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Prostate cancer is one of the most common malignant tumors that threaten the

health of men. It is urgent to explore new molecular targets and develop new

drugs for the treatment of prostate cancer. Circular RNAs (circRNAs) are aberrantly

expressed in various malignant tumors. The dysregulated circRNAs are involved in

the metastasis, tumor growth, drug resistance, and immunosuppression of malignant

tumors. The present review systematically summarized publications concerning the

biological implications of circRNAs in prostate cancer. The PubMed and Web of Science

databases were used to retrieve publications concerning circRNAs and prostate cancer

until June 16, 2021. The following keywords were used in the literature search: (circRNA

OR circular RNA) AND prostate cancer. 73 publications were enrolled in the present

systematic review to summarize the role of circRNAs in prostate cancer. The dysregulated

and functional circRNAs were involved in the cell cycle, proliferation, migration, invasion,

metastasis, drug resistance and radiosensitivity of prostate cancer. In addition, circRNAs

could function through EVs and serve as prognostic and diagnostic biomarkers.

Certain circRNAs were correlated with clinicopathological features of prostate cancer. A

comprehensive review of the molecular mechanism of the tumorigenesis and progression

of prostate cancer may contribute to the development of new therapies of prostate

cancer in the future.

Keywords: biomarker, circRNA, metastasis, proliferation, prostate cancer

INTRODUCTION

Prostate cancer (PCa) is one of the most common malignant tumors that threaten the health of
men. The American Cancer Society predicted 248,530 new cases and 69,410 deaths in 2021, ranked
1st and 2nd in men respectively (Siegel et al., 2021). Androgen deprivation therapy (ADT) is the
first-line treatment for PCa except for surgery. Nevertheless, castration-resistant PCa (CRPC) is
still inevitable for PCa patients (Chandrasekar et al., 2015). Although drugs targeting the androgen
receptor (AR) pathway significantly improved the survival of CRPC patients, these drugs did
not achieve satisfactory efficacy due to the generation of AR variants and the limitation of drug
resistance (Attard and Antonarakis, 2016). Therefore, it is urgent to explore novel molecular targets
and develop new drugs for the treatment of PCa.

Circular RNAs (circRNAs) are covalently closed RNAs without 3′ or 5′ ends. High-throughput
RNA-sequencing (RNA-seq) is the most commonly used method to identify new circRNAs by
detecting the spliced reads that cover the back-splicing junctions. Once generated, circRNAs are
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highly stable due to their circular structure. Therefore, circRNAs
in tissues, blood, or urine can be used as promising biomarkers
(Wen et al., 2020). The biological functions of most circRNAs
are still unclear. However, studies on certain circRNAs in recent
years have discovered that circRNAs may sponge microRNAs
(miRNAs), bind to RNA-binding proteins and modulate their
activity, regulate transcription or alternative splicing, and be
translated to produce novel functional peptides (Kristensen et al.,
2019; Xiao et al., 2020).

CircRNAs are aberrantly expressed in various malignant
tumors, such as renal cell carcinoma (Wang et al., 2020b), breast
cancer (Jahani et al., 2020), and PCa (Vo et al., 2019; Chao
et al., 2021b). The dysregulated circRNAs can be involved in the
metastasis (Shen et al., 2019), tumor growth (Wu et al., 2020),
drug resistance (Zhang et al., 2020a), and immunosuppression
(Zhang et al., 2020c) of malignant tumors. Studies in patient-
derived xenograft mouse models indicated that intratumor
injection of small interference RNA (siRNA) targeting oncogenic
circRNA might be a promising treatment of gastric cancer
(Zhang et al., 2019). Moreover, circRNAs can serve as promising
prognostic or diagnostic biomarkers of malignant tumors (Wang
et al., 2018; Rajappa et al., 2020).

The present review systematically summarized publications
concerning the biological implications of circRNAs in PCa.
A comprehensive review of the molecular mechanism of the
tumorigenesis and progression of PCa may contribute to the
development of new therapies of PCa in the future.

METHODS

Search Strategy
The present systematic review was conducted according to the
Cochrane guideline. The PubMed and Web of Science databases
were used to retrieve publications concerning circRNAs and
PCa until June 16, 2021. The following keywords were used
in the literature search: (circRNA OR circular RNA) AND
prostate cancer. The EndNote X9 (Thompson Reuters, New
York, USA) software was used to manage the publications
for the present review. In this article, meta-analysis was
not performed. The present systematic review was based on
previous publications so that ethical consent or approval was
not required.

Inclusion and Exclusion Criteria
Two reviewers (Fan Chao and Shiyu Wang) independently
evaluated and selected the publications. Any discrepancy was
resolved by the supervisor (Gang Chen). Publications that
meet any of the following inclusion criteria were included: (i)
expression of the circRNA was quantified in PCa; (ii) biological
function and/or mechanism of the circRNA was determined;
(iii) prognostic or diagnostic value of the circRNA in PCa was
evaluated. Publications that meet any of the following exclusion
criteria were excluded: (i) studies that did not meet any of
the inclusion criteria; (ii) reviews, books, comments, patents,
meeting abstracts and retracted articles; (iii) studies that were not
related to circRNA or PCa.

