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White matter damage caused by cerebral hypoperfusion is a major hallmark of
subcortical ischemic vascular dementia (SIVD), which is the most common subtype
of vascular cognitive impairment and dementia (VCID) syndrome. In an aging society,
the number of SIVD patients is expected to increase; however, effective therapies have
yet to be developed. To understand the pathological mechanisms, we analyzed the
profiles of the cells of the corpus callosum after cerebral hypoperfusion in a preclinical
SIVD model. We prepared cerebral hypoperfused mice by subjecting 2-month old
male C57BL/6J mice to bilateral carotid artery stenosis (BCAS) operation. BCAS-
hypoperfusion mice exhibited cognitive deficits at 4 weeks after cerebral hypoperfusion,
assessed by novel object recognition test. RNA samples from the corpus callosum
region of sham- or BCAS-operated mice were then processed using RNA sequencing.
A gene set enrichment analysis using differentially expressed genes between sham and
BCAS-operated mice showed activation of oligodendrogenesis pathways along with
angiogenic responses. This database of transcriptomic profiles of BCAS-hypoperfusion
mice will be useful for future studies to find a therapeutic target for SIVD.

Keywords: cerebral hypoperfusion, corpus callosum, dementia, white matter, RNAseq

INTRODUCTION

Vascular cognitive impairment and dementia (VCID) syndrome is clinically defined as cognitive
decline with evidence of subcortical brain infarction (Erkinjuntti et al., 2000a,b). Subcortical
ischemic vascular dementia (SIVD) is the most common subtype of VCID, and patients with SIVD
suffer from a vast amount of white matter degeneration due to prolonged cerebral hypoperfusion.
White matter damage is a clinically important parameter, as the severity of white matter lesions
correlates strongly with the degree of cognitive dysfunction (Pantoni and Garcia, 1997; Medana
and Esiri, 2003; Esiri, 2007; Lampe et al., 2019). In SIVD, white matter dysfunction is progressive
and is often associated with poor neurological outcome (Roman et al., 2002; Longstreth et al., 2005).
Although the number of patients with SIVD is predicted to increase with the aging population, to
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date there are no established treatments for this pathological
condition, partly because of a lack of understanding of the gene
expression changes under the conditions of SIVD.

To advance the understanding of SIVD pathology and to find
effective approaches for this disease, several animal models have
been developed (Tsuchiya et al., 1992; Kurumatani et al., 1998;
Lin et al., 2001; Shibata et al., 2004; Yang et al., 2018). Because
prolonged cerebral hypoperfusion is a major characteristic that
leads to white matter dysfunction in SIVD, the mouse model
of prolonged cerebral hypoperfusion by bilateral carotid artery
stenosis (BCAS) is considered a well-accepted model for SIVD.
Hypoperfused-BCAS mice replicate the pathophysiology of SIVD
patients, such as oligodendrocyte/myelin damage and cognitive
decline (Ihara and Tomimoto, 2011; Ihara et al., 2014). This
model has also been used in various pharmacological studies
investigating the treatment of SIVD, which led to the discovery of
the potential efficacy of some drugs that are currently approved
for other clinical indications (Watanabe et al., 2006; Ueno et al.,
2009; Miyamoto et al., 2013a, 2014). Therefore, in this study,
we utilized the mouse cerebral hypoperfusion model of SIVD
to examine the gene expression changes in the corpus callosum
region after cerebral hypoperfusion.

MATERIALS AND METHODS

Animals
All experimental procedures followed NIH guidelines and were
approved by the Massachusetts General Hospital Institutional
Animal Care and Use Committee. Male C57BL/6J mice were
purchased from The Jackson Laboratory and were housed in a
specific pathogen-free conditioned 12-h light/dark cycle room
with free access to food and water throughout the experiment.
A total of 12 male mice (8 weeks old) were used in this study.

