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Background: Breast cancer (BRCA) is the most common tumor in women, and lipid
metabolism involvement has been demonstrated in its tumorigenesis and development.
However, the role of lipid metabolism-associated genes (LMAGs) in the immune
microenvironment and prognosis of BRCA remains unclear.

Methods: A total of 1076 patients with BRCA were extracted from The Cancer
Genome Atlas database and randomly assigned to the training cohort (n = 760) or
validation cohort (n = 316). Kaplan–Meier analysis was used to assess differences in
survival. Consensus clustering was performed to categorize the patients with BRCA
into subtypes. Using multivariate Cox regression analysis, an LMAG-based prognostic
risk model was constructed from the training cohort and validated using the validation
cohort. The immune microenvironment was evaluated using the ESTIMATE and tumor
immune estimation resource algorithms, CIBERSORT, and single sample gene set
enrichment analyses.

Results: Consensus clustering classified the patients with BRCA into two subgroups
with significantly different overall survival rates and immune microenvironments. Better
prognosis was associated with high immune infiltration. The prognostic risk model,
based on four LMAGs (MED10, PLA2G2D, CYP4F11, and GPS2), successfully stratified
the patients into high- and low-risk groups in both the training and validation
sets. High risk scores predicted poor prognosis and indicated low immune status.
Subgroup analysis suggested that the risk model was an independent predictor of
prognosis in BRCA.

Conclusion: This study demonstrated, for the first time, that LMAG expression plays a
crucial role in BRCA. The LMAG-based risk model successfully predicted the prognosis
and indicated the immune microenvironment of patients with BRCA. Our study may
provide inspiration for further research on BRCA pathomechanisms.
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INTRODUCTION

Breast cancer (BRCA) is the most common malignancy and
the second leading cause of cancer-related death among
women globally (DeSantis et al., 2019). Epidemiological
studies have revealed that at least 268,000 patients are newly
diagnosed with BRCA each year and 41,760 patients die.
The incidence of BRCA has been steadily increasing (Siegel
et al., 2019; Britt et al., 2020; Zhao et al., 2020). Currently,
the therapeutic strategies for BRCA mainly include surgical
resection, endocrine therapy, and combining surgery with
various types of adjuvant therapies, including radiotherapy,
chemotherapy, and immunotherapy (Waks and Winer, 2019;
Zhao et al., 2020). The therapeutic objective is to improve the
long-term survival and quality of life of patients with BRCA.
The 5-year overall survival rate for early diagnosis of BRCA is
>90%, which declines to 27% in stage IV patients (DeSantis
et al., 2019). BRCA mainly includes three subtypes: ERBB2+,
hormone receptor positive/ERBB2 negative (HR+/ERBB2-), and
triple-negative. As the tumors are remarkably heterogeneous,
fixed-treatment modes are not effective for all patients.
Considering the significant tumor heterogeneity of BRCA,
multivariable indicators are more significant than single
biomarkers for prognosis prediction (Zhang et al., 2020), and
risk models based on gene expression are a promising option
(Yu et al., 2019).

The dysregulation of lipid metabolism plays a pivotal role
in tumorigenesis and development, and increasing evidence
indicates that lipid metabolism is essentially reprogrammed
in tumors. This is regarded as a new hallmark of malignant
tumors (Cheng et al., 2018; Maan et al., 2018; Visweswaran
et al., 2020; Matsushita et al., 2021). Growing data suggest
that lipid-metabolic reprogramming also plays an important
role in the invasion and metastasis of malignant tumors (Luo
et al., 2017). Targeting the lipid metabolism of tumor cells
has been recognized as an attractive tumor treatment strategy
(Liu et al., 2017; Visweswaran et al., 2020). Emerging evidence
also indicates that aberrant lipid metabolism is involved in
drug resistance during cancer treatment (Iwamoto et al., 2018;
Cao, 2019). Previous studies have reported that risk signatures
derived from lipid metabolism-associated genes (LMAGs) exhibit
potent capability in predicting the prognosis of various tumors,
including serous ovarian carcinomas (Zheng et al., 2020), clear
cell renal cell carcinomas (Zheng et al., 2020), pancreatic
cancer (Ye et al., 2021), lung adenocarcinomas (Li et al.,
2020), and diffuse gliomas (Li et al., 2020). However, the
prognostic value of LMAGs in patients with BRCA remains
largely unknown.

The tumor microenvironment (TM) is a crucial regulator
of malignancy (Wu et al., 2021). In particular, the tumor
immune microenvironment, which reflects the immune
status of the tumor tissues, performs critical functions,
and has attracted increasing attention (Pitt et al., 2016;
Locy et al., 2018; Lei et al., 2020). Immune cells in the
immune microenvironment possess effective regulatory and
destructive effects on tumor cells, and may have dual tumor-
promoting and tumor-antagonizing roles (Lei et al., 2020).

