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Tumor somatic mutations in protein-coding regions may generate neoantigens which
may trigger antitumor immune cell response. Increasing evidence supports that immune
cell response may profoundly influence tumor progression. However, there are no
calculated tools to systematically identify immune cells driven by specific somatic
mutations. It is urgent to develop a calculated method to comprehensively detect
tumor-infiltrating immune cells driven by the specific somatic mutations in cancer. We
developed a novel software package (SMDIC) that enables the automated identification
of somatic mutation-driven immune cell. SMDIC provides a novel pipeline to discover
mutation-specific immune cells by integrating genomic and transcriptome data. The
operation modes include inference of the relative abundance matrix of tumor-infiltrating
immune cells, detection of differential abundance immune cells with respect to the
gene mutation status, conversion of the abundance matrix of significantly dysregulated
cells into two binary matrices (one for upregulated and one for downregulated cells),
identification of somatic mutation-driven immune cells by comparing the gene mutation
status with each immune cell in the binary matrices across all samples, and visualization
of immune cell abundance of samples in different mutation status for each gene.
SMDIC provides a user-friendly tool to identify somatic mutation-specific immune
cell response. SMDIC may contribute to understand the mechanisms underlying
anticancer immune response and find targets for cancer immunotherapy. The SMDIC
was implemented as an R-based tool which was freely available from the CRAN website
https://CRAN.R-project.org/package=SMDIC.

Keywords: multi-omics data, somatic mutations, tumor-infiltrating immune cells, tumor microenvironment, gene
expression

INTRODUCTION

Tumor generally harbors somatic mutations, some of which in protein-coding regions may
generate neoantigens which may trigger antitumor immune cell response in the tumor
microenvironment (TME) (Yang et al., 2019). The mutation-reactive immune cells are usually
found infiltrating into solid tumors (Robbins et al., 2013), and they profoundly influence
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tumor initiation, progression, metastasis, and treatment
response (Chen and Mellman, 2017). For example, Tran et al.
(2014) identify erbb2 interacting protein (ERBB2IP) mutation-
specific CD4+ T (TH1) cells in a patient with metastatic
cholangiocarcinoma and demonstrate that the ERBB2IP
mutated-specific TH1 cell response can be used to mediate
regression of metastatic epithelial cancer. Therefore, identifying
mutation-specific immune cell response will illustrate the
mechanisms underlying the anticancer immune response and
might help to find targets for cancer immunotherapy (Yang et al.,
2019). However, there are very few calculated tools that could
comprehensively identify which immune cells are triggered
by which mutations. Thus, it is urgent to develop a calculated
method to comprehensively detect tumor-infiltrating immune
cells driven by the specific somatic mutations in cancer. Recently,
a number of computational approaches have been developed
for quantifying tumor-infiltrating immune cells using tumor
bulk gene expression data (Newman et al., 2015; Senbabaoglu
et al., 2016; Aran et al., 2017). This will help to examine the
correlation among somatic mutations and immune cells by using
high-throughput sequencing data, for example whole-exome
sequencing and RNA-seq.

Here, we developed a novel software package, SMDIC, to
identify immune cells driven by specific somatic mutations by
integrating genomic and transcriptome data, which is available
at https://CRAN.R-project.org/package=SMDIC. SMDIC also
provides visualization of the relative abundance of identified
immune cells in the gene mutation status using heat maps,
as well as the waterfall plot of mutation genes correlated with
immune cells and mutually exclusive and co-occurring plot. We
used the Genomic Data Commons (GDC) TCGA breast cancer
somatic mutation and expression data to show the applications
of the package and the visualization of the results. The results
showed that SMDIC could effectively identify immune cells
which may be driven by the specific somatic mutation genes, with
strong robustness.

MATERIALS AND METHODS

SMDIC has three main functions (Figure 1): (a) inferring the
relative abundance matrix of tumor-infiltrating immune cells, (b)
detecting differential abundance immune cells with respect to a
particular gene mutation status and converting the abundance
matrix of significantly dysregulated immune cells into two binary
matrices (one for upregulated and one for downregulated cells),
and (c) identifying somatic mutation-driven immune cells by
comparing the gene mutation status with each immune cell in
the binary matrices across all samples.

