various cell types of target organs have been induced, including those of the blood, myocardium,
lung, pancreas, liver, intestine, brain, and kidney (Wang et al., 2007; Davis et al., 2008; Yang
et al., 2008; Xia and Zhang, 2009; Spence et al., 2011; Pagliuca et al., 2014; Takasato et al., 2014).
However, reproducing the original function of organs with the use of differentiated cells remains a
significant challenge, as correct replication of the three-dimensional (3D) structures of the original
organ is essential.

A method to create 3D mini-organs from human PSCs has continued to attract attention in
recent years. When organ-specific progenitor cells derived from human PSCs are aggregated and
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cultured under 3D culture conditions, the progenitor cells
undergo self-organization within the aggregate to form organ-
specific tissues in the same manner that occurs during
ontogenesis. Such aggregates are called organoids. Ocular
organoids were the first to be generated, which was followed by
the creation of gastric, liver, brain, intestinal, and renal organoids
(Eiraku et al., 2011; Lancaster et al., 2013; Takebe et al., 2013;
McCracken et al., 2014; Takasato et al., 2015). Organoids can
potentially contribute to various fields of research, including
tissue physiology, stem cell biology, developmental biology,
disease modeling, drug discovery, and regenerative medicine
(Foglietta et al., 2020; Grenier et al., 2020; Li et al., 2020;
Bock et al., 2021).

Due to the intrinsic 3D organ-like architecture of organoids
with random coordinates in contrast to the corresponding native
tissues, 3D observation is essential to obtain accurate structural
information of dynamic 3D events (Rios and Clevers, 2018).
However, the intense scattering of light within organoids limits
3D observation to the sub-millimeter range from the surface. In
addition, 3D reconstitution by serial sectioning is arduous due
to the fragility of organoids, which leads to deformation and
fracturing of the sample, resulting in insufficient resolution, low
contrast, and lack of internal 3D characterization (Pampaloni
et al., 2013; Renner et al., 2017). A biased sampling of two-
dimensional sections may result in inaccurate quantitative data
with large standard deviations (Albanese et al., 2020).

Recent tissue clearing and 3D imaging technologies have the
potential to solve these problems and provide system-level single-
cell analysis of whole multicellular structures. 3D imaging of
large tissue samples of whole organs and bodies has already been
established by combining efficient tissue clearing protocols and
optical microscopy, which provides useful information of the
unique 3D structures of biological tissues by collecting images of
the entire sample (Susaki and Ueda, 2016; Ueda et al., 2020a,b).
In addition, tissue clearing protocols for spheroids and organoids
have been developed and even applied in recent studies (Costa
et al., 2019). Although each tissue clearing protocol has unique
advantages and disadvantages, optimization of relatively small
organoid samples is easier than that of large and complicated
animal tissues. Besides, detailed 3D analysis of a single organoid
can expedite the clearing and 3D imaging framework for a
large-scale multi-organoid screening approach to assess genetic
or pharmacological perturbations. Therefore, the aim of this
perspective is to summarize recent adaptations and prospects of
tissue clearing and 3D imaging frameworks in organoid research.

Brief Overview of Modern Tissue
Clearing Technologies
Tissue clearing is basically an extension of the conventional
histology technique that literally makes tissue “transparent” by
suppressing light scattering and light absorption in the fixed
tissue sample. Since Lundvall and Spalteholz initialized clearing
of human tissues with the use of organic solvents more than
100 years ago (Lundvall, 1905; Spalteholz, 1914), the field
has achieved dramatic innovations in the last few decades, as
dozens of protocols, categorized as organic solvent (hydrophobic

reagent)-based protocols, hydrophilic reagent-based protocols,
and hydrogel-tissue chemistry (Ueda et al., 2020a,b), have been
recently established.

Optical clearing generally involves exchanging the
surrounding medium (e.g., phosphate-buffered saline) with
a solvent with optical properties similar to those of the
biomaterial. This step is called refractive index (RI) matching
because the RI is a preferred indicator of optical properties.
However, this process is relatively complex physicochemically
and not necessarily limited to RI homogenization, as dispersion
of the fibrous structures of the extracellular matrix and the
affinity (infiltration) of compounds into living tissues may also
have significant effects (Ueda et al., 2020a; Yu et al., 2021).
RI matching can also be combined with other processes to
remove light-scattering and light-absorbing substances from the
biological tissue, such as lipids (delipidation), the bone matrix
(decalcification), and pigments (decolorization or bleaching).
The requirement of incorporating these steps is dependent
on the experimental purpose and target tissue type. Tissue
clearing protocols incorporate these steps by combining various
compounds and physical techniques (e.g., electrophoresis).