FIGURE 1 | Flow chart of literature research.

RESULTS

Results of the Literature Research
We retrieved 347 publications from the databases mentioned
above and 229 publications after the removal of duplications.
156 publications were excluded after reviewing. Finally, 73
publications were enrolled in the present systematic review
(Figure 1).

Overview of circRNA
History of circRNA Research
In 1976, Sanger et al. discovered that viroids were single-stranded
covalently closed circRNA with a highly base-paired rod-like
structure. This is the first report on circRNA (Sanger et al.,
1976). In 1979, Hsu et al. identified circRNAs in the cytoplasm
of eukaryotic cells using electron microscopy (Hsu and Coca-
Prados, 1979). In 1993, circular transcripts of the exons of
the genomic DNA were identified. However, these circRNAs
have been considered to be yielded by mis-splicing of primary
transcripts (Cocquerelle et al., 1993). At the same time, Sry
circRNA was discovered in the testis of adult mice and was
considered to be the noise of normal splicing (Capel et al.,
1993). Due to the lack of 3′ polyadenylated tails, circRNAs
cannot be identified by the classical RNA sequencing which
detects the linear RNAs with 3′ polyadenylated tails. Novel RNA
sequencing methods which detect RNase R treated RNAs and
non-polyadenylated RNAs have been used to identified circRNAs
in various species including plants (Lu et al., 2015), fruit flies
(Westholm et al., 2014), zebrafish (Shen et al., 2017), mice
(Memczak et al., 2013), and human (Salzman et al., 2012).
In 2013, Memczak et al. analyzed the biological function of
circRNA CDR1as and claimed that circRNAs were a large class
of transcripts with the regulatory potential of coding sequences
(Memczak et al., 2013).

Biogenesis of circRNAs
Exonic circRNAs are formed by back-splicing of exons and are
located in the cytoplasm (Figure 2). Recent studies have revealed
that circRNAs are derived from the back-splicing of primary

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 July 2021 | Volume 9 | Article 681163

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Chao et al. CircRNAs in Prostate Cancer

FIGURE 2 | Biogenesis and functions of circRNAs.

transcripts (Zhang et al., 2020b). Complementary sequences in
the introns can mediate the circularization of exons (Zhang et al.,
2014). CircRNAs can be generated through an exon-containing
lariat precursor in genes that lack intronic complementary
sequences (Barrett et al., 2015). Furthermore, the biogenesis of
circRNAs can be regulated by RNA-binding proteins in trans. For
instance, Quaking (Conn et al., 2015), FUS (Han et al., 2020),
and MBNL1 (Ashwal-Fluss et al., 2014) boost the biogenesis of
circRNAs, while ADAR1 (Ivanov et al., 2015) and DHX9 (Aktas
et al., 2017) suppress the production of circRNAs. HNRNPL (Fei
et al., 2017) is a prostate-specific RNA-binding protein that is
involved in the formation of circRNAs through back-splicing.
Both HNRNPL and its circRNA clients are clinically relevant and
aberrantly expressed in PCa (Fei et al., 2017).

Category and Nuclear Export of circRNAs
The splicing and circularization of transcripts lead to the
generation of various types of circRNAs: exonic circRNAs
(ecircRNAs), exon-intron circRNAs (EIciRNAs), intronic
circRNAs (ciRNAs), and tRNA intronic circRNAs (tricRNAs)
(Figure 2). EcircRNAs are the most investigated class of
circRNAs. Although back-splicing of transcripts occurs in the

nucleus, a majority of exonic circRNAs were located in the
cytoplasm (Chen, 2020). A recent study indicated that DDX39A
and DDX39B was involved in the nuclear export of long (>
1,300 nucleotides) and short (< 400 nucleotides) circRNAs,
respectively (Huang et al., 2018).

Biological Functions of circRNAs
Recent studies have uncovered the biological activity of
functional circRNAs (Figure 2). CircRNAs are reported to act as
microRNA (miRNA) sponges, to serve as decoys for proteins,
to modulate gene expression, to act as scaffolds of proteins,
and to function as templates for translation (Chen, 2020). For
instance, circRNA CDR1as contains more than 70 sponging
targets for miRNA miR-7. Although CDR1as is resistant to
the miRNA-mediated degradation of target RNAs, it strongly
inhibits the activity of miR-7 and thereby increases the level of
other miR-7 targets (Hansen et al., 2013). In addition, CDR1as
can suppress the metastasis of melanoma through modulating
the activity of its interactor, IGF2BP3 (Hanniford et al., 2020).
CircSMARCA5 interacts with its host gene through regulating
transcription of partial exons (Xu et al., 2020c). CircMALAT1
can serve as a brake to retard PAX5 mRNA translation in
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TABLE 1 | Overview of functional circRNAs in prostate cancer.