Recently, various studies have demonstrated that the immune
microenvironment is crucial for the development and
therapeutic efficacy of tumors (Lei et al., 2020). Meanwhile,
increasing evidence indicates that dysregulation of the lipid
metabolism greatly influences the immune microenvironment
(Hao et al., 2019). However, the association between
LMAGs and the tumor immune microenvironment remains
obscure in BRCA.

Therefore, in this study, we explore the role of lipid
metabolism in the oncogenesis and development of BRCA,
using multiple bioinformatics methods. A novel prognostic
risk model was constructed, based on LMAG expression
levels, to evaluate the prognostic value of LMAGs in patients
with BRCA. We also comprehensively analyzed differences in
the immune microenvironments of patients with BRCA. In
addition, we preliminarily elucidated the potential signaling
pathways involved.

To the best of our knowledge, this is the first study to report
the prognostic role of LMAGs in BRCA. The results of this
study should provide inspiration for elucidating the molecular
mechanisms of BRCA tumorigenesis and progression, promoting
the development of personalized targeted therapy, and improving
the prognosis of patients with BRCA.

MATERIALS AND METHODS

Data Collection
The clinical data and gene expression matrices of enrolled
patients were obtained from The Cancer Genome Atlas database1.
In this study, 1076 BRCA samples were included, of which
760 samples were assigned to the training cohort and 316 to
the validation cohort. The baseline data of all the samples are
summarized in Table 1. A total of 776 LMAGs were collected
from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Reactome databases, and 78 of these were identified as
prognostic for BRCA, using univariable Cox regression analysis.
And the process of data analysis is shown in Figure 1.

Consensus Clustering
According to the expression matrix of the 78 LMAGs,
consensus clustering was performed using the R package
“ConsensusClusterPlus” to divide the patients with BRCA
in the training cohort into subgroups. Clustering was
implemented on the grounds of partitioning around medoids,
with Euclidean distances.

Immune Analysis
The estimation of stromal and immune cells in malignant
tumor tissues using expression data (ESTIMATE) method
was applied to calculate the immune score, ESTIMATE
score, and tumor purity of the patients, via the R package
“estimate” (Yoshihara et al., 2013). Tumor immune
estimation resource (TIMER) analysis2 was conducted

1https://portal.gdc.cancer.gov/
2https://cistrome.shinyapps.io/timer/
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TABLE 1 | Clinical characteristics of samples.

Variable Training cohort
(N = 760)

Validation cohort
(N = 316)

N (%) N (%)

Age

<58 years old 377 (49.6) 145 (45.9)

≥58 years old 383 (50.4) 171 (54.1)

Metastasis

Yes 24 (3.2) 10 (3.2)

No 736 (96.8) 306 (96.8)

Tumor stage

Stage 1 137 (18.0) 51 (16.1)

Stage 2 430 (56.6) 183 (57.9)

Stage 3 167 (22.0) 74 (23.4)

Stage 4 26 (3.4) 8 (2.5)

Race

Asian 37 (4.9) 19 (6.0)

Black or African American 124 (16.3) 39 (12.3)

White 546 (71.8) 227 (71.8)

Unknown 53 (7.0) 31 (9.8)

Radiotherapy

Yes 389 (51.2) 157 (49.7)

No 286 (37.6) 133 (42.1)

Unknown 85 (11.2) 26 (8.2)

to evaluate the abundance of six types of immune cells
(neutrophils, CD4 T cells, macrophages, CD8 T cells,
dendritic cells, and B cells) (Li et al., 2017). The CIBERSORT
algorithm was employed to estimate the ratio of 22 types of
infiltrating immune cells. Single sample gene set enrichment
analysis (ssGSEA) was performed to assess the infiltration
level of 28 types of immune cells using the “GSVA”
R package.

Construction and Validation of Risk
Model Based on LMAGs
Based on univariable regression analysis, the least absolute
shrinkage and selection operator algorithm was applied using the

R package “glmnet” to select candidate genes for constructing the
risk model. The genes included in the risk model were determined
using multivariate regression analysis. Which were listed in
Table 2. Each patient in both the training and validation cohorts
was assigned a risk score, according to the following formula: risk
score = (−0.2141× PLA2G2D expression)+ (0.52944×MED10
expression) + (−0.1887 × CYP4F11 expression) + (−0.4069 ×
GPS2 expression). The patients were categorized into low- and
high-risk groups, with the median of the risk score regarded as
the cutoff. Kaplan–Meier analysis was employed to estimate the
difference in overall survival between the categorized patients
via the R package “survival.” The prognostic capability of
the risk model was validated using time-dependent receiver
operating characteristic (ROC) analysis with the R package
“survivalROC.”

