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Background: Triple-negative breast cancer (TNBC) is an aggressive disease. Recent
studies have identified genome instability-derived genes for patient outcomes. However,
most of the studies mainly focused on only one or a few genome instability-related
genes. Prognostic potential and clinical significance of genome instability-associated
genes in TNBC have not been well explored.

Methods: In this study, we developed a computational approach to identify TNBC
prognostic signature. It consisted of (1) using somatic mutations and copy number
variations (CNVs) in TNBC to build a binary matrix and identifying the top and
bottom 25% mutated samples, (2) comparing the gene expression between the
top and bottom 25% samples to identify genome instability-related genes, and (3)
performing univariate Cox proportional hazards regression analysis to identify survival-
associated gene signature, and Kaplan–Meier, log-rank test, and multivariate Cox
regression analyses to obtain overall survival (OS) information for TNBC outcome
prediction.

Results: From the identified 111 genome instability-related genes, we extracted a
genome instability-derived gene signature (GIGenSig) of 11 genes. Through survival
analysis, we were able to classify TNBC cases into high- and low-risk groups by
the signature in the training dataset (log-rank test p = 2.66e−04), validated its
prognostic performance in the testing (log-rank test p = 2.45e−02) and Molecular
Taxonomy of Breast Cancer International Consortium (METABRIC) (log-rank test
p = 2.57e−05) datasets, and further validated the predictive power of the signature
in five independent datasets.

Conclusion: The identified novel signature provides a better understanding of
genome instability in TNBC and can be applied as prognostic markers for clinical
TNBC management.
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INTRODUCTION

Triple-negative breast cancer (TNBC) accounts for ∼15% of all
breast cancer cases and is characterized by the absence of estrogen
receptor (ER), progesterone receptor (PR), and epidermal growth
factor receptor 2 (HER2) (Oakman et al., 2010). TNBC often
occurs at a young age, highly aggressive, and metastatic with a
poor prognosis (Haffty et al., 2006; Dent et al., 2007). A part
of TNBC is related with the germline mutation in BRCA1
and BRCA2, but the cause for most of the TNBC remains
unclear (Song et al., 2014). With its unusual clinic outcome,
a TNBC-specific prognostic signature will be highly valuable
for clinical management of TNBC cases (Mersin et al., 2008;
Tan and Swain, 2008).

Genomic instability is a major hallmark in cancer and an
important prognostic factor associated with cancer progression
and survival (Suzuki et al., 2003; Negrini et al., 2010). Genome
instability-associated signatures have been identified in certain
types of cancer. For example, a genomic instability-derived three-
miRNA signature was used as a risk predictor for invasive
breast cancer (Bao et al., 2021); a 12-genomic instability-
derived gene expression signature was identified as a clinical
outcome predictor for breast cancer (Habermann et al., 2009).
Genome instability-related mutation and copy number variation
(CNV) were also identified in TNBC (Schmitt et al., 2012). For
instance, germline mutations in BRCA1, BRCA2, ATM, PALB2,
RAD51D, and RAD50 disrupted DNA damage repair pathways
in TNBC (Wu et al., 2019); FOSL1 had significantly higher CNV
gains in TNBC than in other types of breast cancer (Serino
et al., 2019); PIK3CA had high mutation frequency and copy
number gains and highly ethnic-specific in TNBC (Jiang et al.,
2019); somatic mutation and CNV-derived genomic metrics
were significantly associated with immune prognostic category
in TNBC (Karn et al., 2017). Furthermore, somatic mutations
and CNVs were associated with dysregulation of multiple genes
in TNBC. For example, mutations in MYH9 and HERC2 were
both associated with lower lymphocyte-specific kinase (LCK)
metagene expression in TNBC (Safonov et al., 2017); JAK2
and PD-L1 amplifications upregulated PD-L1 expression by
disturbing the JAK/STAT1 pathway in TNBC (Chen M. et al.,
2018); high expression of PD-L1 was associated with significant
CD274 gene copy number gain in TNBC (Guo et al., 2016).
However, the clinical impact of these abnormalities as prognostic
markers in TNBC remains largely unclear.

We hypothesized that there could be a genome instability-
derived signature involved in the tumorigenesis and development
of TNBC. We further reasoned that genomic instability-
derived somatic mutation and CNV in TNBC could disturb
gene expression in TNBC; therefore, expression difference in
TNBC could be used as prognostic markers to predict clinical
outcome of TNBC.