Organic solvent-based tissue clearing protocols originating
from the Spalteholz reagent are represented by the benzyl
alcohol/benzyl benzoate (BABB) method, 3D imaging of solvent-
cleared organs (3DISCO), and the ethyl-cinnamate (ECi) method
(Dent et al., 1989; Becker et al., 2012; Ertürk et al., 2012; Klingberg
et al., 2017). Generally, these protocols have very strong clearing
abilities over relatively short periods of time. However, it is
necessary to understand the characteristics of the reagents
regarding tissue shrinkage, signal retention of fluorescent
proteins, safety, and compatibility with the microscope system.

The hydrophilic reagent-based clearing technique was initially
tested with the use of several hydrophilic chemicals (e.g., sugars
and alcohols) to transluce human skin and sclera in medical
applications (Bakutkin et al., 1995; Zimnyakov et al., 1996;
Tuchin et al., 1997). Since then, a wide variety of hydrophilic
reagent protocols have been proposed with the advantages of ease
of handling, safety, and preservation capacity of biomaterials,
which include FocusClearTM (Chiang et al., 2001), Scale (Hama
et al., 2011, 2015), ClearT (Kuwajima et al., 2013), SeeDB (Ke
et al., 2013, 2016), FRUIT (Hou et al., 2015), CUBIC (clear,
unobstructed brain/body imaging cocktail and computational
analysis) (Susaki et al., 2014; Tainaka et al., 2018), FUnGI
(fructose, urea, and glycerol for imaging) (Rios et al., 2019),
RTF (rapid clearing method based on triethanolamine and
formamide) (Yu et al., 2018), Ce3D (clearing-enhanced 3D)
(Li et al., 2017), and TDE (2,2′-thiodiethanol) immersion
(Aoyagi et al., 2015).

Hydrogel-tissue chemistry involves the preparation of a tissue-
hydrogel scaffold by cross-linking hydrogel monomers to native
biomolecules (Gradinaru et al., 2018). The initial formulation,
called CLARITY (and its variations), uses acrylamide, while later
versions, SWITCH (Murray et al., 2015) and SHIELD (Park et al.,
2018), utilize glutaraldehyde and a polyepoxide, respectively.
Due to the increased tissue rigidity caused by transformation,
these protocols can be combined with harsh delipidation or
re-probing procedures with sodium dodecyl sulfate (SDS) and
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physical electrophoresis. Furthermore, the use of a water-
absorbing polymer for Expansion Microscopy (ExM) enables
high-resolution imaging with a general microscopy setup (Chen
et al., 2015; Ku et al., 2016). The expansion can also contribute to
the final transparency of the sample. Other hydrophilic clearing
reagents have also applied the same strategy (Kim et al., 2018;
Murakami et al., 2018; Tainaka et al., 2018).

Although limited to fixed samples, tissue clearing facilitates
observation of the 3D architecture of biological tissues with a light
microscope at the cellular or higher resolution, thereby providing
a powerful analytical approach for complex biological systems.

Tissue Clearing Technologies in
Organoid Studies
Clearing of cell reaggregates (spheroids and organoids) for
whole-mount imaging was recommended in early protocols
(Timmins and Nielsen, 2007). More recently, many of the
clearing methods introduced in the previous section have been
tested from simple whole-mount observations to advanced
phenotyping of 3D cultured reaggregates (Costa et al., 2019;
Table 1). Since most current clearing protocols are optimized
for animal tissues and organs, clearing cell reaggregates with the
use of any of these procedures is, in principle, much simpler.
Although tissue clearing methods have been adopted at least to
some extent, experience is required for further applications in
broader organoid research.