Evaluation of Risk Model Independence
Univariate and multivariate Cox regression analyses were
performed to estimate whether the risk score was an
independent predictor of BRCA prognosis. A subgroup
analysis was conducted to confirm the independence of the
risk model. The patients with BRCA in the training cohort
were regrouped into new subgroups based on different
clinical characteristics, and the patients in each subgroup
were stratified into high- and low-risk groups, based on the
median risk score.

Functional Analysis
Differential expression analysis was conducted using the “limma”
R package to identify differentially expressed genes (DEGs) for
subsequent analyses. Gene ontology (GO) and KEGG analyses
were performed to enrich the DEGs into associated pathways
using the “clusterProfiler” R package. Enrichment analysis was
also performed using the web tool “metascape”3. Moreover,
the activity of each GO term in each patient with BRCA was
evaluated via gene set variation analysis (GSVA) using the
“GSVA” R package.

3https://metascape.org

FIGURE 1 | The scheme diagram of data analyzing.
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TABLE 2 | Features of the genes used for constructing the risk model.

Gene
name

Full name Category Function

MED10 Mediator Complex
Subunit 10

Protein
Coding

Component of the Mediator
complex, a coactivator involved in
regulating the transcription of
nearly all RNA polymerase
II-dependent genes

PLA2G2D Phospholipase A2
Group IID

Protein
Coding

Secretory calcium-dependent
phospholipase A2 that primarily
targets extracellular lipids,
exerting anti-inflammatory, and
immunosuppressive effects

CYP4F11 Cytochrome P450
Family 4 Subfamily F
Member 11

Protein
Coding

A cytochrome P450
monooxygenase involved in the
metabolism of various
endogenous substrates, including
fatty acids and their oxygenated
derivatives

GPS2 G Protein Pathway
Suppressor 2

Protein
Coding

Key regulator of inflammation,
lipid metabolism, and
mitochondrion homeostasis that
acts by inhibiting the activity of
the ubiquitin-conjugating enzyme
UBE2N/Ubc13, thereby inhibiting
‘Lys-63’-linked ubiquitination

Statistical Analysis
Data analyses were mainly completed using R (version 4.0) and
GraphPad Prism (version 8.0), and visualization also employed
TBtools (Chen et al., 2020). Discontinuous data are presented
as number (percentage), and continuous data are displayed as
mean± standard deviation. Differences between two groups were
calculated using Student’s t-tests, while those among more than
two groups were calculated using one-way ANOVA. Statistical
significance was defined as p < 0.05.

RESULTS

Consensus Clustering for LMAGs
Correlated With Prognosis and Immune
Microenvironment in BRCA
Consensus clustering was conducted to cluster the patients with
BRCA in the training cohort into subgroups. The results showed
that consensus clustering was the most stable when K = 2
(Figures 2A–C and Supplementary Figure 1). Therefore, the
patients with BRCA were divided into two groups, with 564
patients in Cluster 1 and 196 patients in Cluster 2. Survival
analysis indicated that the overall survival of the two clusters
differed, and that patients in Cluster 2 had a significantly better
prognosis (Figure 2D). Heatmap visualization showed that the
prognostic LMAG expression of the patients with BRCA also
differed significantly between the two clusters (Figure 2E).
The ESTIMATE assessment suggested that the patients in
Cluster 2 had higher immune scores and ESTIMATE scores
and lower tumor purity (Figure 3A). In addition, TIMER
analysis demonstrated a statistical difference between the two

clusters regarding the abundance of infiltrating immune cells.
The abundance of CD4 T cells and myeloid dendritic cells was
lower in Cluster 1 than in Cluster 2, whereas the opposite trend
was observed in macrophage cells and CD8 T cells (Figure 3B).
Meanwhile, the CIBERSORT algorithm was used to calculate
the infiltration level of the immune cells (Figure 3C), and
quantitative analysis suggested a significant difference between
the two clusters (Figure 3D). Finally, ssGSEA was performed to
assess the immune status of the patients with BRCA, and the
results are illustrated in a heatmap (Figure 3E), which shows
that the patients in Cluster 2 had a relatively high immune status
compared with those in Cluster 1. Statistical analysis confirmed
the ssGSEA results (Figure 3F). These findings indicate that
LMAG expression is associated with the prognosis and immune
microenvironment of patients with BRCA.