In this study, we first calculated the accumulative counts
of somatic mutation and CNV in TNBC cases and selected
the top and bottom 25% of the ranked cases. We then
identified 111-genomic instability-derived genes to divide the
cases into genomic unstable (GU) and genomic stable (GS)
groups. Furthermore, we identified a genome instability-derived
gene signature (GIGenSig) of 11 genes to classify TNBC cases

into high- and low-risk groups. We validated the results
using multiple independent TNBC datasets. Our study provides
a GIGenSig as a prognosis marker to predict the clinical
outcome of TNBC.

MATERIALS AND METHODS

Datasets Used for the Study
We downloaded the METABRIC (Molecular Taxonomy of Breast
Cancer International Consortium) breast cancer datasets (Pereira
et al., 2016) from the cBioPortal database1, including clinical
information, gene expression, somatic mutation, and CNV
data. The expression profile was processed as log intensity
level of Illumina Human v3 microarray. We also downloaded
the version 19 gene annotation file from the GENCODE
database2. Then, we randomly divided the TNBC cases into
the training dataset and the testing dataset with the same
size of living and deceased overall survival (OS) status in
each dataset. The training dataset consisting of 150 TNBC
samples was used to identify the prognostic signature and
build the prognostic risk model; the testing dataset consisting
of 149 TNBC patients was used to validate the prognostic
model. Clinical characteristics for the training, testing, and
METABRIC datasets are summarized in Table 1. The Cancer
Genome Atlas (TCGA3), Shanghai TNBC data4 (Jiang et al.,
2019; Goldman et al., 2020), and three additional independent
datasets of GSE21653, GSE31448, and GSE25066 from the GEO
database5,6,7 were used to validate the performance of the
prognostic risk model (Hatzis et al., 2011; Sabatier et al., 2011a,b).
For TCGA and Shanghai RNAseq datasets, we downloaded or
processed the gene-level transcription estimates in log2(x + 1)
transformed RSEM normalized count. For the other three
GEO microarray datasets, they were processed using the robust
multichip average (RMA) algorithm for background adjustment
(Irizarry et al., 2003a,b), and the Affymetrix GeneChip probe-
level data were log2 transformed. The platform information
for Affymetrix Human Genome U133 Plus 2.0 Array was
downloaded from the Affymetrix website8. Gene expression data
from the Affymetrix-based expression profiling were obtained
by repurposing microarray probes based on the platform
information and the gene annotation file from the GENCODE
database (release 19, see text footnote 2).

Identification of Genome
Instability-Related Genes in TNBC
To identify genome instability-related genes in TNBC, we first
processed gene expression and genomic alteration profiles. For
gene expression profile, we extracted the expression log intensity

1https://www.cbioportal.org/
2https://www.gencodegenes.org
3http://xena.ucsc.edu/
4https://www.ncbi.nlm.nih.gov/sra/?term=SRP157974
5https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21653
6https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31448
7https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066
8http://www.affymetrix.com
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TABLE 1 | Clinical information for triple-negative breast cancer (TNBC) patient datasets used in this study.

Characteristics Training dataset
(N = 150)

Testing dataset
(N = 149)

Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset (N = 299)

p-Value*

Age (%) Age < 55 68(45.33) 75(50.34) 143(47.83) 0.687

Age ≥ 55 82(54.67) 74(49.66) 156(52.17)

Menopausal_status (%) Pre 49(32.67) 58(38.93) 107(35.79) 0.529

Post 101(67.33) 91(61.07) 192(64.21)

Tumor stage (%) I/II 100(66.67) 92(61.74) 192(64.21) 0.532

III/IV 16(10.67) 9(6.04) 25(8.36)

Unknown 34(22.67) 48(32.21) 82(27.42)

Grade (%) G1/2 17(11.33) 22(14.77) 39(13.04) 0.664

G3 132(88.00) 125(83.89) 257(85.95)

Unknown 1(0.67) 2(1.34) 3(1.01)

OS_status (%) Living 69(46.00) 69(46.31) 138(46.15) 0.999

Deceased 81(54.00) 80(53.69) 161(53.85)

*p-value: Chi square test.

levels (Illumina Human v3 microarray) for 16,331 protein-
coding genes; for mutations, silent mutations were removed;
for CNV profile, we only retained high-level amplification and
homozygous deletion evaluated by GISTIC2 segment (Mermel
et al., 2011). Then, we integrated TNBC gene expression and
genomic alteration data as shown in Supplementary Figure 1: (1)
extracted gene expression, somatic mutation, and CNV profiles
in the 299 TNBC cases; (2) constructed a binary matrix by
integrating somatic mutation and CNV profiles; (3) calculated the
accumulated alterations for each case; (4) took the top 25% and
the bottom 25% of alternated cases as GU group and GS group;
(5) compared the gene expression between GU and GS groups
by using the R package “limma”; and (6) identified genome
instability-related genes with a Benjamini and Hochberg (BH)
adjusted p-value < 0.05 and logFC (fold-change) > 1 or < −1
between GU group and GS group.