A side-by-side comparison of protocols would be helpful
to identify the clearing method that is most appropriate for
a particular application. Boutin and Hoffman-Kim compared
early phase hydrophilic clearing protocols (ClearT2, ScaleA2,
and SeeDB) and concluded that ClearT2 is the most effective
for clearing neural spheres (Boutin and Hoffman-Kim, 2015).
However, in a later study, the authors also applied an updated
Scale protocol (ScaleS) for clearing of cancer cell spheroids
(Boutin et al., 2018b). Cheung and colleagues compared SeeDB,
ClearT2, and ScaleSQ for adaptation to an on-chip spheroid
processing system and concluded that SeeDB and ScaleSQ were
more effective to clear a sample than ClearT2, although there
were some drawbacks of increased autofluorescence and sample
expansion (Grist et al., 2016). Schöler, Bruder and colleagues
compared the performance of the organic solvent reagent BABB
with several other types of clearing reagents and found that
BABB-based clearing proved to be both the fastest and most
efficient for clearing of human midbrain organoids (Renner
et al., 2020). Garfa-Traoré and colleagues compared several
clearing methods (TDE, CUBIC, and RapiClear R©) for murine
intestinal organoids and obtained the best clearing and staining
results with RapiClear R© (Lallemant et al., 2020). Rudolf and
colleagues tested several hydrophilic reagents and mounting
media (glycerol, ScaleS, ClearT2, and CytoVista) for clearing of
various spheroids and found that ScaleS and a high concentration
of glycerol (88% RI = 1.459) provided the best clearing results,
while preserving the fluorescent signals and maintaining sample
integrity, although various factors (i.e., size, complexity, and
composition) affected the clearing results (Nürnberg et al., 2020).
Another study suggested similar performance of glycerol (>85%)

and RapiClear R© for clearing of pancreatic tumor spheroids
(Steinberg et al., 2020). Lorenzo and colleagues demonstrated the
effectiveness of both CUBIC and CLARITY for clearing of tumor
cell spheroids (Masson et al., 2015).

These mixed results indicate that there is no “gold-standard”
protocol for clearing of all cell reaggregates. As with the clearing
of large tissue samples, it is necessary to choose an appropriate
protocol in consideration of the pros and cons. The complexity
of a reaggregate can affect the efficiency of optical clearing
(Nürnberg et al., 2020) and thus may occasionally require
delipidation. For example, Paşca and colleagues clearly and
quantitatively reproduced cortico-striatal projections in human
induced PSC (iPSC)-derived cortico-striatal assembloids with the
use of the latest CUBIC-L/R procedure (Miura et al., 2020).
Chung and colleagues applied SHIELD technology to single-cell
and cytoarchitecture combined with multiple labeling methods
for analysis of organoids (Albanese et al., 2020). ExM (Chen
et al., 2015) enables super-resolution imaging together with
improved clearing and staining results. Brismar and colleagues
applied ExM to probe labeling and for high-resolution imaging
of tumor cell spheroids, and found that as compared to simpler
clearing protocols, ExM improved antibody penetration and
image resolution in deeper regions (Edwards et al., 2020).

Tailoring of key parameters (e.g., compound type,
concentration, immersion time, and temperature) in the
original protocol should also be taken into account. Correia
and colleagues found that the molecular weight of polyethylene
glycol in ClearT2 reagent can affect clearing and imaging quality
(Costa et al., 2018b). Molley et al. (2020) used the ScaleCUBIC-2
protocol for clearing of Matrigel-embedded microtumors with
some modifications to timing, washing, and handling. Dekkers
et al. (2019) designed a fructose-glycerol immersion method
as a simple, non-toxic, optical clearing step for complete 3D
imaging of fragile organoids. Later, the authors cleared human
colonic organoids with their FUnGI clearing reagent that was
originally developed for clearing of human cancer specimens
(Rios et al., 2019; van Ineveld et al., 2020). Our group modified
the delipidation stringency of our CUBIC protocol for clearing
of large kidney organoids (Figure 1).

Other than clearing performance, the compatibility of the cell-
labeling/probing methods and microscopy setup should also be
considered, as discussed in the following sections.

Labeling of Spheroids and Organoids
With Fluorescent Proteins and Probes
Since tissue clearing alone cannot label objects in a 3D structure,
appropriate cell/structure labeling with a fluorescent protein
(FP) or histological staining is also required for observation.
Therefore, it is crucial to consider the compatibility of the tissue
clearing technique with various labeling methods.