Prolonged Cerebral Hypoperfusion
Model by Bilateral Carotid Artery
Stenosis (BCAS)
After a week-long habituation period in our animal facility, 12
mice were randomly divided into two groups, for sham operation
and for BCAS operation. For the mice in the BCAS group,
a microcoil (0.18 mm diameter; Samini, Japan) was applied
to the bilateral common carotid arteries for the induction of
chronic cerebral hypoperfusion as previously described (Shibata
et al., 2004). The sham group received a cervical incision
followed by exposure of the bilateral common carotid arteries
without microcoil application. Body weight of the mice was
measured before operation and 4, 7, 14, 21, and 28 days after
operation. No intra-operative or post-surgical complications
were observed in this study.

Novel Object Recognition Test (NORT)
Four weeks after sham or BCAS operation, mice were tested for
short-term recognition memory by NORT between 8 and 10 am,
as previously described with slight modifications (Wang et al.,
2004; Kleschevnikov et al., 2012; Ohtomo et al., 2020). Briefly,

mice were placed in a clean empty cage for 10 min. Mice were
then exposed to two identical objects in the same cage for 5 min
(acquisition period). After an interval of 30 min, mice were then
presented with two different objects (one original and one novel
object, which were placed in the same position as the objects in
the acquisition period) in the same cage for 5 min (retention
period). Object recognition was videotaped and scored by the
total investigation time either sniffing or touching the object. The
performance of short-term recognition memory was described by
the ratio of the time spent on the new object to the total time spent
on both objects minus 0.5 (e.g., Discrimination index: ranged
from −0.5 to 0.5). Experiments and analyses were conducted by
an investigator who was blinded to the group allocation.

Corpus Callosum Sampling
One day after NORT, mice were transcardially perfused with ice-
cold 0.9% physiological saline followed by decapitation. Brains
were then removed and cooled in ice-cold Hanks’ Balanced Salt
Solution for 1 min. After removal of meninges and the choroid
plexus, the cerebrum was sliced into five coronal sections using
a brain matrix. To minimize inclusion of tissue outside of the
corpus callosum., the thicker parts of the corpus callosum from
the 2nd and 3rd slices were isolated with direct visualization using
a light microscope. Samples of the corpus callosum were put into
an RNA free tube and then quickly frozen using liquid nitrogen.

RNA Extraction
RNA extraction from the corpus callosum samples was
performed using QIAzol R© (QIAGEN, Germany) following
manufacturer’s instructions. Briefly, sonicated tissue was
resuspended in 1 ml of ice-cold QIAzol, and 0.2 ml of chloroform
was added to the lysate. After mixing by Vortex Mixer, the tube
was centrifuged for 15 min at 12,000 g. The supernatant was then
transferred to another tube, and the same amount of propanol
was added. After centrifugation for 10 min at 12,000 g, the
supernatant was aspirated, and 1 ml of 75% ethanol was added.
Finally, the tube was centrifuged for 5 min at 7,500 g, followed by
suspension with nucleus-free water. The amount and purity of
purified RNA was measured by NanoDrop Spectrophotometers.
The RNA sample was stored at −80◦C before use.

RNA Sequencing (RNAseq)
Three RNA samples from each group were randomly selected
for RNAseq experiments. Library preparation and RNAseq was
performed by Genewiz, Inc. (NJ, United States). Libraries for
RNAseq were prepared based on the PolyA selection method,
and RNAseq was performed by Illumina HiSeq 2 × 150 bp
sequencing (single index). The raw data was obtained in FASTQ
format, and Kallisto (ver. 0.46.2) was used for quantifying the
abundance of transcripts, expressed as transcript per kilobase
million (TPM). The bioinformatics analysis was conducted using
the R software (ver. 4.0.0). DESeq2 was used for differential
expression analysis, and the level with adjusted p-value <0.1
was set to filter differential expression genes (DEGs). Metascape
was used for the gene set enrichment analysis (Tripathi et al.,
2015). The sequence data (FASTQ files) were deposited under the
accession #PRJNA727284.
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FIGURE 1 | Body weight changes and cognitive function after cerebral hypoperfusion. (A) Body weight changes after cerebral hypoperfusion. There was no
significant difference between sham-operated and BCAS-hypoperfusion mice. Data are expressed as mean ± SD. N = 6 each. (B) Cognitive function was assessed
by NORT at 4 weeks after sham or BCAS operation. While sham-operated mice accessed the novel object, BCAS-hypoperfusion mice did not show any preference
between the novel and familiar objects. Data are expressed as mean ± SD. N = 6 each. *p < 0.05.

