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Mesenchymal stem/stromal cells (MSCs) are present in various body tissues and help
in maintaining homeostasis. The stemness of MSCs has been evaluated in vitro. In
addition, analyses of cell surface antigens and gene expression patterns have shown
that MSCs comprise a heterogeneous population, and the diverse and complex nature
of MSCs makes it difficult to identify the specific roles in diseases. There is a lack of
understanding regarding the classification of MSC properties. In this review, we explore
the characteristics of heterogeneous MSC populations based on their markers and gene
expression profiles. We integrated the contents of previously reported single-cell analysis
data to better understand the properties of mesenchymal cell populations. In addition,
the cell populations involved in the development of myeloproliferative neoplasms (MPNs)
are outlined. Owing to the diversity of terms used to describe MSCs, we used the
text mining technology to extract topics from MSC research articles. Recent advances
in technology could improve our understanding of the diversity of MSCs and help us
evaluate cell populations.

Keywords: mesenchymal stem cells, heterogeneity, stem cell characterization, cell surface marker,
myeloproliferative neoplasm, single-cell analysis

INTRODUCTION

Tissue formation during vertebrate development is a spatiotemporally dynamic process. Skeletal
stem cells (SSCs) and mesenchymal stem/stromal cells (MSCs) are involved in tissue formation
(Bianco et al., 2006, 2013; Chan et al., 2015; Worthley et al., 2015; Kurenkova et al., 2020).
The MSCs present in adults are derived primarily from the mesoderm and partly from the
neural crest (Takashima et al., 2007; Nagoshi et al., 2008; Isern et al., 2014). MSCs were first
identified by Freidenstein and colleagues who reported that cells in the BM were capable
of transforming into bone tissue (Friedenstein et al., 1968, 1974); they were subsequently
isolated from somatic tissues, including dental pulp, synovium tissue, and adipose tissue
(Ogata et al., 2015; Yasui et al., 2016; Suto et al., 2020). MSCs in adult bone marrow (BM)
are defined as cells with the ability to differentiate into cells of mesenchymal lineage and
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can be cultured using serum-containing media. The essential
features of the MSC populations have been defined by the
International Society for Cell Therapy as follows: (1) adhesion
to plastic surfaces under culture conditions, (2) expression of
cell surface markers CD44, CD90, CD105, and CD73, (3) lack
of expression of hematopoietic markers, and (4) the ability
to differentiate into osteoblasts, chondroblasts, and adipocytes
(Dominici et al., 2006). The presence of MSCs was confirmed
in the human BM and their potential application in medical
treatments was suggested owing to their pluripotency and ability
to readily proliferate in vitro (Pittenger et al., 1999; Bianco et al.,
2008; Crisan et al., 2008). Although these cells can differentiate
into cells of the mesenchymal lineage in vitro, there is insufficient
evidence as to whether they can differentiate under physiological
conditions (Sacchetti et al., 2016). Prolonged culture of MSCs
in vitro leads to a significant loss of the differentiation and
proliferation potentials (Kim et al., 2009).

Research on MSCs thus far can be roughly divided into
three stages. The first stage involved the discovery of MSCs and
the analysis of their multi-lineage potential (1970 onward), the
second constitutes functional analysis, which remains a subject
of investigation, using transplantation in mouse models (from
2000 onward), and the medical application of MSCs represents
the third stage. MSC transplantation therapy has been used as
a substitute for the long-term transplantation of mesenchymal
tissue (Bianco et al., 2013). The next stage of research on
MSCs could establish them as mediators of inflammation and as
source of transiently expressed secretory factors (cytokines and
exosomes), a phenomenon that could have various applications
(El Agha et al., 2017). MSCs have been used in regenerative
medicine; however, the mechanism of action of these cells
remains to be determined. The underlying limitation is that
the MSC population is heterogeneous. Furthermore, MSCs have
been isolated based on culture conditions and defined by cell
surface antigens. Consequently, there is a lack of a common
understanding regarding the high-resolution indicators of MSC
properties in current research.

Previous studies have suggested that the expression of cell
surface markers may alter under certain culture conditions (Stagg
et al., 2006). In other words, in vitro culture and the identification
of cell surface antigens cannot serve as sole guarantors of
stemness. To define a cell as a stem cell, it must meet functional
criteria in addition to presenting a specific cell surface antigen
profile (Nolta et al., 2020). The information gained from single-
cell technology elucidates the stem cell property and establishes
new criteria for identification (Tanay and Regev, 2017; Stuart and
Satija, 2019). This review focuses on the heterogeneity of mouse
BM-MSCs. In addition, we discuss the pathophysiology of MSC-
related diseases, which have been actively studied in recent years.