Conventional organic solvents show weak retention of FP
signals. When using reagents in this category with FP labeling,
more FP-compatible protocols (Schwarz et al., 2015; Pan et al.,
2016; Qi et al., 2019) should be considered. Tanaka and
colleagues recently improved the ECi method for clearing of FP-
labeled organoids (Masselink et al., 2019). Alternatively, clearing
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TABLE 1 | Recent tissue clearing applications in organoid research.

Method category Protocol Chemical Applied reaggregates References

Organic solvent-based
method

BABB Ethanol
Hexane
Benzyl benzoate
Benzyl alcohol

Cultured cancer cell spheroids

Human midbrain organoids

Wenzel et al., 2014
Smyrek and Stelzer, 2017
Schmitz et al., 2017
Desmaison et al., 2018
Messal et al., 2021
Renner et al., 2020

3DISCO Tetrahydroflurane
Dichloromethane
Dibenzylether

Human iPSC-derived retinal organoids Reichman et al., 2017
Garita-Hernandez et al., 2018

ECi method Ethyl cinnamate Human cerebral organoids
Human brain organoids co-cultured with
patient-derived glioblastoma cells
Vascularized tumor and neural organoids

Masselink et al., 2019
Goranci-Buzhala et al., 2020

Wörsdörfer et al., 2019

Hydrophilic
reagent-based method

Single chemical Urea

Glycerol

TDE

Tumor cell spheroids

Tumor cell spheroids
Various human cell spheroids
Pancreatic tumor cell spheroids

Tissue spheroids

Wei et al., 2019

Timmins and Nielsen, 2007
Nürnberg et al., 2020
Steinberg et al., 2020

Paiè et al., 2016

ClearT Formamide
Polyethylene glycol

Rat neural cell and glioma cell spheroids

Human cell spheroids
Human dermal fibroblast spheroids
Human Dermal Fibroblast spheroids

(Boutin and Hoffman-Kim, 2015;
Boutin et al., 2018a)
Kabadi et al., 2015
Costa et al., 2018b
Costa et al., 2018a

Scale

ScaleS
ScaleSQ

Urea
Glycerol
Triton X-100

Urea
Sorbitol
Glycerol
DMSO
Triton X-100

Neural cell spheres

Various human cell spheroids
Cancer cell spheroids
patient-derived lung tumor organoid
Breast cancer spheroids

Boutin and Hoffman-Kim, 2015

Nürnberg et al., 2020
Boutin et al., 2018b
Takahashi et al., 2019
Grist et al., 2016

SeeDB D(-)-fructose Breast cancer spheroids Grist et al., 2016

FUnGI D(-)-fructose
Glycerol
Urea

Human colonic organoids van Ineveld et al., 2020

FRUIT D(-)-fructose
Urea

iPSC-derived human cerebral organoids
co-cultured with Patient-derived
glioblastoma cells

Krieger et al., 2020

Fructose-
glycerol
(FG)

D-(-)-Fructose
Glycerol

Human colonic organoids Dekkers et al., 2019

ScaleCUBIC-
1/2 (1st gen.
CUBIC)

CUBIC-L/R
(2nd gen.
CUBIC)

(Delipidation)
Quadrol
Urea
Triton X-100
(RI matching)
Triethanolamine
Urea
Sucrose

(Delipidation)
N-butyldiethanolamine
Triton X-100
(RI matching)
Nicotinamide
N-methylnicotinamide
Antipyrine

Tumor cell spheroids
Cancer cell spheroids
Human iPSC-derived ureteric bud
organoids
Matrigel-embedded tumor cell spheroids

Human iPSC-derived cortico-striatal
assembroids

Masson et al., 2015
Kang et al., 2020
Mae et al., 2020

Molley et al., 2020

Miura et al., 2020

(Continued)
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TABLE 1 | Continued

Method category Protocol Chemical Applied reaggregates References

RTF Triethanolamine
Formamide

Brain organoids Rakotoson et al., 2019

FocusClearTM∗ Diatrizoic acid
Tween 20

Human intestinal crypt organoids Chen et al., 2013

PROTOS** Diatrizoic acid
N-methyl-D-glucamine
Iodixanol

Murine intestinal organoids Serra et al., 2019

RapiClear R©*** Murine intestinal organoids
Pancreatic tumor cell spheroids
Human iPSC-derived brain spheroids