Inference of the Relative Abundance
Matrix of Immune Cells
Recently, various computational approaches have been developed
for quantifying tumor-infiltrating immune cells from gene
expression data of human bulk tumors. The SMDIC package
provides three methods for estimating the relative infiltration
abundance of different cell types in the tumor microenvironment

(TME), namely, xCell (Aran et al., 2017), ssGSEA estimated
method using the signatures of (Bindea et al., 2013; Senbabaoglu
et al., 2016), and CIBERSORT (Newman et al., 2015). Through
these methods, the relative abundance matrix of immune cells is
inferred with cells as rows and samples as columns (Figure 1A).
In the package, the default method is xCell, which estimates
abundances of 64 cell types including adaptive and innate
immunity cells, hematopoietic progenitors, epithelial cells, and
extracellular matrix cells (Aran et al., 2017). The users can choose
the method they are interested in.

Detection of Differential Abundance
Immune Cells With Respect to the Gene
Mutation Status
The somatic mutation data used in the package are the mutation
annotation file (MAF) format. We extract the non-silent somatic
mutations (non-sense mutation, missense mutation, frame-shift
indels, splice site, non-stop mutation, translation start site,
inframe indels) in protein-coding regions and built a binary
mutations matrix, in which 1 represents any mutation occurs in
a particular gene in a particular sample; otherwise, the element is
0. The genes with a particular mutation frequency greater than
a given threshold value are retained for the following analysis.
Then, for a given mutation gene, the significance analysis of
microarrays (SAM) method (Tusher et al., 2001) is used to detect
differential abundance immune cells with respect to the mutation
status (defined by binary mutation vector) across all the samples.
With a false discovery rate (FDR) < 0.05 in SAM, the immune
cells were deemed as significantly dysregulated between mutation
and non-mutation samples and were considered to be correlated
with the gene mutation status. Then, the abundance matrix
elements of significantly dysregulated immune cells are converted
to z-scores by row. For the upregulated (or downregulated)
immune cells, any element with a z-score > 2.0 (or ≤ 2.0) is
assigned with 1; otherwise, the element is 0 (Figure 1B). Thus,
we obtain two binary abundance matrices for upregulated and
downregulated immune cells, respectively.

Identification of Somatic
Mutation-Driven Immune Cells
For a particular mutation gene, we compare the binary mutation
vector with each binary cell abundance vector in the upregulated
or downregulated immune cell–matrix, respectively, and a
2 × 2 contingency table is constructed. The Fisher’s exact
test is applied to recover the cells that had drastic mutation-
correlated upregulated or downregulated response (Figure 1C).
This process is repeated for each immune cell in the binary
abundance matrices. To correct for multiple comparisons, we
adjust the exact test p-values by using the FDR method proposed
by Benjamini and Hochberg (1995). The immune cells with
the default FDR < 0.05 are deemed as statistically significant
mutation-correlated and may be driven by the somatic mutation.
We repeat the above process for each mutated gene.

To further test if the somatic mutation-specific immune
cells are associated with the prognosis of tumor patients, we
constructed a signature by using immune cells driven by a
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FIGURE 1 | Flow diagram of SMDIC. (A) Inference of the relative abundance matrix of immune cells; (B) Detection of differential abundance immune cells with
respect to the gene mutation status; (C) Identification of significant immune cells associated with somatic mutation.

particular gene mutation. The immune cell risk score was
calculated with a prognostic score model for each patient based
on the abundances of cells. The model is as follows:

Risk score =
∑
k∈S

βkak (1)

where S is the set of cells correlated with a particular gene
mutation, ak is the abundance of cell k, and βk is the regression
coefficient of a multivariate Cox proportional hazard regression
model estimated on ak and the overall survival data. According to
the median of risk scores of the immune cell signature, patients
are classified into high-risk and low-risk groups.

RESULTS

We selected the GDC TCGA Breast Cancer (BRCA) data
cohorts1 as examples to explain the application of the SMDIC
package. We downloaded the MAF file (derived from VarScan
2) from the GDC data portal, which is obtained from TCGA
whole-exome sequencing (WES) data. Meantime, the RNA-
seq FPKM gene expression data and the associated clinical

1https://portal.gdc.cancer.gov/

data were also downloaded. These data have been deposited in
Supplementary Data.