DISSECTING MSCs USING CELL
SURFACE MARKERS AND
TRANSCRIPTIONAL PROFILES

Hematopoietic stem cells (HSCs) have been identified using
purification techniques that target cell surface antigens (Positive

markers for Sca-1, c-Kit, and CD150; Negative markers for
Lineage, CD34, CD48, and CD135) (Osawa et al., 1996; Notta
et al., 2011; Doulatov et al., 2012). MSCs have been reported in
the non-hematopoietic fraction, both human and mouse MSCs
have been identified based on the negative expression of surface
markers (leukocyte common antigen: CD45, platelet endothelial
cell adhesion molecule: CD31, and erythroid cell marker). Some
of the positive markers used are common to humans and mice
(CD73, CD90, and CD105) (Mabuchi et al., 2013a). However,
the specific positive marker used tend to be different for each
species [for human: CD146, and CD271, for mouse: CD140a, Sca-
1, and CD295 (leptin receptor)] (Sacchetti et al., 2007; Morikawa
et al., 2009; Mabuchi et al., 2013b; Zhou et al., 2014). Although
it is possible to concentrate MSCs with cell surface antigens,
the purified MSC population may be functionally heterogeneous
(proliferative and differentiating capacity) (Mabuchi et al., 2013b;
Rennerfeldt and Van Vliet, 2016; Costa et al., 2021). MSCs are
present in extramedullary sites and the gene expression profile
and differentiation ability of these cells have been reported to
differ depending on the tissue of origin (Ogata et al., 2015). The
current stem cell definition criteria require the demonstration
of self-renewal ability in vivo, which is usually tested through
transplantation procedures (Sacchetti et al., 2007; Mendez-Ferrer
et al., 2010). Donor stem cells are tracked using genetic markers
such as the Y chromosome and expression reporters such as
GFP and lacZ. For accurate analysis of stem cell capacity, it is
important to prospectively purify the donor cells and assess their
clonality. In addition, it is necessary to evaluate the presence
of transplanted cells as well as the in vivo functions of these
cells. To understand the plasticity and biological role of MSCs,
lineage tracing of donor cells is essential. However, an unresolved
issue after MSC transplantation is their inefficient and transient
engraftment; hence, the true function and properties of these
cells remain unclear.

Cellular heterogeneity is a universally recognized feature
of living tissues and cells, including MSCs (Rennerfeldt and
Van Vliet, 2016; Costa et al., 2021). Even in nearly pure cell
populations, gene expression profile can vary in individual
cells due to variation in intrinsic regulatory systems and
the extrinsic microenvironment. Human MSCs isolated under
criteria established by The International Society for Cell Therapy
are difficult to distinguish from similar cell populations and
are not well characterized. Transcriptomics could be used to
determine well-defined MSC gene signature. RNA-Seq results
from MSC primary cultured cells from human BM and placenta
were consistent with standard MSC marker expression levels
(Roson-Burgo et al., 2014). Conversely, when the expression
of CD146, nestin, and CD271 was confirmed in placenta-
derived cells, the expression of only CD146 and nestin was
detected (Roson-Burgo et al., 2014). In addition, integration
of several public datasets (microarray and RNA-Seq datasets)
demonstrated that tissue-specific gene expression patterns of
adipose tissue, chorionic placenta, BM mesenchymal stem cells,
and cutaneous fibroblasts can be obtained (Roson-Burgo et al.,
2016). MCAM (CD146) is a common marker in this subtype
of MSCs (Sacchetti et al., 2007). Gene expression in BM-
MSCs, HSCs, lymphocytes, fibroblasts, and osteoblasts has been
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used to create regulatory gene networks (Roson-Burgo et al.,
2016). These algorithms were used to identify potential master
regulators of genes that are upregulated in BM-MSCs and genes
that exhibit hypomethylation (EPAS1, NFE2L1, SNAI2, STAB2,
TEAD1, and TULP3) (Sanchez-Luis et al., 2020). Furthermore,
the gene encoding Frizzled 5, i.e., FZD5 is highly expressed
in undifferentiated human MSCs, indicating that not only
canonical but also non-canonical Wnt signaling is important for
maintaining stemness (Harada et al., 2020). These findings may
be used as a functional indicator of MSCs.