Construction of an LMAG-Based Risk
Model Using the Training Cohort
A risk model based on LMAGs was established to evaluate the
prognostic value of LMAGs in BRCA. Based on univariate Cox
analysis, least absolute shrinkage and selection operator analysis
screened out 15 genes for subsequent analysis (Figure 4A).
Of these, multivariate Cox analysis identified four genes to
include in the constructed risk model, MED10, PLA2G2D,
CYP4F11, and GPS2, all of which can independently predict the
prognosis of patients with BRCA (Supplementary Figure 2).
According to the median risk score, the patients were categorized
into high- and low-risk groups. The risk score and survival
status distributions of the patients are depicted in Figure 4B.
A heatmap visualizing the expression pattern of the genes
used in the risk model suggested that patients in the high-risk
group tended to express risk genes with a hazard ratio > 1,
including MED10, while patients in the low-risk group tended
to express protective genes with a hazard ratio < 1, including
PLA2G2D, CYP4F11, and GPS2 (Figure 4C). The Kaplan–
Meier survival curve indicated that the patients in the low-
risk group had significantly better overall survival (Figure 4D).
With respect to model diagnosis, the areas under the curve
of the time-dependent ROC curves were 0.744 for one-year
survival, 0.700 for three-year survival, and 0.678 for five-year
survival, respectively, suggesting the acceptable stability of the
risk model (Figure 4E). These results indicate that the LMAG-
based risk model could accurately predict the prognosis of
patients with BRCA.

The Risk Model Is an Independent
Indicator for BRCA Prognosis
Univariable/multivariable Cox regression and subgroup analyses
were conducted to verify the independence of the LMAG-based
risk model. Univariate Cox regression analysis revealed that the
risk score could predict the prognosis of patients with BRCA
independently (p = 2.47E−10) (Supplementary Table 1). In
the multivariable regression analysis, the risk score remained
statistically significant for BRCA survival (p = 1.42E−06)
(Supplementary Table 2). Additionally, the patients with BRCA
in the training cohort were regrouped into subgroups based on
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FIGURE 2 | Consensus clustering. (A–C) The clustering demonstrating the best stability with K = 2, (D) Kaplan–Meier analysis curve, (E) heatmap illustrating the
different expressional pattern of the prognostic lipid metabolism associated genes in the two clusters.

age (<58 and ≥58 years old), tumor stage (stage 1, stage 2,
and stage 3), and radiotherapy application. Regardless of the
subgroups, the LMAG-based risk model stratified the patients
with BRCA into the high- and low-risk groups, and the
patients in the low-risk group still showed significantly longer
survival (Figures 4F–H).These results indicate the excellent
independence of the risk model.

The Risk Model Was Associated With
Immune Microenvironment in the
Training Cohort
The association between the risk model and the immune
microenvironment in BRCA was assessed using multiple immune
analyses. The ESTIMATE results revealed that the patients
with BRCA in the high-risk group had significantly lower
immune scores and ESTIMATE scores, and higher tumor
purity, than those in the low-risk group (Figure 5A). The
TIMER algorithm indicated that the abundances of B cells
(p < 0.0001), neutrophils (p = 0.0086), CD4 T cells (p < 0.0001),
myeloid dendritic cells (p < 0.0001), and CD8 T cells
(p < 0.0001) in the low-risk group were statistically higher

than those in the high-risk group, while the opposite was
observed for macrophages (Figure 5B). The results of the
CIBERSORT immune-infiltration analysis are depicted in a
heatmap (Figure 5C), and the corresponding statistical analysis
suggested significant differences in most immune-infiltrating
cells (Figure 5D). Moreover, ssGSEA revealed that the patients
with BRCA in the low-risk group had a relatively high immune
status compared with those in the high-risk group (Figure 5E).
Meanwhile, quantitative analysis confirmed higher ssGSEA
scores in the low-risk group than in the high-risk group
(Figure 5F). The above findings demonstrate that the LMAG-
based risk model was related to the immune microenvironment
in BRCA.