Identification of Immune Cells Driven by
Somatic Mutations in Breast Cancer
For the expression data, log-transformed FPKM expression
values were used and were inputted into the “exp2cell” function
for inferring the relative abundance matrix of infiltrated immune
cells. The “exp2cell” function provides three methods for
inferring the cell abundance matrix, namely, xCell (Aran et al.,
2017), ssGSEA estimated method using the immune signatures
of Bindea et al. (2013; Senbabaoglu et al., 2016), and CIBERSORT
(Newman et al., 2015). The users can use the argument “method”
to select the method they are interested in. The default argument
is “xCell” method. Thus, a cell abundance matrix with 64 cells and
974 samples was obtained.

We then extracted the non-silent somatic mutations (non-
sense mutation, missense mutation, frame-shift indels, splice
site, non-stop mutation, translation start site, inframe indels) in
protein-coding regions from the MAF file and built a binary
mutation matrix, in which 1 represents any mutation occurs in a
particular gene in a particular sample; otherwise, the element is 0.
The “maf2matrix” function was used to implement this process.
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TABLE 1 | The summary results of immune cells driven by somatic mutation genes.

Gene Cells Cell count Mutation rate

TP53 Astrocytes, CD8+ naive T cells, CD8+ Tem, DC, epithelial cells, keratinocytes, macrophages,
macrophages M1, melanocytes, NK cells, pDC, pericytes, plasma cells, pro-B cells, sebocytes, Tgd
cells, Th1 cells, Th2 cells, Tregs

19 0.34

CDH1 Adipocytes, CD4+ Tcm, chondrocytes, CMP, endothelial cells, fibroblasts, HSC, ly endothelial cells,
megakaryocytes, mesangial cells, mv endothelial cells, NKT

12 0.13

NBPF14 CD8+ Tem, DC, iDC, keratinocytes, pro-B cells, sebocytes 6 0.013

OBSCN Epithelial cells, keratinocytes, pro-B cells, sebocytes, Th1 cells 5 0.030

NF1 aDC, B cells, memory B cells, pDC, plasma cells 5 0.037

ANKRD30A Keratinocytes, sebocytes, Th1 cells, Th2 cells 4 0.015

ARAP3 CD8+ naive T cells, NK cells, preadipocytes, Th1 cells 4 0.010

NOS1 CD4+ Tem, CD8+ T cells, CD8+ Tcm, pDC 4 0.012

PCDH19 CD4+ memory T cells, CD4+ T cells, CD8+ Tem, NK cells 4 0.018

KCNA4 CD8+ T cells, CD8+ Tcm, NK cells, pDC 4 0.011

SCN5A CD8+ T cells, CD8+ Tcm, plasma cells 3 0.013

ACTN2 NK cells, pDC, Th2 cells 3 0.011

FBXW7 MEP, Th1 cells, Th2 cells 3 0.016

TRPS1 CD4+ Tem, MSC, skeletal muscle 3 0.011

The mutation genes correlated at least three significant cells are shown.

Alternatively, the users can directly input a binary mutation
matrix which may not be derived from the MAF file. This will
increase the usability of our package. With a given mutation
frequency threshold (the default value is 1%), a binary matrix
with 821 mutations and 974 samples was obtained.

In the SMDIC package, the “mutcorcell” function is
implemented to identify somatic mutation-specific immune cell
response by inputting the abundance matrix of immune cells and
binary mutations matrix. This function firstly detects differential
abundance immune cells with respect to a particular gene

TABLE 2 | The detailed information of immune cells driven by the
TP53 gene mutation.