BIOLOGICAL FUNCTION OF THE
HEMATOPOIETIC NICHE AND STROMAL
CELLS

A stem cell niche is defined as the microenvironment where
stem cells reside and receive stimuli that determine their fate.
The niche of HSCs was first proposed by Schofield (1978) and
the existence of various other niches that maintain stem cells
throughout life has since been reported (Yamazaki et al., 2011;
Ding et al., 2012). Like other adult stem cells, MSCs maintain
their capacity for self-renewal and differentiation into various
cell types, while maintaining a relatively steady stem cell pool
during their lifespan (Mendez-Ferrer et al., 2010; Kfoury and
Scadden, 2015). The stem-cell niche provides a physical location
that supports stem cells (closed niche). However, some tissues
harbor less physically constrained niches that provide a more
complex system for supporting stem cells (open niche) (Watt
and Hogan, 2000; Yoshida, 2018). Spermatogenic stem cells are
interspersed among differentiating progeny while undergoing
self-renewal and differentiation. Some spermatogenic stem cells
proliferate and other spermatogenic stem cells exit the stem cell
compartment after differentiation (population asymmetry). In an
“open niche” microenvironment, self-renewal and differentiation
are perfectly balanced at the population level (Hara et al.,
2014). The BM HSC niche is in line with the closed niche
concept, although it contains a variety of cell types including
osteoprogenitors, fibroblastic reticular cells and endothelial
cells, and it is directly influenced by other cell types, such
as macrophages, megakaryocytes, Treg cells, nerve fibers, and
associated Schwann cells (Crane et al., 2017).

Cells with varied potential exist in the adult BM; hence, the
purification method can result in differences in apparent stem
cell capacity, which can lead to different results. For example,
some stem cell markers (such as CD34) are expressed in a
dynamic pattern and are associated with the activation state
of the stem cells (Sato et al., 1999). Stem cell phylogenetic
tracking is necessary to distinguish between the heterogeneity
of the stem cell population and the plasticity of the cellular
response in vivo. Moreover, the diversity of stem cell types
in the BM should be considered in studies based on cultured
MSCs. Clinical therapies require large numbers of MSCs and
cell growth in vitro. However, long-term in vitro culture can
negatively affect stem cell capabilities (Turinetto et al., 2016).
Reports have shown that the stiffness of the hydrogel in which
MSCs are encased for experiments can affect cytokine secretion

and immunomodulatory marker expression in MSCs (Darnell
et al., 2018). Furthermore, the properties of MSCs vary with
cell density, while the angiogenesis-promoting properties of
MSCs may be lost in certain culture conditions (Ren et al.,
2015). The BM microenvironment provides an environment that
affects not only HSCs but also various other cells. The BM
environment is rich in cytokines and growth factors and may
be particularly important for maintaining the developmental
potential and plasticity of these cells. This plasticity and cell
heterogeneity is the result of biological defense that maintains
a wide range of developmental and differentiation abilities in
response to various disorders and stresses before their fate is
determined. In adults, the broad capacity of these cells may be
maintained by the microenvironment in closed tissues such as
BM. Several reports have described morphological and functional
changes in BM stromal cells due to disruption of the niche
mechanisms in patients with various hematological diseases
(Schepers et al., 2015). Hence, niche cells are diverse, and
important for pathophysiology of blood diseases.

Mesenchymal-derived cells, which are widely distributed in
the BM, have been reported as important players in the HSC
niche. These cells, which include Cxcl12-rich reticular (CAR)
cells and leptin receptor (LepR) expressing cells, have been shown
to overlap with cells marked with GFP under the regulatory
element of the nestin promoter (Nes-GFP+) (Sugiyama et al.,
2006; Mendez-Ferrer et al., 2010; Ding et al., 2012). Whole-
mount image analysis showed that stromal cells with a bright
GFP signal in Nes-GFP+ cells were associated with BM arterioles
(NG2 positive). Meanwhile, Nes-GFP+ cells with low GFP levels
were distributed in sinusoidal capillaries (LepR-Cre positive)
(Kunisaki et al., 2013). Deletion of Scf or Cxcl12 from Nes-GFP+
cells depleted BM-HSCs. Conditional removal of Scf from LepR-
Cre/tdTomato+ cells reduced the number of BM HSCs (Ding
et al., 2012; Oguro et al., 2013). Selective deletion of Cxcl12
from NG2-Cre/tdTomato+ cells caused the HSCs to decrease and
altered HSC localization in BM (Asada et al., 2017). Regarding the
effect of HSCs on peripheral mobilization, LepR-Cre/tdTomato+
cells were induced by the deletion of Cxcl12 (Ding and Morrison,
2013). By classifying Nes-GFP+ cells into clusters, it became
possible to prove the contribution of different cytokines in BM-
niche cells (Ding and Morrison, 2013; Asada et al., 2017). LepR+
cells are a major source of bone and adipocytes in the adult BM
and proliferate and are able to produce mesenchymal lineage
cells in response to injury and transplant (Zhou et al., 2014; Yue
et al., 2016). Osterix (Osx), a marker of mature osteocytes, is
not expressed in Nestin-GFP or LepR+ cells, however, neonatal
Osx-Cre-ERT2-labeled cells are precursors of LepR+ and Nestin-
GFP cells in the adult BM (Mizoguchi et al., 2014). In the
adult BM, after radiation or chemotherapy, adipocytes become
abundant, while LepR+ cells are reduced (Zhou et al., 2014).
Adipoq-Cre/ER+ progenitor cells proliferate after irradiation and
generate BM adipocytes that secrete Scf (Zhou et al., 2017). The
effects of niche cell depletion on various hematopoietic cells need
to be analyzed, including the association between the influencing
cell types and their offspring; experiments using reporter mice
are limited. Comprehensive niche cell analysis using an unbiased
analysis method is considered important.
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CHARACTERIZATION OF
NON-HEMATOPOIETIC CELLS AT
SINGLE-CELL RESOLUTION