Functional Enrichment Analysis
We applied enrichGO and enrichKEGG functions in the
Bioconductor package “clusterProfiler” to identify the functions
and pathways of the genome instability-related genes (Yu
et al., 2012). We also performed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
enrichment annotation using the Database for Annotation,
Visualization and Integrated Discovery (DAVID tool9, version
6.8) (Huang da et al., 2009). The Benjamini p-adjust < 0.05
was considered as statistically significant in “clusterProfiler” and
p-value < 0.05 for DAVID analyses.

Statistical Analysis
To identify the genes predictive for TNBC OS, a univariate
Cox proportional hazards regression analysis was performed to
evaluate the relationship between the expression level of each
gene and patient OS in the training dataset. Only the genes with
a p-value < 0.05 were taken as statistically significant survival
predictors. To construct a predictive model, a multivariate Cox

9http://david.abcc.ncifcrf.gov/

regression model was applied for these selected genes with OS in
the training dataset. A risk score formula was built to evaluate the
risk of each patient to develop TNBC as follows:

Overall risk score (ORS) =

N∑
i=1

(Expi × Coei)

where, N is the number of prognostic genes, Exp is the gene
expression value, and Coe is the estimated regression coefficient
of the gene. A risk score for each patient was calculated by
including the expression values of each selected gene, weighed
by their estimated regression coefficients in the multivariate
Cox regression analysis. The patients were divided into high-
and low-risk groups using the median of the risk scores as the
threshold. The receiver operating characteristic (ROC) curves
were used to compute the sensitivity and specificity of overall
prediction of the selected gene expression-based overall risk
scores (ORSs) using the R package “survivalROC.” The area
under curve (AUC) value was also calculated. The Kaplan–Meier
method was applied to generate OS curves, and the log-rank
test was used to assess the differences in OS between the high-
and low-risk groups using the R package “survival.” Additionally,
univariate and multivariate Cox proportional hazards regression,
and data stratification analyses were performed to test whether
the ORS was independent of other clinical features. Statistical
significance was based on p-value < 0.05 and 95% confidence
interval (CI) estimates.

To evaluate the performance of the risk model prediction, we
randomly chose samples from the high- and low-risk group and
trained a support vector machine (SVM) classifier based on the
expression level of the selected genes in the risk model using
the R package “e1071.” The 10-fold cross-validation method was
used to evaluate the performance of the classifier. Plots of the
ROC curve of the classifier and the calculation of the AUC were
fulfilled using the R verification package. In addition, Chi-square
test and Wilcoxon rank-sum test were also used in the study,
and a p-value < 0.05 was considered as statistically significant.
In differential expression analysis, the genes with the cutoff of
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p-value < 0.05 and logFC > 1 or < −1 between the two groups
were regarded as statistically significant. All statistical analyses
were performed using R version 3.6.3.

RESULTS

Identification of Genome
Instability-Related Genes in TNBC
We identified 299 TNBC samples from the METABRIC
breast cancer dataset and performed a systematic analysis
(Supplementary Figure 1). To identify the genes associated
with genomic instability, we calculated the cumulative count
of alterations including somatic mutations and CNVs in each
patient and sorted these counts in decreased order. The top
25% of TNBC patients (n = 75) were named as the GU group

and the bottom 25% (n = 75) as the GS group. We performed
differential expression analysis between the GU and GS groups.
We identified 111 differentially expressed genes between the
two groups, 63 upregulated and 48 downregulated in the GU
group (Supplementary Table 1). We performed unsupervised
hierarchical clustering analysis for all 299 TNBC samples by
the 111 genes and compared our GU/GS groups with the
PAM50 and claudin-low subtype available from the METABRIC
dataset. The results showed that 69.1% (143/207) of the samples
in the GU group were classified as basal subtype and 65.2%
(60/92) samples in the GS group as the claudin-low subtype
(Figure 1A). We found that all patients were classified into
either the GU group or the GS group, in which the cumulative
alterations in the GU group were significantly higher than that
of the GS group (Figure 1B, Wilcox test p < 0.001). We
further compared the expression level of FOXM1, a genome