Statistical Methods
Statistical analysis was conducted by unpaired t-test for the
NORT data and two-way repeated-measures analysis of variance
followed by post hoc multiple comparisons test for the body
weight data. Differences with p < 0.05 were considered
statistically significant, and data were expressed as mean ± SD.

RESULTS

To prepare a mouse model of SIVD, 2-month-old male C57BL/6J
mice were subjected to bilateral common carotid artery stenosis
(BCAS) by placing microcoils on both common carotid arteries.
There was no significant difference in body weight between sham-
and BCAS-operated groups up to 4 weeks after hypoperfusion
(Figure 1A). In the novel object recognition test (NORT),
BCAS-operated mice showed no preference between familial and
novel objects, whereas sham-operated mice spent more time
investigating the novel object (Figure 1B), confirming that 4-
week cerebral hypoperfusion caused cognitive decline.

We next isolated RNA samples from the corpus callosum
region of mice that have been subjected to BCAS-hypoperfusion
for 4 weeks (Figure 2A). The quality of our RNA samples
and RNA sequencing was high (Supplementary Table 1), and
transcription levels of oligodendrocyte markers (Mbp and Mobp)
were significantly higher than the cortical neuron markers (Reln
for layer I, Rasgrf2 for layer II/III, Pou3f2 for layers II-V,
and Foxp2 for layer IV) (Figure 2B), confirming the purity
of our corpus callosum samples. In addition, the principal
component analysis (PCA) indicated that the cluster of sham
mice data were distinct from the cluster of BCAS mice data
(Figure 2C). The MA plot (Figure 2D) and the volcano plot
(Figure 2E) revealed that while the gene expression changes
caused by 4-week cerebral hypoperfusion were relatively mild,
there were several upregulated or downregulated genes in the

corpus callosum of hypoperfused mice. The list of differentially
expressed genes between sham- and BCAS-operated mice is
provided in Supplementary Table 2.

Finally, we conducted a gene ontology analysis to identify the
signaling pathways that were enriched in the upregulated
or downregulated genes after cerebral hypoperfusion.
For the upregulated genes, pathways that are related to
oligodendrocyte/myelin formation and vascular development
were highly enriched (Figure 3 and Supplementary Table 3).
For the downregulated genes, pathways that are related to the
negative regulation of synapse organization and cell-cell adhesion
were highly enriched (Figure 4 and Supplementary Table 3).

DISCUSSION

In this study, we used RNA sequencing analyses to examine
transcriptomic changes in the mouse corpus callosum after
4 weeks of cerebral hypoperfusion. Our initial findings suggest
that (i) transcriptomic changes in the mouse corpus callosum
were relatively mild, (ii) upregulated genes were related to
pro-oligodendrogenic and pro-angiogenic pathways, and (iii)
downregulated genes were related to cell-cell adhesion pathways.
These findings have the potential to lay the groundwork for the
research identifying and developing effective therapies for SIVD
and other white matter-related diseases.