The scRNA-seq is a powerful tool for characterizing such
heterogeneous cell populations (Tanay and Regev, 2017;
Stuart and Satija, 2019), allowing rapid analysis of MSC
diversity. Previous reports identified mouse SSCs (mSSCs:
CD45−Ter119−Tie2−AlphaV+Thy−6C3−CD105−CD200+)
have differentiation potential similar to that of MSCs (Chan
et al., 2015). The authors used scRNA-seq to compare human
SSCs (hSSCs: PDPN+CD146−CD73+CD164+) from fetal
BM, adult BM, adipose stroma, and iPSC-derived cells. This
showed that adult hSSCs were heterogeneous compared to
fetal, adipose stroma-derived, or iPSC-derived hSSCs. It was
suggested that single-cell analysis results yield dissimilar
profiles, even though they are functionally similar in terms
of differentiation ability (Chan et al., 2018). Previous reports
have shown that the BM stroma fraction has different cellular
functions in Nes-GFPbright (NG2+), Nes-GFPdim (LepR+),
and Nestin negative cells (Mendez-Ferrer et al., 2010; Kunisaki
et al., 2013). High-resolution classification of MSC populations
using scRNA-seq and attempts to classify the niche cells
surrounding HSCs are ongoing as previously reported (Table 1;
Baryawno et al., 2019; Tikhonova et al., 2019; Wolock et al.,
2019; Baccin et al., 2020; Leimkuhler et al., 2020; Zhong
et al., 2020). Moreover, crosstalk between cancer cells and
mesenchymal populations impairs normal tissue function,
leading to cancer development (Baryawno et al., 2019). scRNA-
seq from mouse stromal cells has shown that the development
of AML impairs mesenchymal cells-induced bone formation
and differentiation, and suppresses the regulatory molecules
required for normal hematopoiesis (Baryawno et al., 2019).
The transcriptional landscapes of vascular, perivascular, and
osteoblast cell populations of mouse BM during homeostasis and
under stress-induced conditions have also been mapped using
scRNA-seq (Tikhonova et al., 2019). Vascular Notch delta-like
ligand, which is encoded by Dll1 and Dll4, is downregulated
after intraperitoneal administration of fluorouracil (Tikhonova
et al., 2019). These MSC populations represented by Nestin
and LepR have similar gene expression (Cxcl12, Kitl, Angpt1,
and Spp1) (Mendez-Ferrer et al., 2010; Kunisaki et al., 2013;
Baryawno et al., 2019; Tikhonova et al., 2019). These populations
can be further sub-divided into 3–4 subsets using Nestin,
Grem1, Angpt1, and Spp1 gene expressions (Baryawno et al.,
2019; Tikhonova et al., 2019). The expression of key genes
indicating MSC gene expression (Cxcl12, Kitl) is also common
to scRNA-seq data from other researchers (Wolock et al., 2019;
Baccin et al., 2020; Leimkuhler et al., 2020). Molecules identified
as MSC surface markers (Sca-1, Pdgfra, and Thy-1) were also
specifically expressed (Baccin et al., 2020; Leimkuhler et al., 2020;
Zhong et al., 2020).

Integration of scRNA seq data suggests that non-MSC
fractions in the BM can also vary (Table 1). A “Progenitor”
population has been identified to express Postn (Periostin) and
adipocyte-related genes (Pparg, Lpl, and Adipoq) (Wolock et al.,
2019; Zhong et al., 2020). Cell populations that are committed