FIGURE 1 | Identification of genome instability-related genes in triple-negative breast cancer (TNBC). (A) Hierarchical clustering of all the 299 Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) TNBC cases using the expression of 111-genomic instability-related genes. The patients were divided into
genomic unstable (GU) and genomic stable (GS) groups. (B) Boxplots of alteration count and FOXM1 expression in GU and GS groups. The alteration counts and
FOXM1 expression in GU group were significantly higher than that in GS group. (C) The top 10 Gene Ontology Biological Process (GOBP) terms of functional
enrichment results. (D) The top 10 Gene Ontology Cellular Component (GOCC) terms of functional enrichment results.
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instability-related driver gene (Teh et al., 2010; Kim et al.,
2013; Senfter et al., 2019), between the GU and GS groups.
We found that the expression of FOXM1 in the GU group was
significantly higher than that in the GS group (Figure 1B, Wilcox
test p < 0.001) and observed the expression of the classical
proliferation gene MKI67 was significantly higher in the GU
group than that in the GS group (Supplementary Figure 2A,
Wilcox test p < 0.001). To validate our defined GU/GS groups,
we performed clustering analysis for the 111 genes in the 235
Shanghai TNBC samples and found that all samples were also
significantly classified into the GU (191/235, 81.3%) and GS
(44/235, 18.7%) groups (Supplementary Figure 3A). Besides,
we compared the homologous recombination deficiency (HRD)
levels between the GU/GS groups in the Shanghai dataset and
observed that HRD level in the GU group was significantly
higher than that in the GS group (Supplementary Figure 3B).
We performed the same analysis using top 10% and bottom
10% as the cutoff for the GU/GS groups and received similar
results from using the top 25% and bottom 25% as the cutoff
(Supplementary Figure 2B).

To test whether these 111 differentially expressed genes
were involved in important biological processes and pathways
associated with genome instability, we performed functional
enrichment analysis using R package “clusterProfiler” with
BH adjustment for multiple testing. We identified multiple
pathways associated with genomic instability, such as mitotic
nuclear division, organelle fission, nuclear division, sister
chromatid segregation, regulation of chromosome segregation,
etc. (Figures 1C,D). We also performed DAVID analysis using
the 111 genes. The results also showed that these genes were
largely involved in cell cycle process, cell proliferation, and
immune response (Supplementary Figure 4A), and some genes
(such as SFRP4, PRKCB, FZD9, and RAC2) were known in
involving TNBC development (Supplementary Figure 4B). The
results highlight that the 111 differentially expressed genes were
involved in tumorigenesis and development process of TNBC.

Identification of GIGenSig for Prognostic
Prediction
To explore the potential prognostic value of the above genome
instability-related genes, we divided all the METABRIC TNBC
cases into two subsets, the training dataset (n = 150) and the
testing dataset (n= 149). To identify prognostic-associated genes,
we conducted univariate Cox regression analysis to calculate the
relationship between the 111 gene expression and OS in the
training dataset. The result showed that 11 of the genes were
associated with OS in TNBC (Table 2, p< 0.05). We named these
11 genes as GIGenSig. To evaluate the prognostic potential of
GIGenSig, we constructed a prognostic risk model for OS based
on the expression of GIGenSig and coefficients of multivariate
Cox analysis: ORS = (0.137 × PRKCB expression) + (0.037 ×
TFF3 expression) + (−0.008 × ART3 expression) + (−0.071 ×
CD52 expression)+ (−0.030× CD79A expression)+ (−0.155×
FZD9 expression)+ (−0.010×GABRP expression)+ (−0.145×
IRF8 expression) + (−0.187 × ITM2A expression) + (−0.038 ×
SOX10 expression)+ (−0.072× VGLL1 expression). Among the

GIGenSig, the coefficients of PRKCB and TFF3 were positive,
suggesting that they were risk factors for TNBC, and their
high expression was associated with poor survival of TNBC. In
contrast, the coefficients for the other nine genes (ART3, CD52,
CD79A, FZD9, GABRP, IRF8 ITM2A, SOX10, and VGLL1) were
negative, suggesting that these were protective factors, and their
higher expression was associated with better survival.