Lallemant et al., 2020
Steinberg et al., 2020
Govindan et al., 2021

Hydrogel-tissue
chemistry

CLARITY/PACT Hydrogel embedding
(Delipidation)
SDS
(RI matching)
HistodenzTM

Glycerol

Tumor cell spheroids
Murine/human cell spheroids
Adipose-derived stem cell spheroids
Human ESC-derived cerebral organoids
Human iPSC-derived retinal organoids

Masson et al., 2015
Chen et al., 2016
Silva Santisteban et al., 2017
Sakaguchi et al., 2019
Cora et al., 2019

SWITCH Glutaraldehyde cross-linking
(Delipidation)
SDS
(RI matching)
Diatrizoic acid
N-methyl-D-glucamine
Iodixanol

Human ESC-derived cerebral organoids Renner et al., 2017

SHIELD Polyepoxy
cross-linking
(Delipidation)
SDS
(RI matching)
Diatrizoic acid
N-methyl-D-glucamine
Iodixanol

Human iPSC-derived cerebral organoids Albanese et al., 2020

ExM Hydrogel embedding
(RI matching)
Expansion in water

Tumor cell spheroids Edwards et al., 2020

*A commercialized proprietary reagent provided by CelExplorer Labs Co. (Hsinchu, Taiwan). **This reagent was initially developed for samples prepared by hydrogel-tissue
chemistry. ***A commercialized proprietary reagent provided by SunJin Lab Co. (Hsinchu, Taiwan).

with hydrophilic reagents or tissue-hydrogel chemistry methods
that generally retain FP signals should be considered. In this
regard, some methods strictly compared the performance of
keeping FP protein signals with other clearing protocols. For
example, Ce3D has a superior ability to FP preservation when
compared to major clearing methodologies (BABB, DISCO,
Scale, ScaleCUBIC, SeeDB, ClearT , CLARITY, PACT, and
SWITCH) (Li et al., 2017).

Whole-mount labeling of organoids with molecular
probes (antibodies and small chemical dyes) has also been
widely applied in many organoid studies. However, probe
diffusion in 3D specimens is generally problematic, even in
“small” cell reaggregates. For example, Smyrek and Stelzer
investigated multiple whole-mount spheroid immunostaining
parameters, including permeabilization, incubation time, and
temperature, based on classical immunostaining procedures
and proposed parameter guidelines (Smyrek and Stelzer,
2017). However, the signal intensity and homogeneity were
varied and dependent on the antibody type and treatment

protocol. Schöler, Bruder and colleagues very recently reported
staining, clearing, and quantification analysis of relatively
large (> 800 µm diameter) organoids (Renner et al., 2020).
While the procedure was successfully automated, the protocol
required a long incubation time (total 12 days for primary and
secondary antibody staining) with multiple renewals of the
staining reagents.

Various tissue clearing methods for large-scale 3D staining
have been developed with improved efficiency and homogeneity.
Recent developments of improved and more versatile 3D
staining protocols, such as iDISCO, AbScale/ChemScale,
SWITCH, and CUBIC-HistoVIsion (Renier et al., 2014,
2016; Hama et al., 2015; Murray et al., 2015; Susaki et al.,
2020), have enabled large-scale 3D tissue staining. iDISCO,
with optimized permeabilization and staining steps, enables
immunostaining of whole mouse embryos and brains.
AbScale/ChemScale utilizes urea to facilitate probe penetration
via Scale clearing technology. SWITCH modulates the kinetics
of probe binding to tissue by two procedures: SWITCH-off
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FIGURE 1 | CUBIC-clearing and 3D imaging of a whole human kidney organoid. (A) A human iPSC-derived large kidney organoid (ϕ ∼ 4 mm, thickness > 300 µm)
(Takasato et al., 2016) is delipidated and RI-matched with a modified CUBIC-L/R protocol. (B) The cleared and propidium iodide-stained kidney organoid was
imaged with a custom-built macrozoom LSFM (GEMINI system, Susaki et al., 2020) with a voxel resolution of ∼2.5 µm3. (C) A part of the organoid image was
subjected to nuclear coordinate detection (3D Maxima analysis, modified from our previously reported method (Susaki et al., 2020), which can be used for further 3D
analysis of the cell architecture.