to differentiate into cells of the bone lineage are identified as
“Osteo-lineage cells.” Bone-related genes (Col1a1, Bglap, and
Sp7) are prominently expressed in the Osteo-lineage fraction
(Baryawno et al., 2019; Tikhonova et al., 2019; Wolock et al.,
2019; Baccin et al., 2020; Leimkuhler et al., 2020; Zhong et al.,
2020). “Chondro-lineage cells” are characterized by expression
of genes such as Sox9 and Acan (Baryawno et al., 2019; Wolock
et al., 2019; Baccin et al., 2020; Zhong et al., 2020). The cell
population labeled “Fibroblasts” is diverse and includes the above
stem cells and cells that do not belong to lineage cells. The
“Fibroblasts” population seems to contain more than four subsets
(Baryawno et al., 2019; Baccin et al., 2020; Leimkuhler et al.,
2020). Interestingly, even the endothelial cells present in the
BM seem to have two cell population (Baryawno et al., 2019;
Tikhonova et al., 2019; Baccin et al., 2020). The BM vasculature is
composed of two main types of blood vessels, i.e., arterial blood
vessels and sinusoids. These results are supported by previous
findings that arterial endothelial cells exhibit an elongated nuclear
morphology (express Sca-1 and nestin markers) and that sinusoid
endothelial cells exhibit a rounded nuclear morphology (do not
express Sca-1 and nestin) (Itkin et al., 2016). Heterogeneity has
been reported in established cell populations such as “Pericytes”
(Acta2) and “Schwann cells” (Mog) (Baryawno et al., 2019;
Baccin et al., 2020; Leimkuhler et al., 2020).

Single-cell technology has made remarkable progress in
recent years, e.g., Quartz-seq, Drop-seq, and RamDA-seq (RNA)
(Sasagawa et al., 2013; Macosko et al., 2015; Hayashi et al.,
2018), SCI-seq (genome sequence) (Vitak et al., 2017), scBS-
seq (DNA methylation) (Smallwood et al., 2014), scATAC-
seq (chromatin accessibility) (Buenrostro et al., 2015), scChip-
seq (histone modification) (Gomez et al., 2013), and smFISH
(spatial positioning) (Raj et al., 2008). Further, technologies
have been established by coupling with scRNA-seq for providing
higher-resolution information. There are single-cell methods
that combine with surface antigens (REAP-seq and CITE-
seq) (Peterson et al., 2017; Stoeckius et al., 2017) and lineage
tracing technology (Alemany et al., 2018; Raj et al., 2018;
Spanjaard et al., 2018). Single-cell protein analysis using mass
spectrometry (CyTOF) has been used to analyze BM stromal
mapping under homeostatic and stress conditions (Severe et al.,
2019). Irradiation eliminated most of LepR+ and Nestin+ niche
populations during HSC transplantation. The CD73+NGFRhigh+

population was retained and expressed high levels of niche
cytokines (Severe et al., 2019). The expression mapping at
single-cell protein revealed information regarding different sets
of stromal cells in the BM and provided alterations upon
exposure to stressful environments at high resolutions. In
addition, single-cell atlases are available for tissues and organs,
including adipose tissue (Sun et al., 2020), heart (Litvinukova
et al., 2020), lungs (Travaglini et al., 2020), lymph nodes
(Rodda et al., 2018), and hair follicles (Gupta et al., 2019).
The, single-cell technology has revealed a larger subset of
cells and specific marker genes, which may help explain the
regulatory networks underlying physiological and pathological
conditions (Buechler et al., 2021). These reports have improved
our understanding of the identity of tissue-specific cell types and
tissue diseases.
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TABLE 1 | Classification of mouse BM cell population.

Cell type Name Specific genes Population Spices Analysis sample References

MSC Nestin-MSC Nestin, Cxcl12, Kitl,
Angpt1, Vcam1, Spp1

3 subsets Mouse CD45 (-) Mendez-Ferrer et al., 2010 Nature
Kunisaki et al., 2013 Nature

MSC Lepr-MSC Lepr, Cxcl12, Kitl,
Angpt1, Adipoq

4 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

MSC LEPR + Lepr, Mgp, Lpl, Wif1,
Spp1, Ibsp1

4 subsets Mouse lineage-specific Cre-transgenic
mice

Tikhonova et al., 2019 Nature

MSC Mesenchymal stromal cells,
Pre-adipocyte

/Adipocyte

Cxcl12, Kitl, Spp1,
Adipoq,

3 subset Mouse CD45 (-)
CD31 (-)
Ter119 (-)

Wolock et al., 2019 Cell Reports

MSC Mesenchymal progenitors (Early) Ly6a (Sca-1), Thy1,
Mfap5, Clec3b

2 subsets Mouse Col2- lineage-specific
Cre-transgenic mice

Zhong et al., 2020 eLife

MSC Mesenchymal stromal cells Pdgfra, Lepr, Cxcl12, Kitl,
Pdgfrb

4 subsets Mouse BM fibrosis model Leimkuhler et al., 2020 Cell Stem Cell

MSC Adipo-CAR Cxcl12, Kitl, Pdgfra,
Vcam1

2 subsets Mouse Baccin et al., 2020 Nat Cell Biol

Progenitor Pre-osteo/chondrocyte progenitor Postn, Wif1, Mmp9,
Kcnk2, Limch

2 subsets Mouse CD45 (-)
CD31 (-)
Ter119 (-)