Based on ORS values, TNBC patients in the training datasets
were classified into two groups by their median ORS (−4.602),
named as high-risk group and low-risk group. Survival plot
showed that the OS survival in the low-risk group was
significantly better than those of the high-risk group (Figure 2A,
log-rank test p = 2.66e−04; HR = 2.718, 95% CI: 1.699–4.350),
the 5-year survival rate in the low-risk group (73%) was higher
than that in high-risk group (48%), and the 5-year ROC curve
analysis provided an AUC of 0.648 (Figure 2B). In addition, SVM
and 10-fold cross-validation showed that our risk model was
robust to classify TNBC patients into high- and low-risk groups
(Supplementary Figure 5A, AUC= 0.987, p= 7.62e−33).

We ranked the ORS for patients in the training dataset
to explore the differences of GIGenSig expression, alteration
count, and FOXM1 expression between low score and high score
groups (Figure 2C). Clustering analysis showed that PRKCB
and TFF3 were upregulated in the high score group, whereas
the other nine genes were upregulated in the low score group
(Figure 2C). The differences of alteration count and FOXM1
expression were both significant between the high-risk and low-
risk groups (Figure 2D). The count of alterations in the high-risk
group was significantly higher than that in the low-risk group
(Figure 2D, Wilcoxon test p = 0.024). Additionally, FOXM1 had
significantly higher expression in the high-risk group than in the
low-risk group (Figure 2D, Wilcoxon test p < 0.001).

Validation of GIGenSig for Prognostic
Prediction in Testing and Molecular
Taxonomy of Breast Cancer International
Consortium Datasets
To explore the prognostic performance of GIGenSig, we tested
it using the testing dataset of 149 TNBC cases. Based on the
ORS cutoff in the training dataset, the cases in the testing
dataset were classified into high-risk group (n= 73) and low-risk
group (n = 76). The OS of the low-risk group was significantly
higher than that of the high-risk group (Figure 3A, log-rank test
p = 2.45e−02; HR = 1.820, 95% CI: 1.099–3.023). Similarly, the
5-year survival rate in the low-risk group (72%) was also higher
than that in the high-risk group (60%), and the 5-year ROC
analysis yielded an AUC of 0.607 (Supplementary Figure 6A).
Additionally, the SVM and 10-fold cross-validation showed that
our risk model was robust to classify TNBC patients into high-
and low-risk groups in the testing dataset (Supplementary
Figure 5B, AUC = 0.980, p = 8.64e−32). We also displayed the
clustering of GIGenSig, alteration count, and FOXM1 expression
level according to the increasing order of the ORS for each
patient in the testing dataset (Figure 3C). The alteration count
and FOXM1 expression level were both significantly higher in the
high-risk group than in the low-risk group (Figure 3E, Wilcoxon
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TABLE 2 | Univariate Cox regression analysis for the 11 of 111-genome instability-related genes associated with overall survival in TNBC.