The Risk Model Correlated With
Prognosis and Immune
Microenvironment in the Validation
Cohort
To further confirm the practicability and reliability of the
LMAG-based risk model, it was verified using the validation
cohort. According to the median risk score, the patients in
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FIGURE 3 | Immune analyses in the clustered subgroups. (A) ESTIMATE algorithm, (B) TIMER algorithm, (C,D) CIBERSORT analysis, and ssGSEA analysis (E,F).
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

the validation cohort were stratified into high- and low-risk
groups. The survival status and risk score distributions are
illustrated in Figure 6A. As expected, the overall prognosis of
the two groups differed significantly, and the patients in the
low-risk group showed longer survival (p = 0.001) (Figure 6B).
The expressions of the four genes included in the risk model
are shown in a heatmap (Figure 6C). Patients in the low-risk
group showed a tendency to express protective genes (PLA2G2D,
CYP4F11, and GPS2), whereas patients in the high-risk group

tended to express the risk gene MED10. Furthermore, the
relationship between the risk score and the BRCA immune
microenvironment was confirmed in the validation cohort. In
the ESTIMATE analysis, a low risk score was significantly
associated with high immune and ESTIMATE scores, and low
tumor purity (Figure 7A). Regarding the TIMER analysis, the
abundance of all six immune cells was statistically different
between the two groups (Figure 7B). Except for macrophages
(p < 0.0001), the abundances of all the immune cells were
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FIGURE 4 | Construction of risk model. (A) LASSO analysis revealing the minimal lambda, (B) survival status and risk score, (C) heatmap visualizing the expression
pattern of the four candidate LMAGs, (D) survival curve illustrating the overall survival of the BRCA patients, (E) time-dependent ROC curve, (F–H) subgroup
analyses suggesting the independence of the risk model regarding age, radiotherapy, and tumor stage.

significantly higher in the low-risk group than in the high-
risk group. The heatmap visualization and corresponding
statistical analysis of the CIBERSORT algorithm are depicted
in Figures 7C,D, respectively. In the ssGSEA, relatively high
immune status was observed in the low-risk group compared
to the high-risk group (Figure 7E), and quantitative analysis
identified statistical differences in most immune cells between
the two groups (Figure 7F). These results suggest that the
LMAG-based risk model is related to prognosis and the immune
microenvironment in BRCA.

Establishment of a Risk Model-Based
Nomogram in the Training Cohort
To develop a strategy to quantitatively predict the probability
of survival in BRCA, a prognostic nomogram was constructed,
based on the four genes from the risk model, via Cox proportional
hazards analysis (Figure 8). As depicted in the nomogram,
each prognostic gene in the risk model was endowed with a
specific score and a corresponding expression value, and the total
score was obtained by summing the scores of all the variables.
Correspondingly, the survival probability of patients with BRCA
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FIGURE 5 | Immune microenvironment landscape in the training cohort. (A) ESTIMATE algorithm, (B) TIMER algorithm, (C,D) CIBERSORT analysis, and ssGSEA
analysis (E,F). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

can be calculated according to the total score. The one-year,
three-year, and overall survival rates of the patients with BRCA
were predicted using the nomogram.

Immune-Related Signaling Pathways
May Mediate the Role of LMAGs in BRCA
Finally, to further explore the molecular mechanisms associated
with the roles of LMAGs in BRCA, functional analyses were

conducted. Eighty DEGs were identified between the high-
risk and low-risk groups; the volcano plot is shown in
Figure 9A. It is worth noting that all of the DEGs were
downregulated in the high-risk group compared with the
low-risk group. Enrichment analyses revealed that the DEGs
were mainly enriched in immune-related signaling pathways
(Figures 9B–D), suggesting that immunity may mediate the
significance of LMAGs in the prognosis of patients with
BRCA. GO analysis indicated that the DEGs were mainly
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FIGURE 6 | Verification of the risk model in the validation cohort. (A) Survival status and risk score in the validation set, (B) survival curve showing the survival of the
patients in the validation cohort, (C) heatmap illustrating the expression of candidate LMAGs in the validation cohort.

enriched in biological processes associated with immune cell
activation, differentiation, and adhesion (Figure 9C), although
they were also enriched in some crucial molecular functions
and cellular components (Supplementary Figure 3). KEGG
analysis demonstrated that the DEGs were enriched in signaling
pathways related to immune cell differentiation (Figure 9D).
Furthermore, GSVA was performed to calculate the activity
of the GO terms in each patient with BRCA and the results,
visualized in a heatmap (Figure 9E), suggest that the activities
of immune-related pathways were relatively downregulated in
the high-risk group. These findings indicate that immune-
related signaling pathways may mediate the role of LMAGs
in BRCA.