CircRNA circBase ID Expres-sion

in PCa

Function Upstream

regulator

Downstream target Clinical

relevance

Reference

Regulating cell cycle, proliferation, and apoptosis

circ_0004417 hsa_circ_0004417 Low Inhibited proliferation and

invasion

NR miR-1228, p-Akt and

E-cadherin

NR Xia et al., 2021

hsa_circ_0062019 hsa_circ_0062019 High Promoted proliferation, invasion

and migration

NR miR-195-5p/HMGA2 NR Wang et al., 2021b

circSLC8A1 hsa_circ_0000994 Low Inhibited proliferation, migration

and invasion

NR miR-21, MAPK

signaling pathway, and

chemokine signaling

pathway

Survival Wang et al., 2021a

CDR1as hsa_circ_0001946 High Promoted proliferation, invasion

and migration

NR miR-641/XIAP NR Niu et al., 2021

circUBAP2 hsa_circ_0001846 High Promoted proliferation NR miR-1244/MAP3K2 NR Li et al., 2021b

circRNA_100395 hsa_circ_0015278 Low Inhibited proliferation, migration,

invasion and EMT, altered cell

cycle distribution

NR miR-1228 Tumor size,

Gleason score,

tumor stage,

and lymph node

metastasis

He et al., 2021

circPDHX hsa_circ_0003768 High Promoted proliferation, tumor

growth, invasion, colony

formation

NR miR-378a-3p/ IGF1R Gleason score,

T stage and

survival

Mao et al., 2020

circ_0062020 NR High Promoted proliferation, tumor

growth, migration, and invasion;

inhibited radiosensitivity and

apoptosis

NR miR-615-5p/TRIP13 Gleason score,

tumor size,

TNM stage

Li et al., 2020a

circGOLPH3 hsa circ 0072068 High Promoted proliferation; inhibited

apoptosis

NR CBX7 NR Gong et al., 2020

circCDK13 hsa_circ_0079929 NR Promoted tumorigenesis,

proliferation

E2F5/

CDK13

miR-212-5p/miR-

449a and

E2F5

NR Qi et al., 2021

circNOLC1 hsa_circ_0000257 High Promoted proliferation, migration NR miR-647/PAQR4 NR Chen et al., 2020c

circ_KATNAL1 hsa_circ_0008068 Low Inhibited proliferation, invasion,

migration

NR miR-145-3p/WISP1 NR Zheng et al.,

2020a

circ_0057553 hsa_circ_0057553 High Promoted viability, migration,

invasion, glycolysis; inhibited

apoptosis

NR miR-515-5p/YES1 NR Zhang et al.,

2020e

hsa_circ_0007494 hsa_circ_0007494 Low Inhibited proliferation, invasion,

tumor growth

NR miR-616/PTEN NR Zhang et al.,

2020d

circMBOAT2 hsa_circ_0007334 High Promoted proliferation,

migration, invasion,

tumorigenesis, metastasis

NR miR-1271-5p/mTOR Gleason score,

T stage,

prognosis

Shi et al., 2020

circFOXO3 hsa_circ_0006404 High Promoted viability, metastasis,

cell cycle, proliferation; inhibited

apoptosis

NR miR-1299/CFL2, miR-

29a-3p/SLC25A15

Gleason score Kong et al., 2020;

Li et al., 2021a

circFMN2 hsa_circ_0005100 High Promoted cell growth NR miR-1238/LHX2 T stage, lymph

node

metastasis,

distant

metastasis

Shan et al., 2020

circCRKL hsa_circ_0001206 High Promoted cell cycle, migration,

invasion, tumor growth; inhibited

apoptosis

DHX9 miR-141/KLF5,

miR-1285-5p/SMAD4

T stage,

Gleason score

Song et al., 2019;

Nan et al., 2020

circHIPK3 hsa_circ_0000284 High Promoted viability, proliferation,

migration, invasion, tumor

growth; inhibited apoptosis

NR miR-338-

3p/Cdc25B/Cdc2,

miR-193a-3p/MCL1,

miRNA-338-

3p/ADAM17

Gleason score,

T stage

Cai et al., 2019;

Chen et al., 2019a;

Liu et al., 2020

(Continued)
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TABLE 1 | Continued

CircRNA circBase ID Expres-sion

in PCa

Function Upstream

regulator

Downstream target Clinical

relevance

Reference

circDDX17 hsa_circ_0002211 Low Inhibited mobility, proliferation,

invasion

NR miR-346/LHPP NR Lin et al., 2020

cir-ITCH hsa_circ_

0001141

Low Inhibited proliferation, migration,

invasion

NR miR-17 NR Li et al., 2020c

circ-0016068 hsa_circ_0016068 High Promoted tumor growth,

metastasis, EMT

NR miR-330-3p/BMI-1 Survival Li et al., 2020b

circZMIZ1 hsa_circ_0005844 High Promoted proliferation, cell cycle NR AR, AR-V7 NR Jiang et al., 2020

circ-MTO1 NR Low Inhibited proliferation, invasion NR miR-17-5p Survival, T

stage, N stage

Hu and Guo, 2020

circSMARCA5 hsa_circ_0001445 High Promoted proliferation,

metastasis, glycolysis, cell cycle

Androgen miR-432/PDCD10 NR Kong et al., 2017;