Gene Genomic location Coefficient HR 95% CI p-Value

ART3 chr4:76932337–77033955 −0.126 0.882 0.778–0.999 0.048

CD52 chr1:26644448–26647014 −0.171 0.843 0.715–0.993 0.042

CD79A chr19:42381190–42385439 −0.150 0.860 0.751–0.986 0.031

FZD9 chr7:72848109–72850450 −0.187 0.829 0.689–0.999 0.049

GABRP chr5:170190354–170241051 −0.115 0.891 0.817–0.971 0.009

IRF8 chr16:85932409–85956215 −0.228 0.796 0.646–0.982 0.033

ITM2A chrX:78615881–78623164 −0.188 0.829 0.690–0.997 0.046

PRKCB chr16:23847322–24231932 −0.212 0.809 0.657–0.996 0.045

SOX10 chr22:38366693–38383429 −0.154 0.857 0.755–0.973 0.017

TFF3 chr21:43731777–43735761 0.106 1.112 1.011–1.224 0.029

VGLL1 chrX:135614311–135638966 −0.160 0.852 0.739–0.983 0.028

FIGURE 2 | Identification of genome instability-derived gene signature (GIGenSig) for prognostic prediction. (A) Survival curve of overall survival of TNBC patients in
the training dataset. Patients were significantly classified into high- and low-risk groups; (B) 5-year receiver operating characteristic (ROC) curve for the GIGenSig in
the training dataset; (C) GIGenSig gene expression pattern and alteration distribution and FOXM1 expression level with the increasing overall risk score (ORS) scores
for the patients in the training dataset. The blue and red represent the low- and high-risk groups, respectively; (D) distribution of accumulative alteration number and
FOXM1 expression in the high- and low-risk groups in the training dataset. The blue and red represent the low- and high-risk groups, respectively.
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FIGURE 3 | Validation of GIGenSig for prognostic prediction in the testing and METABRIC datasets. (A,B) Survival curves of overall survival of patients in the testing
and METABRIC datasets. Patients were significantly classified into high- and low-risk groups. (C,D) The GIGenSig gene expression pattern, alteration distribution,
and FOXM1 expression level with the increasing ORS scores for the patients in the testing and METABRIC dataset. The blue and red represent the low- and high-risk
groups, respectively. (E,F) The distribution of accumulative alteration number and FOXM1 expression in the high- and low-risk groups in the testing and METABRIC
datasets. The blue and red represent the low- and high-risk groups, respectively.
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FIGURE 4 | Validation of GIGenSig in five additional datasets. (A,B) Boxplots for ORS for TNBC patients with different stage and grade in The Cancer Genome Atlas
(TCGA) and Shanghai dataset. (C–E) Boxplots for TFF3 expression among patients with different grade in GSE21653, GSE31448, and GSE25066. (F–H) Boxplots
for FOXM1 expression among patients with high and low TFF3 expression in GSE21653, GSE31448, and GSE25066. The comparisons between any two different
groups were performed by Wilcox test.

test p < 0.001 for alteration count; Wilcoxon test p = 0.001 for
FOXM1 expression level).

We also validated the prognostic power of GIGenSig in
the METABRIC TNBC dataset. The patients were classified
into two groups. The median survival time of the low-risk
group was significantly higher than that of the high-risk group
(Figure 3B, median: 23.6 vs. 7 years; log-rank test p = 2.57e−05;
HR = 2.241, 95% CI: 1.587–3.63). The 5-year survival rate
in the low-risk group was longer (72%) than that in the
high-risk group (54%), and the 5-year ROC gave an AUC
of 0.627 (Supplementary Figure 6B). In addition, the SVM
and 10-fold cross-validation showed that our risk model was
robust to classify TNBC patients into high- and low-risk
groups in the METABRIC dataset (Supplementary Figure 5C,
AUC = 0.980, p = 5.30e−62). A similar pattern was observed
in the METABRIC dataset as in the training and testing datasets
for the clustering of GIGenSig, alteration count, and FOXM1
expression (Figure 3D). Additionally, both significant differences

were present for alteration count and FOXM1 expression between
the high-risk and low-risk groups (Figure 3F, Wilcoxon test
p < 0.001 for alteration count; Wilcoxon test p < 0.001 for
FOXM1 expression level).

Validation of GIGenSig in Five Additional
Datasets
We compared GIGenSig using two independent datasets, the
TCGA and Shanghai TNBC data, to test if clinical stage and
grade could have an impact on the prognosis of TNBC. As shown
in Figure 4A, there was a close relationship between the stage
of TNBC and ORS but not reaching a significant level in the
TCGA dataset (Figure 4A, Wilcoxon test p = 0.088). ORS was
also associated with TNBC grade in Shanghai dataset that ORS
of grade 3 was significantly higher than that of grade 2 and
grades 2–3 (Figure 4B, p = 0.004 for comparing with grade 2;
p = 0.031 for comparing with grades 2–3; Wilcoxon test). We
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TABLE 3 | Univariate and multivariate Cox regression analyses of the genome instability-derived gene signature (GIGenSig) and overall survival in different
patient datasets.