DISCUSSION

As one of the deadliest malignancies in women, BRCA has
always been a serious public health issue and imposes a huge
burden on humankind worldwide (Harbeck and Gnant, 2017;
Batalha et al., 2021). Although the prognosis has improved
significantly with the development of medical technology, the 5-
year overall survival of patients with advanced BRCA is still far
from satisfactory (Harbeck and Gnant, 2017; Tian et al., 2020).
Constructing a risk model is an innovative and applicable
way to predict a patient’s prognosis, and it provides a
valuable supplement for the TNM stage system in patient risk
stratification. Considering the significance of lipid metabolism
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FIGURE 7 | Association between the risk model and immune microenvironment in the validation cohort. (A) ESTIMATE algorithm, (B) TIMER algorithm, (C,D)
CIBERSORT analysis, and ssGSEA analysis (E,F). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

in BRCA biology, we developed a prognostic model based on
four LMAGs and estimated the effect of LMAGs on the immune
microenvironment of patients with BRCA. The results suggest
that the LMAG-based risk model possesses potent predictive
capacity in the prognosis of patients with BRCA and can
indicate the tumor immune microenvironment. Additionally,
functional analyses showed that immune-associated signaling
pathways mediated the role of LMAGs in BRCA. The results of
this work could provide a novel perspective for future BRCA

research, optimize risk stratification, promote the development
of targeted therapy, and help to improve the prognosis of
patients with BRCA.

It has been previously reported that the lipid metabolite
27OHC was a potential risk biomarker for BRCA and can act
as a mitogen (Nazih and Bard, 2020). This means that abnormal
lipid metabolism plays a pivotal role in the pathogenesis of BRCA.
Immune abnormality is also an important risk factor for BRCA.
The crosstalk between the immune system and cancer cells will
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FIGURE 8 | Nomogram based on the prognosis-associated lipid metabolism-associated genes.

change dynamically during the development and treatment of
cancer (King et al., 2017).

LMAGs expression predicted the prognosis and was
associated with the immune microenvironment of patients with
BRCA. Consensus clustering is an acknowledged unsupervised
clustering method that can identify new molecular subtypes
according to different omics datasets (Wilkerson and Hayes,
2010). In this study, consensus clustering successfully classified
the patients with BRCA into two clusters, according to the
expression level of prognostic LMAGs. The patients in Cluster 2
had a favorable prognosis, suggesting that LMAG expression is
valuable in the prediction of BRCA prognosis. Although further
functional analyses were not performed to clarify the inherent
associations and molecular cascades of the two newly identified
molecular subgroups, the consensus clustering results provide a
novel perspective for further research on BRCA.

As the two molecular subtypes are an innovative classification
of BRCA, they provide a supplement or substitution for the
existing categorization system. It should be noted that the ratio
between the two groups was approximately three to one, which
was not equal, but is acceptable. In addition, we found statistically
significant differences in immune microenvironment between
the two subgroups. In particular, better overall survival was
correlated with higher immune scores, lower tumor purity,
and relatively high immune status, which is consistent with a
previous study (Qi et al., 2020). High tumor purity implies shorter
survival time and such tumors are more likely to be diagnosed
as malignant. Considering that the clustering was conducted
based on an LMAG expression matrix, we could reasonably
infer that LMAG expression was correlated with the immune
microenvironment of patients with BRCA.

Immune cell infiltration into the TM reflects the immune
landscape in tumors (Ho et al., 2020). Suppressing anti-tumor
immune response is the main mechanism through which cancer
cells evade supervision and destruction by the immune system
(De Cicco et al., 2020). The functional roles of the various

immune cells differ. Usually, CD8 T cells, CD4 T cells, dendritic
cells, B cells, and NK cells exert anti-tumor functions, regulatory
T cells play a pro-tumor role, and macrophages and monocytes
play equivocal roles in the progression of tumor progression
(Chimal-Ramírez et al., 2013; Zhang and Zhang, 2020; Batalha
et al., 2021). Results of TIMER in clustered and risk model-
stratified subgroups are not completely consistent in this study,
especially CD8 T cell, which is worth further investigation.
We constructed a risk model to estimate and validate the
role of LMAGs in the immune microenvironment of BRCA.
The established LMAG-based risk model stratified the patients
into groups with different prognoses that were correlated with
immune infiltration in both the training and validation cohorts.
Moreover, model diagnosis using ROC analysis indicated that
the risk model is a reliable indicator of prognosis. Overall,
these results reveal that the LMAG-based risk model is a well-
developed reference for predicting the prognosis of patients
with BRCA, and that it is closely related to the tumor immune
microenvironment in BRCA.

The constructed risk model in this study was not influenced
by other clinical parameters, such as age. In addition to stability,
independence is a critical index for an effective prognostic
risk model. In this study, the prognosis was correlated with
the risk score, and univariable and multivariate regression
analyses indicated that the risk model was an independent
indicator of BRCA prognosis. To further explore the possibility
of interference resulting from other indexes, subgroup analysis
was performed to confirm the prognosis-predicting power of
the risk model. The results suggest that the risk score remains
effective in predicting BRCA prognosis even when the patients
are regrouped according to clinical parameters. Unfortunately,
subgroup analysis of metastasis could not be conducted, as this
factor was limited by sample size. The LMAG-based risk model
was independently predictive of prognosis in BRCA.