Dong et al., 2020a

circ_0088233 hsa_circ_0088233 High Promoted proliferation,

migration, invasion, cell cycle,

apoptosis

NR miR-185-3p TNM stage Deng et al., 2020

circABCC4 hsa_circ_0030586 High Promoted proliferation, cell cycle,

migration, invasion, tumor

growth

NR miR-1182/FOXP4 Survival Huang et al.,

2019a

circSMAD2 hsa_circ_0000847 Low Inhibited proliferation, migration,

EMT

NR miR-9/STAT3 NR Han et al., 2019

circRNA0005276 hsa_circ_0005276 High Promoted proliferation,

migration, EMT

NR FUS/XIAP NR Feng et al., 2019

circCSNK1G3 hsa_circ_0001522 High Promoted proliferation NR miR-181b/d NR Chen et al., 2019b

circ-ITCH hsa_circ_0001141 Low Inhibited proliferation, tumor

growth, colony formation;

promoted apoptosis,

NR miR-197,

miR-17-5p/HOXB13

Survival, PSA

level, Gleason

score, T stage,

lymph node

metastasis,

survival

Huang et al.,

2019b; Wang

et al., 2019; Yuan

et al., 2019

circAMOTL1L hsa_circ_0000350 Low Inhibited migration, invasion, cell

growth, EMT

p53/RBM25 miR-193a-5p/Pcdha Gleason score Yang et al., 2019

circMYLK hsa_circ_0141940 High Promoted proliferation, invasion,

migration; inhibited apoptosis

NR miR-29a NR Dai et al., 2018

Specifically governing migration and invasion

circSOBP hsa_circ_0001633 Low Inhibited migration, invasion,

metastasis, amoeboid migration

NR miR-141-

3p/MYPT1/p-MLC2

Gleason score,

and grade

group

Chao et al., 2021a

circANKS1B hsa_circ_0007294 High Promoted migration and invasion NR miR-152-3p/TGF-α Survival,

Gleason score,

T stage, lymph

node

metastasis

Tao et al., 2021

circRNA-ARC1 hsa_circ_0090923 NR Promoted migration, invasion,

and metastasis

AR miR-125b-2-3p or

miR-

4736/PPARγ/MMP-9

NR Deng et al., 2021

hsa_circ_0001165 hsa_circ_0001165 NR Promoted EMT NR hsa-miR-187-3p/TNF NR Yan et al., 2020

hsa_circ_0001085 hsa_circ_0001085 NR Promoted EMT NR hsa-miR-196b-

5p/TGF-β pathway,

hsa-miR-451a/MAPK

pathway

NR Yan et al., 2020

circRNA-51217 NR NR Promoted invasion, metastasis R-2HG miRNA-646/TGFβ1/p-

Smad2/3

NR Xu et al., 2020a

circular

RNA_LARP4

NR Low Inhibitd migration, invasion NR FOXO3A prognosis Weng et al., 2020

circPSMC3 hsa_circ_0021977 Low Inhibited migration, invasion NR DGCR8 NR Dong et al., 2020b

circ-102004 NR High Promoted migration, invasion NR ERK, JNK and

Hedgehog pathways

NR Si-Tu et al., 2019

(Continued)
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TABLE 1 | Continued

CircRNA circBase ID Expres-sion

in PCa

Function Upstream

regulator

Downstream target Clinical

relevance

Reference

Involving in the drug resistance and radiosensitivity

circ_0057558 hsa_circ_0057558 High Promoted proliferation and

colony formation, inhibited cell

cycle arrest and sensitivity to

docetaxel

NR miR-206/USP33/c-

Myc

NR Ding et al., 2021

circFoxo3 hsa_circ_0006404 Low Inhibited cell survival, migration,

invasion, EMT; promoted

chemoresistance to docetaxel

NR Foxo3/EMT Grade, survival Shen et al., 2020

hsa_circ_0000735 hsa_circ_0000735 High Promoted viability, colony

formation, cell cycle, tumor

growth; inhibited docetaxel

sensitivity,

NR miR-7 Survival Gao et al., 2020

circ_CCNB2 hsa_circ_0035483 High Inhibited radiosensitivity and

apoptosis; promoted colony

formation, migration, invasion

NR miR-30b-5p/KIF18A NR Cai et al., 2020

circUCK2 hsa_circ_001357 Low Inhibited enzalutamide

resistance, proliferation, invasion

NR miR-767-5p/TET1 NR Xiang et al., 2019

circRNA17 hsa_circ_0001427 Low Inhibited enzalutamide

resistance, invasion

NR miR-181c-5p/ARv7 Gleason score Wu et al., 2019

circZNF609 hsa_circ_0000615 High Promoted colony formation,

viability, migration, invasion,

metastasis, glycolysis; Inhibited

apoptosis, radiosensitivity,

NR miR-186-

5p/YAP1/AMPK

pathways,

miR-501-3p/HK2

NR Jin et al., 2019; Du

et al., 2020

Regulating cancer stemness

circ-TRPS1 hsa_circ_

0006950

High Promoted proliferation,

metastasis, stemness

NR miR-124-3p/EZH2 T stage, N

stage, M stage

Sha et al., 2020

Functioning through EVs

circ_0044516 hsa_circ_0044516 High Through exosoms; promoted

proliferation, migration, invasion

NR miR-29a-3p NR Li et al., 2020d

circ-XIAP hsa_circ_0005276 High Promoted docetaxel resistance,

proliferation, migration and

invasion; inhibited cell cycle

arrest and apoptosis; through

exosomes

NR miR-1182/TPD52 NR Zhang et al., 2021

circ_SLC19A1 hsa_circ_0062019 High Promoted proliferation, invasion,

through EVs

NR miR-

497/SEPT2/ERK1/2

NR Zheng et al.,

2020b

EMT, epithelial-mesenchymal transition; EVs, extracellular vesicles; NR, not reported.