One major innovation of this study is the study of gene
expression in the corpus callosum region using RNAseq.
White matter dysfunction is a major feature of many CNS
diseases; however; basic research of CNS diseases has mostly
focused on the pathological mechanisms of gray matter. This
is partly because the volume of white matter is much smaller
than that of gray matter in rodents (Zhang and Sejnowski,
2000). However, some rodent models of CNS diseases could
be used to examine the pathological mechanisms in cerebral
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FIGURE 2 | Gene expression changes in mouse corpus callosum after 4-week cerebral hypoperfusion. (A) Diagram for corpus callosum preparation. Four weeks
after sham or BCAS operation, mice were sacrificed, and the corpus callosum samples were prepared. From each group, three mice were used for the RNAseq
studies. CC: corpus callosum. (B) Gene expression levels of oligodendrocyte markers (Mbp and Mobp) were much higher than that of cortical neuron markers (Reln
for layer I, Rasgrf2 for layer II/III, Pou3f2 for layers II-V, and Foxp2 for layer IV). (C) The principal component analysis (PCA) plot. (D) The MA plot. Blue dots represent
the genes with adjusted p-value < 0.1 against the sham group. (E) The volcano plot. The red dots represent the genes that showed | log2 fold change| > 0.3 with
adjusted p-value < 0.1 against the sham group. Please see Supplementary Table 2 for the list of differentially expressed genes between sham- and
BCAS-operated mice.

white matter (Arai and Lo, 2009). For example, the BCAS-
hypoperfusion model is now well-accepted as a mouse model
of SIVD (Ihara and Tomimoto, 2011; Ihara et al., 2014), and
our current data support and confirm its utility in the study
of cognitive decline along with white matter damage. It is
expected that oligodendrogenesis pathways would be activated
in the mouse corpus callosum after cerebral hypoperfusion
because in young mice, the numbers of oligodendrocyte
precursor cells (OPCs) and newly generated oligodendrocytes
were reported to be transiently increased as a compensatory
response after hypoperfusion (Miyamoto et al., 2013b; Arai,
2020). While no studies have carefully examined the angiogenic
responses in the BCAS-hypoperfused mice so far, activation of
angiogenic responses had been confirmed in multiple rodent
models of white matter damage (Kanazawa et al., 2019;

Rust, 2020; Shindo et al., 2021). Interestingly, a microarray
study using corpus callosum samples from 3-day cerebral
hypoperfusion mice showed an upregulation of angiogenesis-
related genes (Reimer et al., 2011). Thus, upregulation of
angiogenic pathways would also be expected in the corpus
callosum after cerebral hypoperfusion. In addition, our findings
that cell-cell adhesion genes were downregulated after cerebral
hypoperfusion is consistent with the idea that plasticity of the
micro-environment contributes to brain repair/remodeling after
injury (Lo, 2008). Furthermore, Rtn4r12 was one of the most
significantly downregulated genes in the hypoperfused-BCAS
mice. Rtn4r12 encodes Reticulon-4 receptor-like 2 (also known
as Nogo-66 Receptor Homolog NgR2), which is a receptor for
myelin-associated glycoprotein (MAG) and acts selectively to
mediate MAG inhibitory responses (Venkatesh et al., 2005).
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FIGURE 3 | Gene set enrichment analysis of upregulated genes. (A) A heatmap of enriched terms across the input genes list. Darker colors indicate smaller p
values. Upregulated genes were related to the pathways for oligodendrogenesis (GO: 0048709 and GO: 0007272) and angiogenesis (GO: 0001568). Please see
Supplementary Table 3 for the list of enriched terms of upregulated genes. (B) Metascape enrichment analysis confirms the close relationship between GO:
0048709 (oligodendrocyte differentiation) and GO: 0007272 (ensheathment of neurons). Clustering was made based on similarity (similarity > 0.3).

Taken together, our database of gene expression profiles in the
mouse corpus callosum after 4-week cerebral hypoperfusion
will be useful to examine the pathological mechanisms of
white matter damage/recovery in SIVD and other white matter-
related diseases.