Wolock et al., 2019 Cell Reports

Progenitor Mesenchymal progenitors (Late) Tnn, Postn, Ostn, Dkk3 1 subset Mouse Col2- lineage-specific
Cre-transgenic mice

Zhong et al., 2020 eLife

Progenitor Adipocyte progenitor Cebpa, Pparg, Lpl,
Adipoq, Apoe

1 subset Mouse Col2- lineage-specific
Cre-transgenic mice

Zhong et al., 2020 eLife

Osteo-lineage cells Osteolineage cells Runx2, Sp7, Bglap 2 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

Osteo-lineage cells COL2.3+ Col1a1, Col16a1, Fbn1,
Bglap, Tnn

3 subsets Mouse lineage-specific Cre-transgenic
mice

Tikhonova et al., 2019 Nature

Osteo-lineage cells OSTEO-CAR, Osteoblasts,
Ng2+MSCs

Bglap, Sp7, Spp1 3 subsets Mouse Baccin et al., 2020 Nat Cell Biol.

Osteo-lineage cells Pro-osteoblast Col1a1, Bglap, Col11a2,
Col11a1, Bglap2

1 subset Mouse CD45 (-)
CD31 (-)
Ter119 (-)

Wolock et al., 2019 Cell Reports

Osteo-lineage cells Osteoblasts/
Osteocyte

Sp7, Runx2, Col1a1,
Ibsp, Bglap2, Dmp1

2 subsets Mouse Col2- lineage-specific
Cre-transgenic mice

Zhong et al., 2020 eLife

Osteo-lineage cells Osteolineage cells Sp7, Bglap, Bglap2, Alpl 1 subset Mouse BM fibrosis model Leimkuhler et al., 2020 Cell Stem Cell

Chondro-lineage
cells

Chondrocytes Sox9, Col11a2, Acan,
Col2a1

5 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

Chondro-lineage
cells

Pro-chondrocyte Dmp1, Ackr3, Spp1,
Ank, Cd44

1 subset Mouse CD45 (-)
CD31 (-)
Ter119 (-)

Wolock et al., 2019 Cell Reports

Chondro-lineage
cells

Chondrocyte Sox9, Col2a1, Acan, Ihh 2 subsets Mouse Col2- lineage-specific
Cre-transgenic mice

Zhong et al., 2020 eLife

Chondro-lineage
cells

Chondrocyte Sox9, Acan 1 subset Mouse Baccin et al., 2020 Nat Cell Biol

Fibroblasts Fibroblasts S100a4, Dcn, Sema3c 5 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

Fibroblasts Fibroblasts Col1a1, Ly6a (Sca-1),
Dcn

4 subsets Mouse Baccin et al., 2020 Nat Cell Biol.

Fibroblasts Arterial Fibroblasts Cd34, Ly6a (Sca-1),
Ly6c1, Sparcl1

4 subsets Mouse BM fibrosis model Leimkuhler et al., 2020 Cell Stem Cell

Endothelial cells Endothelial cells Kdr, Cdh5, Pecam1 3 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

Endothelial cells VE-Cad + Cdh5, Ly6a (Sca-1),
Stab2

2 subsets Mouse lineage-specific Cre-transgenic
mice

Tikhonova et al., 2019 Nature

Endothelial cells Endothelial cells Cdh5, Emcn 2 subsets Mouse Baccin et al., 2020 Nat Cell Biol

Pericytes Pericytes Acta2, Myh11, Rgs5 3 subsets Mouse Lineage (-)
CD71 (-)
Ter119 (-)

Baryawno et al., 2019 Cell

Pericytes Myofibroblasts Acta2 1 subset Mouse Baccin et al., 2020 Nat Cell Biol

Schwann cells Schwann cells Mag, Mog 1 subset Mouse Baccin et al., 2020 Nat Cell Biol

Schwann cells Schwann cell progenitors Mog, Mal, Sox10, Mobp 2 subsets Mouse BM fibrosis model Leimkuhler et al., 2020 Cell Stem Cell
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HETEROGENEITY OF CELLS AND
PATHOPHYSIOLOGY INVOLVED IN MPN