ribosomes (Chen et al., 2020b). Circ-Ccnb1 acts as a protein
scaffold of Ccnb1 and Cdk1, resulting in the dissociation of
cyclin B1-Cdk1 complex and cell death (Fang et al., 2019).
Several studies have reported that circRNAs could encode
peptides. For instance, circFNDC3B encodes a novel protein
and inhibits tumor progression in colon cancer (Pan et al.,
2020).

The role of circRNAs in PCa
The functions and downstream targets of the dysregulated
circRNAs in PCa are listed in Table 1. The dysregulated
and functional circRNAs are involved in the cell cycle,
proliferation, migration, invasion,metastasis, drug resistance and
radiosensitivity of PCa (Figure 3). Some circRNAs can serve as
prognostic and diagnostic biomarkers. Here, we summarized the
role of circRNAs in PCa.

Regulating Cell Cycle, Proliferation, and Apoptosis
The most basic characteristics of cancer cells involve their
long-lasting and long-term proliferation ability. Normal tissues
can precisely control the generation and release of growth-
promoting signals, which govern the start and progress of
the cell proliferation-differentiation cycle. This maintains the
balance of cell number, thereby ensuring the structure and
function of normal tissues. These signals in cancer cells are
dysregulated, thereby they can sustain the proliferation of cancer
cells (Hanahan and Weinberg, 2011). In addition, tumor cells
have evolved a series of mechanisms that limit or allow them
to avoid apoptosis. Under pathological conditions, especially in
cancer, cells lose the ability to undergo cell death induced by
apoptosis, leading to uncontrolled proliferation. There are several
mechanisms by which cells escape programmed cell death, one of
which is the expression of anti-apoptotic molecules (Mohammad
et al., 2015).
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FIGURE 3 | Schematic illustration of the representative functional circRNAs.

Current studies have revealed that circRNAs were involved
in the proliferation, cell cycle, and apoptosis of PCa cells. For
instance, Shan et al. reported that knockdown of circFMN2
suppressed tumor growth of PCa in vivo and inhibited
proliferation of PCa cells by inducing cell-cycle arrest and
apoptosis through regulating miR-1238/LHX2 axis (Shan et al.,
2020). Mao et al. reported that circPDHX was associated with
Gleason score, pathological T stage and overall survival of PCa,
promoted cell proliferation in vitro and tumor growth in vivo
(Mao et al., 2020). Liu et al. suggested that circHIPK3 expression
was upregulated in PCa and promoted G2/M transition by
sponging miR-338-3p (Liu et al., 2020). Deng et al. claimed
that the suppression of circ_0088233 reduced cell proliferation
and induced G1 phase arrest and apoptosis through targeting
hsa-miR-185-3p (Deng et al., 2020). Zhang et al. indicated that
the knockdown of circ_0057553 could inhibit cell viability and
facilitate apoptosis (Zhang et al., 2020e). Huang et al. suggested
that knockdown of circABCC4 inhibited tumor growth in vivo
and cell-cycle progression in vitro by targetingmiR-1182-FOXP4
regulatory axis (Huang et al., 2019a).

Governing Migration and Invasion
The mechanism of cancer metastasis was largely an enigma until
2000. The multiple steps of invasion and metastasis have been
schematized as a series of independent steps, commonly termed
as the invasion-metastasis cascade (Fidler, 2003; Talmadge and
Fidler, 2010). This description depicted a series of cellular
biological changes. Invasion and metastasis of cancer cells start
with local invasion, then intravasation of the cancer cells allows
them to infiltrate the surrounding blood vessels and lymph
vessels. Subsequently, cancer cells are transported through the
lymphatic or blood system, followed by the extravasation which
helps cancer cells to escape from the vessels into the parenchyma
of the distal tissues. Escaped cancer cells grow into small nodules,
which are termed micrometastases. The last step, colonization,
refers to the growth of micrometastases into metastatic tumors.
Research on invasion and metastasis capabilities has been greatly
accelerated in recent years.

Epithelial-mesenchymal transition (EMT) plays an important
role in the metastasis of malignant tumors (Huber et al., 2005).
CircRNAs are involved in the EMT program. Yan et al. identified
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EMT-related circRNAs through RNA-seq in interferon-γ (IFN-
γ) induced EMT cells and found that hsa_circ_0001165 and
hsa_circ_0001085 were EMT-related circRNAs (Yan et al., 2020).
Hsa_circ_0001165 and hsa_circ_0001085 played a regulatory role
in the EMT of PCa. Feng et al. reported that circ0005276
promoted cell proliferation and EMT through interacting with
FUS (Feng et al., 2019). Han et al. found a decrement of
circSMAD2 in PCa tissues. Restoration of circSMAD2 could
inhibit the impaired EMT process throughmiR-9 inhibition (Han
et al., 2019). Yang et al. claimed that p53 regulated EMT through
circAMOTL1L/miR-193a-5p/Pcdha regulatory axis (Yang et al.,
2019). Li et al. suggested that circ-0016068 promoted EMT of PCa
cells by regulating the miR-330-3p/BMI-1 axis (Li et al., 2020b).
Shen et al. reported that circFoxo3 inhibited PCa cell migration
and invasion through regulating Foxo3 and EMT (Shen et al.,
2020).