Characteristics Univariable analysis Multivariable analysis

HR 95% CI p-value HR 95% CI p-Value

Training dataset

GIGenSig 2.718 1.699–4.350 <0.001 2.184 1.218–3.915 0.009

Age 1.022 1.004–1.041 0.019 1.042 1.007–1.079 0.018

Menopausal status 0.887 0.549–1.433 0.625 2.656 1.024–6.886 0.045

Tumor stage 1.358 0.691–2.672 0.375 0.963 0.458–2.024 0.921

Grade 1.187 0.593–2.375 0.629 1.870 0.822–4.255 0.135

Testing dataset

GIGenSig 1.820 1.096–3.023 0.021 1.354 0.683–2.682 0.038

Age 1.024 1.008–1.040 0.004 1.035 1.000–1.072 0.052

Menopausal status 0.640 0.395–1.037 0.070 2.215 0.754–6.508 0.148

Tumor stage 4.682 2.255–9.721 <0.001 4.976 2.266–10.926 <0.001

Grade 0.899 0.504–1.605 0.719 1.485 0.689–3.203 0.313

METABRIC dataset

GIGenSig 2.241 1.587–3.163 <0.001 1.647 1.080–2.512 0.020

Age 1.024 1.012–1.036 0.000 1.037 1.013–1.062 0.002

Menopausal status 0.736 0.525–1.031 0.075 2.270 1.137–4.531 0.020

Tumor stage 2.180 1.332–3.569 0.002 1.851 1.093–3.134 0.022

Grade 1.011 0.649–1.573 0.962 1.456 0.842–2.515 0.178

further validated GIGenSig in another three independent breast
cancer datasets generated by the microarray platform (GSE21653,
GSE31448, and GSE25066). We reannotated the microarray data
to obtain the gene expression data and extracted the common
clinical characteristics from the three datasets. We then examined
the association of GIGenSig with TNBC genomic instability
information in these three independent datasets. Among all
the 111 genes in GIGenSig, we found that TFF3 presented
significantly higher expression level in grade 3 than in grades
1 and 2 in all three datasets (Figures 4C–E, p = 0.003 for
GSE21653; p= 0.004 for GSE31448; and p= 0.019 for GSE25066;
Wilcoxon test). Furthermore, we tested the relationship between
TFF3 expression and FOXM1 expression in the three datasets.
We observed that FOXM1 expression in patients with high
TFF3 expression was significantly higher than that with low
TFF3 expression in all three datasets (Figures 4F–H, p < 0.001
for GSE21653; p < 0.001 for GSE31448; and p = 0.003 for
GSE25066; Wilcoxon test).

Prognostic Prediction by GIGenSig Is
Independent of Clinical Features
To explore whether the prognostic ability of GIGenSig was
independent of age, menopausal status, and tumor stage, we
performed univariate and multivariate Cox regression analysis.
The results showed that the GIGenSig was significantly associated
with TNBC OS in the three datasets when adjusted by age,
menopausal status, tumor stage, and grade (Table 3). The
METABRIC patients were divided into two groups according to
age with <55 and ≥55, pre- and post-status of menopause, and
tumor stage with I/II and III/IV. The patients were classified
into high- and low-risk groups according to the median risk

scores in the training dataset. The results revealed that the
patients were significantly classified into two groups by age
(Figures 5A,B; log-rank test p = 0.019 for age < 55 group;
log-rank test p = 0.002 for age ≥ 55 group), menopausal
(Figures 5C,D; log-rank test p= 0.074 for premenopausal group;
log-rank test p < 0.001 for postmenopausal group), and stage
subset (Figures 5E,F; log-rank test p < 0.001 for stage I/II
group; log-rank test p = 0.387 for stage III/IV group). The
classification for patients in the stage III/IV group was not
significant probably due to the smaller sample size (n = 25) in
this group. These results indicated that GIGenSig served as a
prognostic signature for TNBC independent of age, menopausal
status, and tumor stage.

Genome Instability-Derived Gene
Signature Performs Better Than Other
Prognostic Signatures
To further explore the prognostic performance of the GIGenSig,
we compared GIGenSig with other TNBC prognostic signatures
including the two-gene signature (Alsaleem et al., 2020), the
five-gene signature (Wang et al., 2018), the eight-gene signature
(Kim et al., 2019), and the 19-gene signature (Qian et al.,
2017) using the METABRIC dataset. The result showed that
the 5-year AUC (0.627) of OS for GIGenSig was significantly
higher than that of the two-gene signature (AUC = 0.534), the
five-gene signature (AUC = 0.571), the eight-gene signature
(AUC = 0.546), and the 19-gene signature (AUC = 0.615)
(Figure 6). The results demonstrated that the GIGenSig
provided better prognostic prediction for TNBC than the other
four signatures.
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FIGURE 5 | Prognostic prediction by GIGenSig is independent of clinical features. (A,B) Survival curve of overall survival (OS) for patients with age <55 and ≥55 in
the METABRIC datasets. Patients were significantly classified into high- and low-risk groups. (C,D) Survival curve of OS for patients with premenopausal and
postmenopausal status in the METABRIC datasets. Patients were classified into high- and low-risk groups; (E,F) Survival curve of OS for patients with stages I and II
and stages III and IV in the METABRIC datasets. Patients were classified into high- and low-risk groups.