All the genes in our constructed risk model were related
to tumors prognosis. Risk models are an applicable method

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 June 2021 | Volume 9 | Article 691676

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-691676 June 11, 2021 Time: 15:9 # 12

Ye et al. Lipid Metabolism Predicts Breast Cancer

FIGURE 9 | Functional analyses. (A) Volcano plot depicting the differentially expressed genes (DEGs) between the two groups, (B,C) bubble plot derived from gene
ontology (GO) analysis suggesting that the DEGs were mainly enriched in immune-associated biological processes, (D) bubble diagram derived from Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis showing that the DEGs were enriched in immune-associated signaling pathways, (E) GSVA plots visualizing
the result of GSVA analysis.

for developing prognostic molecular biomarkers and have been
constructed for a variety of tumors, showing powerful predictive
ability (Chen et al., 2021; Lv et al., 2021). Generally, the patients
were scored according to candidate-gene expression values and
coefficients, and lower scores indicated a favorable prognosis. In
the present study, four candidate LMAGs, including one risk gene
and three protective genes that have all been demonstrated to
be involved in the progression and prognosis of tumors, were
selected for the construction of the risk model.

MED10 encodes the mediator of RNA polymerase II
transcription subunit 10 (MED10), and previous studies have
suggested that MED10 expression is a risk factor for multiple

types of tumors (Xu et al., 2018; Sahar et al., 2019; Wang et al.,
2021). Xu et al. (2018) and Wang et al. (2021) demonstrated
that MED10 is a critical prognostic gene in glioblastoma and
hepatocellular carcinoma, respectively. The protein level of
MED10 has also been shown to be upregulated in uterine
leiomyoma compared to that in the adjacent myometrium
(Sahar et al., 2019). In line with the above reports, MED10
was shown to be detrimental for the prognosis of patients
with BRCA, and tended to be expressed in the high-risk
group in this study. Phospholipase A2 group IID (PLA2G2D),
encoded by PLA2G2D, is an immunosuppressor involved in
the conversion of lipid balance to an anti-inflammation status,
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which can play a detrimental or beneficial role, depending
on inflammatory and tumorous context (Miki et al., 2016).
A previous study revealed that the expression of PLA2G2D
was reduced 23-fold in colorectal adenocarcinomas compared to
normal tissue (Mounier et al., 2008; Xiong et al., 2021). Xiong
et al. (2021) reported that PLA2G2D is a prognosis-predicting
gene in head and neck squamous cell carcinoma. The cytochrome
P450 (CYP) superfamily are the most important microsomal
mixed functional oxidases. CYP4F11 encodes a member of this
superfamily, cytochrome P450, family 4, subfamily F, polypeptide
11 (CYP4F11), which catalyzes the formation of stearoyl
CoA desaturase inhibitors (Theodoropoulos et al., 2016). The
expression of CYP4F11 has been significantly and independently
correlated with survival in esophageal squamous cell carcinoma
and colorectal cancer (Alnabulsi et al., 2017; Wu et al., 2018).
It is especially worth noting that the gene expression level of
CYP4F11 in BRCA is significantly higher than that in adjacent
tissues (Bandala et al., 2012). Finally, GPS2 encodes G protein
suppressor 2 (GPS2), which was identified as a constituent of
the silencing mediator of retinoic acid and thyroid hormone
receptor corepressor complexes (Cheng and Kao, 2009). GPS2
has been shown to play a tumor-suppressive role in liposarcoma
(Huang et al., 2016) and BRCA (Cheng and Kao, 2009; Chan
et al., 2020), and the loss of GPS2 facilitated tumor growth and
the proliferation of cancer cells (Chan et al., 2020). These findings
indicate that the aberrant expression of the candidate LMAGs is
involved in the progression and prognosis of multiple types of
tumors, including BRCA; therefore, it was reasonable to integrate
them to establish a risk model for risk stratification and prognosis
prediction in BRCA.

Immune-associated signaling cascades mediate the
significance of LMAGs in BRCA. The GO and KEGG analyses
suggested that the DEGs between the high- and low-risk
groups were mainly enriched in immune-associated pathways.
More specifically, GSVA revealed that patients in the low-risk
group had a relatively high immune status. Considering the
overall survival of the patients, it was reasonable to deduce that a
favorable prognosis correlated with high immune cell infiltration.
The patients were classified based on their LMAG expression
values; thus, we concluded that the risk model predicted
prognosis and indicated the immune microenvironment.