In addition to EMT, circRNAs can govern the metastasis of
PCa through other pathways. Xu et al. found that circRNA-
51217 could sponge miRNA-646, which could induce TGFβ1/p-
Smad2/3 signaling pathway and promote PCa cell invasion (Xu
et al., 2020a). Weng et al. suggested that circular RNA_LARP4
could inhibit cell migration and invasion through upregulating
FOXO3A (Weng et al., 2020). Si-Tu et al. reported that circ-
102004 played an oncogenic role by promoting migration and
invasion of PCa cells (Si-Tu et al., 2019). Overexpression of
circ-102004 alters ERK, JNK, and Hedgehog pathways. Chao
et al. found that circSOBP inhibited amoeboid migration and
metastasis of PCa cells through miR-141-3p/MYPT1/p-MLC2
axis (Chao et al., 2021a).

Involving in the Drug Resistance and Radiosensitivity
In 1940, Charles Huggins reported that castration of men
with PCa induced dramatic symptomatic improvements and
resulted in the regression of cancer sites (Huggins and
Hodges, 1941). Since then, ADT has been a mainstay therapy
for advanced PCa, including medical castration, surgical
castration, and inhibitors for androgen biosynthesis (Feng
and He, 2019). Given psychological and aesthetic concerns,
medical castration has been more adopted instead of surgical
castration in the treatment for PCa. However, progression
to castration-resistant PCa (CRPC) is inevitable after ADT.
Novel second-generation antiandrogens have been developed
to achieve better blockade for androgen (Tran et al., 2009),
including darolutamide, apalutamide, and enzalutamide. The
second-generation antiandrogens have successfully prolonged
the survival of PCa patients. Unfortunately, the prolonged
survival is temporary. The CRPC can be resistant to the
latest antiandrogens.

CircRNAs are involved in the drug resistance of various
cancers (Xu et al., 2020b). Recent studies have investigated the
role of circRNAs in the CRPC. Cao et al. (2019) identified 13
circRNAs derived from the AR gene through RNA-seq of 47
metastatic CRPC samples, cell models, and RNase R RNA-seq
of patient-derived xenografts (PDXs). Expression of the four
most abundant circRNAs are upregulated during the castration-
resistant progression of PDXs and can be detected in the plasma
of patients with PCa. These AR-derived circRNAs might serve

as biomarkers for CRPC. Greene et al. (2019) uncovered that
circRNAs were more often downregulated in enzalutamide-
resistant PCa cells using a high-throughput circRNAmicroarray.
Hsa_circ_0004870was one of the downregulated circRNAs which
might mediate the development of enzalutamide resistance in
PCa. Wu et al. (2019) revealed the low expression of circRNA17
in CRPC C4-2 enzalutamide-resistant cell lines compared to
the parental sensitive cells. This work suggested that circRNA17
could govern the enzalutamide sensitivity and cell invasion
through themiR-181c-5p/ARv7 axis. Xiang et al. (2019) identified
that circUCK2 was also downregulated in enzalutamide-resistant
cells. Targeting these circRNAs might help develop new therapies
for the treatment of CRPC.

Docetaxel is the first chemotherapeutic agent which was
proved to prolong the survival of patients with metastatic
CRPC (Sartor and de Bono, 2018). Results of the STAMPEDE
trial advocated the upfront use of docetaxel for patients with
metastatic hormone-naive PCa (Clarke et al., 2019). Recent
studies have revealed that circRNAs were involved in the
docetaxel sensitivity of PCa. Shen et al. (2020) suggested
that reduction circFoxo3 boosted chemoresistance to docetaxel
of PCa. Depletion of circFoxo3 using siRNAs promoted
chemoresistance to docetaxel in mice with xenografts, while the
delivery of circFoxo3 prolonged the survival of tumor-bearing
mice and enhanced the sensitivity to docetaxel. Gao et al. (2020)
uncovered that hsa_circ_0000735 was upregulated in docetaxel-
resistant PCa tissues and was correlated with worse overall
survival. Knockdown of hsa_circ_0000735 boosted sensitivity to
docetaxel of PCa cells and inhibited viability in vivo. In addition,
suppressing hsa_circ_0000735 promoted docetaxel sensitivity
and suppressed tumor growth in vivo. Zhang et al. reported that
exosomal circ-XIAP promoted docetaxel resistance in PCa by
alteringmiR-1182/TPD52 axis (Zhang et al., 2021).