(inhibits probe binding) and SWITCH-on (facilitates probe
binding). In our latest study on CUBIC-HistoVIsion, biological
tissue was modeled as an electrolyte gel for screening of
multiple essential 3D staining conditions that provides highly
optimized 3D staining of cleared specimens of an entire
organ and the whole body. However, the current protocol
is not applicable to multiplex immunolabeling. Alternative
protocols (e.g., Ce3D, SWITCH) can be considered to
avoid this drawback. The incorporation of these recent 3D
staining strategies can overcome the drawbacks of labeling
entire organoids.

Several studies have applied these recent 3D staining
protocols for labeling of whole organoids. For example,
Takagi and colleagues applied AbScale immunostaining together
with ScaleS clearing to patient-derived tumor organoids for
in vitro evaluation of molecularly targeted drugs (Takahashi
et al., 2019). Another study employed AbScale and ScaleS
for staining and clearing of various human cell spheroids
(Nürnberg et al., 2020). In addition, Ergun and colleagues
applied an iDISCO-based whole-organoid procedure to stain
vascularized tumors and neural organoids (Wörsdörfer et al.,
2019). Moreover, for staining of human cerebral organoids,
Chung and colleagues applied a modified eFLASH protocol
that enables homogeneous staining of 8–10 whole organoids
simultaneously in 1–2 days (Yun et al., 2019). The versatile
staining ability of their SCOUT method further supports
system-level analysis of the framework of 3D organoids
(Albanese et al., 2020).

As in the case of FP, it should be noted that retention of the
stained signals is dependent on the clearing reagents, as some

may remove a portion of the staining target, while others may
alter the binding affinity or antigenicity (Lallemant et al., 2020;
Matryba et al., 2020). For example, the intensive comparison by
Li et al. (2017) showed that the preservation degree of antigenicity
toward major cell type markers in the lymph node is varied
among tested methods. Antigen retrieval methods have been
incorporated in some 3D staining and clearing protocols (Messal
et al., 2021). After staining, cross-linking is occasionally required
to preserve binding of the probe when clearing a specimen
(Susaki et al., 2020).

3D Imaging of Cleared Spheroids and
Organoids
The acquisition of whole-organoid information requires a
proper 3D imaging setup. Besides conventional line-scan
imaging, such as confocal and two-photon microscopy, light-
sheet fluorescence microscopy (LSFM) is especially useful for
3D observation of cleared whole specimens. LSFM excites
the fluorescent signals within the cleared sample with a
sheet-shaped illumination and acquires section images with a
vertically positioned complementary metal-oxide semiconductor
(cMOS) or charge-coupled device (CCD) camera. This setup
enables collection of high-throughput 3D images of the entire
sample with minimal photodamage. LSFM has thus been
proposed as the optimal modality for high-speed, high-quality
3D imaging of cleared samples, including spheroids and
organoids (Dodt et al., 2007; Pampaloni et al., 2007; Keller
and Stelzer, 2008; Santi, 2011; Keller and Dodt, 2012; Costa
et al., 2019). As compared with confocal and two-photon
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microscopy, experimental studies have reported the superior
speed and depth of LSFM for imaging of 3D organoids
(Lallemant et al., 2020).

Custom-built LSFM systems have been reported in
earlier studies. For example, a series of studies reported
organoid/spheroid clearing with LSFM imaging using a
monolithic digital scanned laser light-sheet-based fluorescence
microscope (mDSLM) (Keller et al., 2008; Schmitz et al., 2017;
Smyrek and Stelzer, 2017) and a millimeter-scaled optofluidic
lab-on-a-chip device, which integrates light-sheet illumination
and a microfluidic channel, for imaging of cell spheroids (Paiè
et al., 2016). Moreover, Lorenzo and colleagues improved the
resolution of 3D spheroid images using a light-sheet setup with
adaptive optics (Masson et al., 2015). A specific light-sheet
setup, such as a dual-view inverted selective plane illumination
microscope (Kumar et al., 2014; Eismann et al., 2020), open-top
LSFM (Glaser et al., 2019), and single-objective LSFM (Li et al.,
2014; Bouchard et al., 2015), have the potential to enable large-
scale imaging for screening purposes owing to the compatibility
of these systems for imaging of multiple organoids cultured in
multi-well plates.