Although our study showed that multiple pathways were
affected by cerebral hypoperfusion in mouse corpus callosum,
it should be noted that the transcriptomic changes after 4-
week cerebral hypoperfusion were mild, with only a few genes
exhibiting changes of more than 2-fold or less than 0.5-fold.
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FIGURE 4 | Gene set enrichment analysis of downregulated genes. (A) A heatmap of enriched terms across the input genes list. Darker colors indicate smaller p
values. Downregulated genes were related to the pathways that mediate negative regulation of synapse organization (GO: 1905809) and cell-cell adhesion (GO:
0098609 and GO: 0098742). Please see Supplementary Table 4 for the list of enriched terms of downregulated genes. (B) Metascape enrichment analysis.
Clustering was made based on similarity (similarity > 0.3).

This is partly because the stress of cerebral hypoperfusion
by BCAS is prolonged and mild but not acute and severe
(Shibata et al., 2004), thus causing a gradual detrimental effect
on gene expression in the corpus callosum region. This mild
change in gene expression pattern after cerebral hypoperfusion
in mice is consistent with previous reports. While our study is the
first RNAseq experiment for profiling transcriptomic changes in
the corpus callosum after cerebral hypoperfusion, one previous
study used microarray analyses with corpus callosum samples of
BCAS-hypoperfusion mice and showed that the gene expression
changes from 2-week to 6-week after hypoperfusion were mild,
matching our current findings (Ohtomo et al., 2018). Based on
our findings, future studies are warranted to expand the map
of gene expression profiles in the corpus callosum of BCAS-
hypoperfused mice with different sets of conditions, such as male

vs. female, young vs. old, and early vs. late time points after
cerebral hypoperfusion. Because OPC functions display some
sex-associated differences (Yasuda et al., 2020) and because aging
dampens the compensatory response of OPCs and endothelial
progenitor cells (Miyamoto et al., 2013b; Pradillo et al., 2019),
understanding how these variables affect transcriptomic profiles
of the corpus callosum after hypoperfusion may be a key step in
finding novel therapeutic approaches for SIVD and other white
matter-related diseases.

This study provides a novel dataset of gene expression profiles
in the corpus callosum in BCAS-hypoperfused mice. However,
there are several caveats to keep in mind. First, our current
study is somewhat preliminary and descriptive, and our finding
is not directly related to identification of a therapeutic target
for SIVD. Within the differentially expressed gene list from our
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study, Sp7 showed the most significant difference. Sp7, also
called Osterix, is a transcription factor, which plays a role in
driving the differentiation of mesenchymal precursor cells into
osteoblasts and eventually osteocytes (Sinha and Zhou, 2013).
While its role in cerebral white matter is mostly unknown, it
was reported that Sp7 is highly expressed in oligodendrocytes
(Tabula Muris Consortium, 2018) and would participate in
oligodendrocyte maturation (He et al., 2016). Therefore, it is
possible that examining the roles of Sp7 in white matter damage
and recovery could lead to a novel therapeutic target for SIVD.
Second, although we focused on mRNA profiles, there are
multiple pseudo-genes in our differentially expressed gene list
(Supplementary Table 4), and some of the pseudo-genes, such
as Gm24270 and Gm23935, are known to function as miRNA.
Future research of changes in the expression of pseudo-genes may
enable a deeper understanding of the complex mechanisms of
white matter pathology in SIVD. Lastly, the use of “bulk” corpus
callosum samples in our study leaves open the possibility that
significant changes in gene expression in some cell types may have
been missed. It will be useful for future studies to examine gene
expression profiles with single cell RNA sequencing to further our
understanding of transcriptomic profiles of corpus callosum after
cerebral hypoperfusion.

In summary, this preliminary study provides the first database
of gene expression profiles in the mouse corpus callosum after 4-
week cerebral hypoperfusion. This database may be useful as an
initial framework for future investigations of effective therapeutic
approaches for SIVD and other white matter-related diseases.
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