External radiotherapy is a radical treatment for low-risk PCa,
which has been considered to achieve the same effect as surgical
treatment. Resistance to radiotherapy is an obstacle for the
treatment of PCa. Du et al. (2020) reported that circ-ZNF609
suppressed the radiosensitivity of PCa. Knockdown of circ-
ZNF609 inhibited the radioresistance, viability and promoted
apoptosis through regulating glycolysis. Silencing circ-ZNF609
enhanced the sensitivity to radiotherapy in vivo. Cai et al.
(2020) focused on the effect of circ_CCNB2 on radiosensitivity
of PCa. Depletion of circ_CCNB2 facilitated the radiosensitivity
of irradiation-resistant PCa cells in vitro and in vivo through
suppressing autophagy viamiR-30b-5p/KIF18A axis.

Regulating Cancer Stemness
Cancer is characterized by infinite proliferation of the
malignant cells with different morphology and functions.
There are currently two models that explain this cellular
diversity in tumors. The first model that explain the initiation
and development of cancer postulates that each sequential
accumulation of mutations promotes the loss of specific tissue
characteristics, until the occurrence of dedifferentiation and the
regression into a more primitive phenotype. In this model, every
cancer cell has a similar tumorigenic potential. The second mode
is the cancer stem cell (CSC) hypothesis (Aguilar-Gallardo and
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Simon, 2013; Pattabiraman and Weinberg, 2014). The CSCs
refer to cells in tumors that have the ability to self-renew and
produce heterogeneous cancer cells. These cells with stemness
are responsible for producing various offspring of highly
proliferative cells that form the bulk of the tumors.

So far, only one study reported the role of circRNA in
regulating the stemness of PCa cells. Sha et al. (2020) indicated
that circ-TRPS1 was upregulated in high-grade PCa tissues and
was associated with aggressive PCa phenotypes. Knockdown of
circ-TRPS1 inhibited proliferation andmetastasis of PCa through
miR-124-3p/EZH2 axis-mediated stemness.

Functioning Through Extracellular Vesicles (EVs)
There are two types of EVs based on their size and origin:
exosomes and microvesicles (van Niel et al., 2018). Exosomes
ranged in size from 50 to 100 nm are derived from intraluminal
vesicles (ILVs) during the formation of multivesicular endosomes
(MVEs), in which ILVs are formed by the inward budding of
an endosomal membrane of MVEs and then secreted upon the
fusion of MVE membrane and the cell membrane. Microvesicles
ranged in size from 50 to 1,000 nm in diameter are also called
oncosomes due to their role in cellular communication in cancer
(Al-Nedawi et al., 2008). Microvesicles are directly generated
from the outward budding followed by fission of the cell
membrane. Subsequently, microvesicles are released into the
extracellular space.

EVs were usually isolated from body fluids or cell culture
media using special kits or ultra-high-speed centrifugation,
followed by identification using an electron microscope.
CircRNAs in blood or EVs can be served as biomarkers
or functional factors (Hu et al., 2020; Wen et al., 2020).
CircSLC19A (Zheng et al., 2020b) was increased in both PCa
cells and their EVs. EVs with high circSLC19A could be taken
up by PCa cells and boosted cell proliferation and invasion.
Exosomal circSLC19A promoted proliferation and invasion of
cells through themiR-497/septin 2 axis. Li et al. (2020d) identified
the existence of circ_0044516 in exosomes using circRNA
microarray. Circ_0044516 was upregulated in the exosomes
of PCa patients and cell lines. However, this study did not
investigate whether exosomal circRNAs could be taken up by
cells and function. Zhang et al. discovered that circ-XIAP was
up-regulated in exosomes from docetaxel-resistant cell lines and
could be transmitted via exosomes (Zhang et al., 2021). Adding
exosomes from docetaxel-resistant cells increased circ-XIAP level
in prostate cancer cell lines, suggesting that exosomes containing
circ-XIAP could be absorbed.

Serving as Diagnostic and Prognostic Biomarkers
The characteristics of circRNAs make them promising
biomarkers. Firstly, circRNAs are specifically expressed in
various tissues and body fluids. CircRNAs can be enriched in
exosomes and released from their original tissues into various
body fluids, including plasma, saliva, and urine. Moreover,
they can be released from dead or dying cells with the rupture
of cell membranes. Secondly, the covalently closed structure
and resistance to RNase have endowed circRNAs with high
stability. The half-life of circRNAs is about 2.5 times longer

than linear RNAs in cells and 6.3 times longer in exosomes
(Jeck et al., 2013; Li et al., 2015; Enuka et al., 2016). Thirdly,
circRNAs can be easily measured using RNA-seq or quantitative
polymerase chain reaction (qPCR). The exact copy number and
mutant of circRNAs can be detected. This is an advantage when
comparing with protein biomarkers which are quantified by
antigen-antibody interaction. A current meta-analysis suggested
that CDR1as was a reliable prognostic and diagnostic biomarker
for solid tumors by summarizing 26 studies (Zou et al., 2020).
CircRNAs can serve as remarkable biomarkers in colorectal
cancer (Yuan et al., 2020), lung cancer (Yang et al., 2020), gastric
cancer (Chen et al., 2020a), and glioma (Ding et al., 2020).