With the commercialization of LSFMs, the opportunities of
3D organoid imaging with clearing are beginning to expand.
The ZEISS Lightsheet Z.1 has been one of the most popular
commercial LSFMs so far, enabling high-throughput multi-view
3D imaging with an easy-to-use operation (Cora et al., 2019;
Dekkers et al., 2019; Sakaguchi et al., 2019; Lallemant et al., 2020;
Molley et al., 2020; Preusser et al., 2020). However, the RI range
of the equipped objective lens is up to 1.48, which is incompatible
with some transparent reagents with an RI of > 1.5 and thus
can cause the formation of spherical aberrations when imaging
large samples at higher magnifications. The recently released
Lightsheet 7 improves this issue with an RI range of 1.33–1.58,
allowing the imaging of samples up to 2 cm in size with the use of
almost any clearing reagent.

Regardless of the type of microscope used, the design of
the entire experimental workflow should be optimized by
selecting an appropriate clearing method, microscope setup,
objective lens specification, and image resolution. Compatibility
of some organic solvents (e.g., dibenzyl ether in iDISCO)
with a commercialized LSFM should be taken into account,
due to their corrosive effects such as dissolution of glues
used in the construction of objective lenses (McKey et al.,
2020). A proper optical resolution should also be set to
meet the experimental and analytical objectives while avoiding
oversampling. A high numerical aperture (NA) objective lens
with a short working distance can also interfere with volume
imaging. RI discrepancies between objective lens coverage
and clearing reagents can reduce imaging quality due to
spherical aberrations.

Whole imaging of a large kidney organoid that was
generated from human iPS cells is depicted in Figure 1
(Takasato et al., 2016). The sample was cleared with CUBIC
reagent (final RI = 1.52) and 3D data were collected at a
voxel resolution of 2.5 µm3 to detect cell coordinates for
subsequent cellular architecture analysis. Low magnification
macro-objectives (NA ∼ 0.1) provide reasonable image

quality and data size (15.5 GB for raw 16-bit TIFF data,
1.6 GB for processed 8-bit TIFF data) for this purpose.
Oversampling microscopic images with excessive magnification
and higher NA objectives will produce redundant data sets.
For example, if an image is captured at 2.5 times the voxel
resolution, the data size will be an order of magnitude
larger (2.53 = 15.625), thereby burdening data storage and
subsequent image analysis.

DISCUSSION: PROSPECTS OF
ORGANOID RESEARCH WITH TISSUE
CLEARING TECHNOLOGY

Any organoid application requires sensitive and accurate
phenotyping. Here, organoid models of human diseases are
discussed. For example, regarding the use of organoids to
recapitulate microcephaly caused by the Zika virus (ZIKV),
forebrain organoid size and neuronal proliferation have been
assessed (Dang et al., 2016; Qian et al., 2016). That platform also
showed an upregulation of the innate immune receptor Toll-
like receptor 3 (TLR3) after ZIKV infection of human organoids.
A pharmacological administration with a TLR3 competitive
inhibitor reduced the phenotypic effects of ZIKV infection (Dang
et al., 2016). A model of polycystic kidney disease was also
replicated in vitro with the use of kidney organoids, where
multiple cysts actually formed within the organoids generated
from patient-derived iPSCs (Cruz et al., 2017; Low et al., 2019;
Shimizu et al., 2020). Several drugs, such as thapsigargin, a
non-competitive inhibitor of the sarco/endoplasmic reticulum
Ca2+ ATPase, and CFTRinh–172, a selective CFTR channel
inhibitor, are reported to inhibit the number and size of cysts in
the disease model.

A recent study proposed that 3D information relevant to
the pathophysiological processes and responses to perturbations
(e.g., drug administration) is needed for further quantitative and
comprehensive analysis of these in vitro disease models. Chung
and colleagues developed a prominent SCOUT framework for
whole 3D organoid phenotyping by clearing- and LSFM imaging-
based multiple feature acquisition and atlas-independent analysis
(Albanese et al., 2020). The use of SCOUT successfully
extracted multiple features from the 3D dataset relevant to
the developmental stages of the organoid and differences
in protocols. Finally, SCOUT was applied to the ZIKV
infection model to quantify the multiscale impact of ZIKV
infection on brain development in the 3D datasets. The
analysis produced a comprehensive quantification of the
pathology, including cell loss, reduction of ventricles, and
overall change in tissue reorganization. Assessment of other
complex information, such as the 3D neural network structure,
will potentially be integrated into future studies of cerebral
organoids or cortico-striatal assembroids (Renner et al., 2017;
Miura et al., 2020).