DISCUSSION

Compared with TNBC treatment, limited progress has been
made in TNBC prognosis (Sulaiman et al., 2018a,b; Mou
and Wang, 2019; Zhang et al., 2019). Prognostic study
usually evaluates clinical features, such as tumor size, stage,
grade, etc., which provide limited mechanistic information to
understand the relationship between prognosis and the disease
(Echavarria et al., 2018; Johansson et al., 2018; Park et al.,
2019). Genome instability and abnormal gene expression are
common features in cancer (Telli et al., 2016; Tutt et al.,
2018; Huang et al., 2019). While the relationship between
genome instability and dysregulation of gene expression in
cancer has been studied, genome-wide characterization for
its prognostic value in TNBC has not been systematically
analyzed (Grady and Carethers, 2008; Rao et al., 2017;
Kalimutho et al., 2019).

As shown from our current study, molecular evidence from
genome instability and abnormal gene expression is a rich

resource to identify prognostic signatures as the prognostic
marker for TNBC. In our study, we identified 111 genome
instability-related genes by integrating mutation, CNV, and
gene expression from TNBC. Functional analysis showed that
these 111 genomic instability-related genes were enriched in
the pathways associated with mitotic process. Dysregulation
of mitotic processes can impact DNA replication involving
mitotic nuclear division, nuclear division, and organelle fission,
contributing to genome instability and OS of TNBC (Chen L.
et al., 2018; Si et al., 2020; Suo et al., 2020). For example,
the feedback loop between Drp1-mediated mitochondrial fission
and Notch signaling pathway can promote TNBC cell survival
via increasing survivin expression (Chen L. et al., 2018), and
silibinin-induced mitochondrial fission can cause mitophagy
preventing silibinin-induced apoptosis in TNBC (Si et al.,
2020). Functional annotation with DAVID tool revealed that
these 111-genomic instability-related genes play important
roles in carcinogenetic pathways, such as affecting cell cycle
(Kastan and Bartek, 2004), uncontrolled cell proliferation
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FIGURE 6 | Better performance of GIGenSig than other prognostic
signatures. Five-year ROC comparison of overall survival between GIGenSig
signature and other four signatures from AUC (area under the curve), ACC
(accuracy), SPE (specificity), and SEN (sensitivity).

(Evan and Vousden, 2001), and abnormal immune response
(Desrichard et al., 2016).

From the 111 genes, we further identified a GIGenSig with
11 genes (ART3, CD52, CD79A, FZD9, GABRP, IRF8, ITM2A,
PRKCB, SOX10, TFF3, and VGLL1). Our study demonstrated
that the GIGenSig effectively divided TNBC into high- and low-
risk groups in the training dataset and its prognostic value was
validated independently in multiple testing datasets. Besides,
GIGenSig was significantly associated with genomic alteration
pattern and FOXM1 expression, which are important predictors
of genome instability. Certain genes in GIGenSig are known
to be closely related to tumorigenesis and development of
TNBC. For example, ART3 overexpression regulated TNBC cell
functions by activating AKT and ERK pathways (Tan et al.,
2016); GABRP and VGLL1 were present in basal-like/triple-
negative phenotype, and their expression levels were associated
with OS of TNBC (Castilla et al., 2014; Sizemore et al., 2014);
and ITM2A and SOX10 were prognostic biomarkers for TNBC
and potential therapeutic targets (Harbhajanka et al., 2018;
Abuderman et al., 2020).

Furthermore, our identified GIGenSig can have clinical
significance in TNBC treatment. It has been reported that
Ki67 encoded by MKI67 plays an important role in the
prognosis and treatment of breast cancer (Yerushalmi
et al., 2010; Li et al., 2015; Jurikova et al., 2016). Using the
METABRIC dataset, we also observed that older TNBC
patients had significantly lower MKI67 expression than
younger TNBC patients (Supplementary Figure 7A, Wilcox
test p = 2.59e−3). However, Ki67 did not show prognostic
value for patients used in our study (Supplementary
Figure 7B). This implies that a combination of multiple

genes provides better prognostic power than does a
single gene. Our study also found that TNBC patients
with chemotherapy treatment had low risk (84 vs. 73
with chemotherapy in the low-risk and high-risk groups,
Supplementary Figure 7C), demonstrating the effectiveness
of chemotherapy as the main therapeutic strategy in TNBC
treatment (Denkert et al., 2017; Chaudhary et al., 2018;
Lyons, 2019).

In conclusion, our study provides a genome instability-based
TNBC prognostic signature to predict the clinical outcome of
TNBC. Further tests with more datasets and clinical information
will validate its value for clinical TNBC applications.
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