Current studies indicated that circRNAs were correlated with
clinicopathological features of PCa. The expression levels of
circMBOAT2 (Shi et al., 2020), circFoxo3 (Shen et al., 2020),
circCRKL (Song et al., 2019; Nan et al., 2020), and circHIPK3 (Cai
et al., 2019; Liu et al., 2020) were associated with the histological
grade of PCa. The expression levels of circFoxo3 (Shen et al.,
2020), circ-0016068 (Li et al., 2020b), circ-MTO1 (Hu and Guo,
2020), hsa_circ_0000735 (Gao et al., 2020), circ-ITCH (Wang
et al., 2019), and circABCC4 (Huang et al., 2019a) were associated
with the survival of patients with PCa, suggesting that circRNAs
had the potential to predict the prognosis of PCa patients. Wang
et al. established an eight-circRNA prognosis model to predict
the biochemical recurrence of PCa. This prognosis model based
on circRNAs was better than the clinical indexes (Wang et al.,
2020a).

DISCUSSION

CircRNAs has attracted more and more attention from the
scientific community, and their involvement in the molecular
regulation in cells has been continuously revealed. Similar to
protein and lncRNAs, circRNAs can regulate the malignant
behavior of cancer cells through cell signaling pathways.
Although a large number of circRNAs have been discovered and
even included in the databases, the biological implications of
most circRNAs in eukaryotic cells remained unclear. In recent
years, a large number of studies have systematically identified
circRNAs and their functions. Targeting circRNAs has great
potential in the field of cancer intervention, diagnosis and
treatment. In the present review, we systematically summarized
the functional circRNAs in PCa. Various circRNAs governed the
proliferation, apoptosis, migration, invasion, drug resistance, and
radiosensitivity in PCa. In addition, circRNAs could function
through EVs and serve as prognostic and diagnostic biomarkers.

The limitations and pitfalls of the studies on circRNAs should
not be ignored. The studies concerning circRNAs are in the
preliminary stage. At the same time, the application of circRNAs
in clinical practice remained up in the air. Current studies
reported the dysregulation of circRNAs in PCa. These circRNAs
that were clinically significantly dysregulated could serve as
remarkable biomarkers. A prognosis model based on multiple
circRNAs has been established to predict the biochemical
recurrence of PCa (Wang et al., 2020a). However, circRNA
biomarkers were not used in clinical practice due to the lack of
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further research. Subsequent clinical researches should be carried
out to verify the sensitivity and specificity of circRNA biomarkers
according to larger cohorts.

Although circRNAs are more stable than linear RNAs, they
are still not as good as proteins when serving as biomarkers.
The expression abundance of circRNAs in cells is low and is
lower in body fluids, so it is very difficult to quantitatively detect
them using traditional methods. Thus, it is urgent to develop
new detecting techniques in the future. In addition, detecting
techniques and bioinformatic analyses should be standardized to
collect reliable data. When these technical obstacles are solved in
the future, circRNAs will play an important role in the field of
biomarkers and are expected to replace existing markers.

Although biological functions of certain circRNAs have been
revealed, the application based on the functional circRNAs in
the treatment of PCa is poorly studied. The precise delivery
of functional circRNAs to the cancer cells, as well as the
overexpression or suppression of functional circRNA in the
cancer cells, are the current difficulty in the clinical use of
circRNAs. The delivery can be achieved using nanoparticles
or viral vectors; however, their specificity is not satisfactory.
Since circRNAs are functional in human cells, non-selective
application to the human body may cause a variety of side effects,
so accurate delivery is very important. Recombinant adeno-
associated virus (rAAV) vectors can be used in gene therapy
of cancer due to its advantages including tissue specificity,
long-term transgene expression, and low immunogenicity (Luo
et al., 2015; Santiago-Ortiz and Schaffer, 2016). Sun et al.
developed a prostate-specific rAAV that inhibited tumor growth
of PCa through gene silencing (Sun et al., 2010). Ai et al.
investigated the transgene efficiency of various serotypes of
rAAVs and discovered that rAAV6.2 and rAAV7 outperformed
other serotypes in the whole prostate (Ai et al., 2016). Therefore,
the delivery of circRNAs or their siRNAs through prostate-
specific rAAVs could be used as novel gene therapy for PCa in
the future.

Although a number of studies have reported the biological
functions of circRNAs in prostate cancer, it is uncertain which
ones are prostate-specific due to the lack of experimental
verification. Further research should focus on discovering the
prostate-specific circRNAs. Targeting prostate-specific circRNA
and developing new therapeutic targets are of great significance.

Researchers have reported the dysregulation of circRNAs and
their biological function as well as the mechanism. Nevertheless,
the reason why circRNAs were dysregulated was poorly studied.
A previous study reported that the expression level of circRNA
was positively correlated with its host gene (Chao et al., 2021a).
Since circRNA and mRNA derived from the same gene are
encoded by the same genomic sequence, they may be regulated
by common factors. If a certain circRNA has the same biological
functions as the protein encoded by its host gene, targeting
their upstream regulatory mechanism may achieve a better
effect. Nevertheless, Yu et al. found that the expression trend of
circRNA was opposite to its host gene, and might be governed
by the RNA-binding proteins that mediated the cyclization of
circRNAs (Yu et al., 2018). Targeting the upstream regulators
of circRNAs is expected to fundamentally block or promote
their biological functions, thereby exerting a therapeutic effect
on human diseases. Hence, the regulators of circRNAs should be
systematically determined in the future.
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