Myeloproliferative disorders (MPDs) are an example of
phenotypic and functional MSC heterogeneity in disease,
which include chronic myeloid leukemia (CML) and BCR-
ABL-negative myeloproliferative neoplasms (MPNs), such as
polycythemia vera (PV), essential thrombocythemia (ET), and
primary myelofibrosis (PMF) (Arber et al., 2016). MPDs are
genetic abnormalities in HSCs that result in the monoclonal
proliferation of one or more types of blood cells, eventually
leading to myelopoietic failure and myelofibrosis osteosclerosis.
CML is caused by a chromosomal translocation, t(9;22), in HSCs
that results in formation of the BCR/ABL1 fusion gene. The
shorter chromosome 22 formed by chromosome translocations
is called the Philadelphia (Ph) chromosome. The ability of HSCs
to differentiate is not inhibited in BM, and granulocytic cells
are markedly increased in CML. PV is a genetic abnormality
occurring at the level of HSCs that results in pancytoplasmic
increase, especially in erythrocytes; more than 95% of PVs
are associated with a mutation in the Janus kinase 2 (JAK2)
gene. ET is a myeloproliferative tumor caused by a genetic
abnormality in HSCs, resulting in abnormal proliferation of
megakaryocytes (MKs), and significant increase in platelet
numbers. Mutations in JAK2 are found in approximately half
of ET cases, with most of the other half carrying mutations
in the calreticulin (CALR) gene. PMF is a myeloproliferative
tumor in which myeloid cells, including MKs, proliferate due
to a genetic abnormality that occurs at the level of HSCs.
This disease is characterized by extensive fibrosis of the BM,
splenomegaly owing to extramedullary hematopoiesis, and
erythroblasts and myeloblasts in the peripheral blood. PMF
patients typically test negative for the Ph BCR/ABL1 gene;
additionally, an associated mutation identified in JAK2 is present
in approximately 50% of MPF cases. However, 10% of PMF
cases are considered triple negative, having none of the three
common mutations (JAK2, MPL, or CALR) (Campbell and
Green, 2006; Cazzola and Kralovics, 2014). In addition to
age and sex, specific genomic mutations have been associated
with the development of MPNs (Tabarroki and Tiu, 2014).
MPN, a clonal disorder of HSCs and the ensuing fibrosis, is
a secondary effect caused by the release of cytokines from
progenitor cells (Jacobson et al., 1978). Abnormal production
of growth factors (PDGF, FGF, VEGF, and TGF-β1) plays
important roles the pathological changes associated with MPNs
(Ciurea et al., 2007; Tomuleasa et al., 2018; Ozono et al., 2020).
Excessive release of growth factors stimulates fibroblasts thereby
inducing fibrosis and unbalanced osteoblast proliferation,
resulting in osteosclerosis and neoangiogenesis (Chagraoui
et al., 2003). Clonal HSC-derived MKs is an important
source of fibrosis-related molecules (Schmitt et al., 2002;
Zetterberg et al., 2014).

The BM microenvironment plays an active and important
role in MPN development (Lataillade et al., 2008). Previous
reports showed a model of MPN in mice driven by conditional
and inducible expression of the human JAK2 (V617) under
Mx1-Cre control was used. Nestin+ MSCs reductions were

consistently confirmed in MPN patients and mouse MPN
models. Interleukin-1b produced by mutant HSCs causes
Schwann cell apoptosis, resulting in a decrease in Nestin+ MSCs
that allows disease progression (Arranz et al., 2014). Gli1+ MSCs
can become myofibroblasts that cause BM fibrosis. It was found
to reduce the severity of fibrosis by inhibiting the proliferation
of Gli1+ cells and the differentiation of myofibroblasts. Gli1
expression is significantly correlated with disease severity, as
human BM fibrosis has similar activity (Schneider et al.,
2017). It has been demonstrated that LepR+ MSCs proliferate
and are involved in fibrosis in MPN model mice in which
Tpo overexpressing BM cells are transplanted into irradiated
mice. Activation of the PDGFRA pathway in LepR+ MSCs
resulted in cell proliferation and extramedullary hematopoiesis
characteristic of PMF (Decker et al., 2017). The crosstalk between
HSCs and these MSC populations and their contributions to
diseases remain to be elucidated (Sena et al., 2017).

In recent years, the Schneider group has succeeded in creating
a comprehensive map of MPN stroma cells at the single-cell
level (Leimkuhler et al., 2020). Comparison of cells before
and after fibrosis showed that the disease stroma cells caused
activation of TGF-β ligands and receptors, leading to abnormal
cell proliferation and increased extracellular matrix secretion
(Leimkuhler et al., 2020). The expression of S100A8/S100A9 in
stroma cell cluster showed significant increase in patient plasma
and mesenchymal tissue in the fibrotic phase of mouse models of
MPN. The upregulated S100A8/S100A9 expression can be a stress
response, which impairs normal hematopoiesis, and induces
genotoxic stress (Schneider et al., 2016). Nestin+ MSC has been
shown to support AML survival and chemotherapy recurrence
through antioxidant defense mechanisms (Forte et al., 2020).
The glutathione-dependent antioxidant pathways emerge as key
players in the crosstalk between BM-MSCs and leukemia stem
cells. Thus, the analysis of MSC diversity and changes in their
properties can elucidate the identification of the cell population
involved in disease and generate new candidate therapies.