In recent years, increasing numbers of pre-clinical and clinical
studies have highlighted the crucial role of metabolism in
the clinical and immune responses of patients with cancer
(Bleve et al., 2020). Emerging evidence has revealed an intricate
interplay between lipid metabolism and immune cell responses
in tumors (Chen and Sui, 2021; Xiang and Miao, 2021). The
detailed mechanisms can be interpreted in multiple dimensions.
As mentioned previously, lipid-metabolic reprogramming is a
new hallmark of malignant cancers. It is mostly altered to meet
the requirements of nutrients for cellular proliferation, and
could impact the state and functions of infiltrating immune cells
(Liu W. et al., 2021; Qin and Chen, 2021; Xiang and Miao,
2021). Macrophages can be reprogrammed to promote tumor
progression via increased cholesterol efflux (Goossens et al.,
2019; Matsushita et al., 2021). Exogenous and endogenous lipid
metabolism exerts different functions on T cells (Matsushita

et al., 2021). The anti-tumor role of T cells may be enhanced
by cholesterol; however, its role is negatively regulated by
liver X receptors in the oxysterol-abundant TM (Matsushita
et al., 2021). A recent study demonstrated that lipid metabolism
reprograming, triggered by the unbalanced lipid metabolism in
senescent T cells, prevented the senescence of effector T cells
(Liu X. et al., 2021) and enhanced the functional specialization
of regulatory T cells in cancers (Lim et al., 2021). Lipid
accumulation in the dendritic cells damaged their anti-tumor
functions, as the affected cells could not effectively present tumor-
associated antigens (Herber et al., 2010). High levels of lipids
in the TM can stimulate the generation of myeloid-derived
suppressor cells, resulting in significant metabolic and functional
rewiring (Al-Khami et al., 2017). Moreover, lipid metabolism
is one of the most essential energy sources for various cells
in the TM. Competition for lipid-metabolic nutrients between
proliferative tumor cells and immune-infiltrating cells greatly
influences their metabolic status and drastically modifies their
functional phenotypes (Chang et al., 2015; O’Neill et al., 2016;
Bleve et al., 2020). Thus, it was not surprising that LMAG
expression was associated with the immune microenvironment
in BRCA, or that a better prognosis was associated with
high immune scores and a high abundance of immune cells.
Additionally, some LMAGs are also responsible for immune
regulation, exerting immune-suppressing or immune-promoting
functions. In particular, PLA2G2D, one of the genes used
to construct the risk model in this study, is abundantly
expressed in the dendritic cells of lymphoid tissues and has anti-
inflammatory and immunosuppressive functions (Miki et al.,
2016). The expression of these dual-role LMAGs modifies the
activity of immune-related pathways, leading to alterations in
immune cell function and infiltration. These findings suggest
that immune-related pathways mediate the effects of LMAG
expression on the immune microenvironment and prognosis
of BRCA.

The results of this study demonstrate that the LMAG-
based risk model was connected with the tumor immune
microenvironment and with prognosis in BRCA. To the best of
our knowledge, this is the first study to report the function of
LMAGs in the TM and prognosis of BRCA. Our findings provide
innovative insights and could be used as a reference for targeted
therapy in patients with BRCA.

Strengths and Shortcomings
Several risk-stratification models have been constructed to
predict the prognosis of patients with BRCA. However,
our study has some unique assets. Above all, this study
constructed a prognostic model based on lipid metabolism,
which fills the gap of a LMAG-related risk model for
predicting BRCA prognosis. Moreover, we not only focused
on the predictive performance of LMAGs but also explored
the effect of LMAG expression on the tumor immune
microenvironment of patients with BRCA. In addition, the
molecular mechanisms accounting for the prognostic role
of LMAGs in BRCA were preliminarily elucidated and we
constructed a nomogram to quantify the influence of each
candidate LMAG on the survival of patients with BRCA.
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We acknowledge that there are some inevitable limitations to this
work. First, our conclusion was drawn based on open datasets,
but not on the sequenced data of our cohorts. Second, the results
of this study were not further validated using clinical samples or
laboratory experiments.

CONCLUSION

In summary, this study comprehensively evaluates the role of
LMAGs in the prognosis and immune microenvironment of
patients with BRCA and explores the molecular mechanisms
involved. The LMAG-based risk model that we constructed
successfully predicted the overall survival of patients and
indicated the tumor immune microenvironment in BRCA. In
addition, our results suggest that immune-associated signaling
pathways might mediate the functions of LMAGs in BRCA.
Our work provides an innovative perspective for future BRCA
research and the development of targeted therapy strategies for
patients with BRCA. Further studies are needed to validate the
clinical prognostic value of the LMAG-based risk model and to
explore the underlying mechanisms.
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