Apart from these disease models, imaging-based classification
and clustering analysis of multiple organoid phenotypes for
large-scale screening has also been proposed (Pampaloni et al.,
2013) with a final aim to achieve classification and clustering
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FIGURE 2 | A large-scale multi-organoid analysis. As in the case of single-cell analysis, in which various omics data (e.g., a genome-wide expression profile) are
collected to determine the cell type or state, the states of multiple single organoids can be analyzed by collecting data of the 3D cytoarchitecture, distributions of
identified cell types, or topological features. This information can be finally used for the classification and clustering of the organoid population.

of organoids based on the phenotype (i.e., organoid states),
as with other omics analyses (Figure 2). Most studies so
far have relied on the collection of various biological data
within the organoids. As a representative approach, high-
content imaging allows for high-throughput and multi-channel
imaging data collection and analysis (Wenzel et al., 2014;
Schmuck et al., 2017; Czerniecki et al., 2018; Durens et al.,
2020). Recently, Lukonin et al. (2020) devised an imaging-
based drug screening assay of approximately 450,000 intestinal
organoids by extracting several features from the image (e.g.,
signal intensities of marker proteins, area, and circularity
of the reaggregates) and clustering the organoids into 15
groups related to seven major phenotypes affected by the
screened drugs. Tissue clearing techniques are beginning to
be incorporated into such large-scale automated procedures
for organoid screening (Silva Santisteban et al., 2017; Boutin
et al., 2018b; Grenier et al., 2020; Renner et al., 2020; Rybin
et al., 2021), which have been useful for the collection of
comprehensive information across organoids and to improve
screening accuracy. Histo-cytometry or proteomic imaging by
multiplex and multi-modal labeling together with clearing can
scale the amount of information (Murray et al., 2015; Li et al.,
2017; Park et al., 2018).

The considerable data size and calculation throughput for
clustering organoid phenotypes are possible drawbacks to
large-scale screening with multi-modal information. Instead,
organoid 3D data with less modality (e.g., a single channel
of nuclear staining) may also provide sensitive information
about the internal state. A simple topological analysis of all cell
distribution within the 3D organoid by graph representation
is a promising approach (Poli et al., 2019). A pioneering study
by Stelzer and colleagues demonstrated multiscale analysis
of individual and neighboring cells to the global topologies
of optically cleared spheroids, and employed an analytical

scheme inspired by graph theory and computational topology,
in which all cell nuclei are segmented and represented as a
cell graph for feature extraction (e.g., the relative position of
each cell nucleus, the number of neighboring cells, and the
distances to neighboring cells) (Schmitz et al., 2017). They
also presented the possibility of multi-organoid clustering
analysis based on the identified features. This proposed
analytical scheme can alternatively offer an opportunity to
classify the structural phenotypes (structural states) of multiple
organoids based on mathematical topology analysis or machine
learning-based feature extraction, which are occasionally
independent of biological meanings. This scheme can, for
example, enhance multi-organoid drug screening, which is
currently dependent on classical dose-response curves (Broutier
et al., 2017; Yan et al., 2018; Kopper et al., 2019; Takahashi
et al., 2019). This 3D architecture-based classification and
clustering methodology can also be readily combined with
biological analyses of marker gene expression profiles, omics
approaches, or physiological readout, further facilitating
the extraction of essential molecular mechanisms. Tissue
clearing technologies can fully support such large-scale, high-
throughput topological analysis of multiple organoids in
the future.

CONCLUSION

The examples described here provide a clear perspective of
tissue clearing techniques as excellent tools for organoid
research to facilitate the collection of biological profiles
using organoids, understanding of pathophysiological processes,
and the development of new therapeutic tools. 3D spatial
interrogation of organoids can also be applied in larger projects,
such as the Organoid Cell Atlas of the Human Cell Atlas
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Project by providing references and workflows for comparing
molecular expression patterns between organoids and cell
populations in actual tissues/organs (Bock et al., 2021). Further
accumulation of technical tips and applications will be needed
in future efforts.
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