DIVERSITY AND COMPREHENSIVE
UNDERSTANDING OF MSC RESEARCH

Different terms, criteria, and acronyms have been used to
refer to MSCs. This diverse nomenclature includes terminology
such as mesenchymal stem cells, mesenchymal stromal cells,
and BM stromal cells (Mabuchi and Matsuzaki, 2016; Costa
et al., 2021). Thus, the diversity of these words is a barrier to
collecting a wide range of information about MSCs from the
database. The text mining assesses the frequency of appearances
of specific words and phrases, their co-occurrences, and time-
series data, and may be a useful technique for analyzing
trends in scientific literature without subjective bias (Watanabe
et al., 2018; Lee et al., 2019). Therefore, we searched articles
in the PubMed database and selected those related to MSCs.
To ensure a comprehensive selection of articles on the topic
of MSCs, we used Medical Subject Heading terms to collect
scientific articles (30,849 articles, 1995–2020). Among them, we
extracted a list of papers containing the following two keywords
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[“Niche”: 1,125 articles, “myeloproliferative neoplasms (MPN)”:
70 articles]. Then, words with high probability of occurring
together in the title were extracted and their relationships
are displayed in a network diagram (Figure 1). words that
are closely related to each other are displayed connected by
lines. The 147 related words were extracted for the titles of
the treatises related to “niche” (Figure 1A, left). The number
of clusters were directly associated with the MSC, consisted

of the words “multipotency” and “plasticity” brought about
by Niche, while “endosteal,” “stem,” and “pluripotent.” As
characteristic clusters, clusters related to blood cancer called
“Leulemia” and “myeloma” were also confirmed. Representative
words are shown on the right table and Figure 1A (right).
These results enrich the words that involved MSC function
in niche. The 106 related words were extracted for the
titles of the treatises related to “MPN” (Figure 1B, left).

FIGURE 1 | Analysis of word highly related to MSCs using the text mining method. Using PubMed, we extracted articles referring to MSCs in their titles using a
collection of MeSH word that describe MSCs. We focused on the word related to “niche” or “MPN,” and created a term network using Text Mining Studio 6.3 (NTT
DATA Mathematical Systems Inc.) with the following analysis conditions: “niche” and “MPN,” frequency > 2, confidence level 30%. (A,B) The obtained data are
shown as a network diagram demonstrating the relations between words. Word-relationship diagram related to the word “niche” [(A) left] and “MPN” [(B) left].
Representative 10 words are shown on the right table [(A) right and (B) right]. “Concatenated word” is those concatenated with the representative word. “Number of
concatenations” indicates the number of occurrences of concatenated words. “Concatenation ratio” indicates the ratio of concatenated articles in the extracted
papers.
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In clusters containing “MSC,” words related to diseases such
as “leukemia” were mainly displayed. In addition, clusters
associated with MPN such as “JAK2/V617F” and “CML” could
be confirmed. These results indicate that there is an intimate
relationship between MPNs and MSCs (Figure 1B, right).

DISCUSSION

This review summarized the diversity of MSCs and literature
based on single cell analysis, and outlined what cell populations
exist and how they are linked to cell therapy candidates.
Diversity of MSCs and how stem cells balance their self-
renewal and differentiation abilities are important themes in
biological and medical research. However, the heterogeneity
and plasticity of these cells—probably evolved during ontogeny
as a mechanism to fulfill different functions while retaining
their potential for self-renewal—pose significant challenges.
Furthermore, it is currently considered that tissue stem cells
move between two or more metastable states (self-renewal
bias and differentiation bias) (Graf and Stadtfeld, 2008). The
oscillations between these subsets involve changes in histone
modifications, which are expected to help complement the
function of MSCs in response to environmental changes.
Therefore, further research is needed to address the functional
heterogeneity of MSCs in health and disease. However, as
the level of information and resolution of scRNA-seq analysis
increases, there are limitations that make integrated analysis
difficult. An additional limitation to current single-cell RNA-
seq analyses is the low sequencing depth, which may capture
only highly expressed mRNAs. In addition, the lack of
localization information regarding the cluster cell population
is also a problem to be solved in the future. Additional data
could help us better understand the regulatory functions of
MSCs in different tissues and could assist in more efficient

treatment of diseases where MSCs play a pathophysiological
role, such as MPNs.
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