Cell Full name p-value FDR

Th2 cells Type 2 T-helper cells 8.86E-13 4.16E-11

Sebocytes Sebocytes 1.51E-09 3.55E-08

Macrophages M1 Macrophages M1 6.33E-09 9.91E-08

Astrocytes Astrocytes 1.01E-07 1.19E-06

Keratinocytes Keratinocytes 2.33E-07 2.02E-06

Th1 cells Type 1 T-helper cells 2.58E-07 2.02E-06

Macrophages Macrophages 0.00018 0.0012

Pericytes Pericytes 0.00035 0.0020

Tregs Regulatory T cells 0.00048 0.0025

NK cells Natural killer cells 0.00054 0.0025

Epithelial cells Epithelial cells 0.00086 0.0037

Pdc Plasmacytoid dendritic cells 0.0020 0.0077

Tgd cells Gamma delta T cells 0.0021 0.0077

Pro-B cells Pro-B cells 0.0026 0.0089

CD8+ naive T cells CD8+ naive T cells 0.0040 0.013

Melanocytes Melanocytes 0.0052 0.015

DC Dendritic cells 0.016 0.042

Plasma cells Plasma cells 0.016 0.042

CD8+ Tem CD8+ effector memory T cells 0.017 0.043

mutation status with the SAM method (Tusher et al., 2001).
The immune cells with the default FDR < 0.05 in SAM are
deemed as significantly dysregulated between mutation and non-
mutation samples and are considered to be correlated with the
gene mutation status. The significantly dysregulated immune
cells are extracted and their abundance matrix elements are
converted to z-scores by row. Then, the z-score abundance matrix
is converted to two binary abundance matrices for upregulated
and downregulated immune cells, respectively. Specifically, for
the upregulated (or downregulated) immune cells, any element
with a z-score > 2.0 (or ≤ 2.0) is assigned with 1; otherwise,
the element is 0 (Figure 1B). Finally, for a particular mutation
gene, the binary mutation vector is compared with each binary
cell abundance vector in the upregulated and downregulated
cell matrices, respectively, and a 2 × 2 contingency table is
constructed. Moreover, the Fisher’s exact test is applied to
recover the cells that had drastic mutation-correlated upregulated
or downregulated response. This process is repeated for each
immune cell in the binary abundance matrices. To correct for
multiple comparisons, the exact test p-values are adjusted by
using the FDR method (Benjamini and Hochberg, 1995), and
the immune cells with the default FDR < 0.05 are deemed as
statistically significant mutation-correlated and may be driven
by the somatic mutation. The above process is repeated for
each mutated gene.

The “mutcorcell” function will output the summary results
of somatic mutation-driven immune cells and the detailed
information of immune cells for each mutation, which are
used as input data for the visualization functions. The detailed
commands are listed in the Supplementary Material, and
the GDC TCGA breast cancer datasets (mutation data, gene
expression data, and survival data of patients) are stored in
Supplementary Data. The summary results of immune cells
driven by somatic mutation genes are listed in Table 1, and
many of them have been reported in the recent literature.
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FIGURE 2 | Waterfall plot of mutation genes that drive immune cells in the GDC TCGA breast cancer dataset.

For example, regulatory T cells (Treg) have been found to
be associated with a high mutation rate of TP53 genes in
breast cancer (Oshi et al., 2020). The TP53 mutant has been
identified to be associated with a higher expression of cytotoxic
T-cell lymphocytes, natural killer (NK) cells, and Th1 genes
characteristic of a proinflammatory immune cell signature
(Agupitan et al., 2020). E-cadherin (CDH1) has been reported to
target platelet endothelial cell adhesion molecule-1 (PECAM-1)
for ubiquitination and degradation in endothelial cells (Liu et al.,
2020), whose mutation may regulate endothelial cell homeostasis.
Our results are consistent with these findings, and SMDIC could
also identify some additional immune cells driven by these
mutations, which may provide some new biological insights.

Moreover, most of these cells driven by somatic mutations
have been proposed to be associated with the progress of
breast cancer. For example, in the TP53 mutation, 18 cells
were identified (Table 2). It was proposed that type 1
T-helper (Th1) cells eradicated tumor mass by inducing cellular
immunity, and type 2 T-helper (Th2) cells destroyed the
tumor by inducing tumor necrosis (Nishimura et al., 1999).
Macrophages M1 cells generate interleukin (IL)-12 and tumor
necrosis factor with antitumor effects in breast cancer cells
(Jeong et al., 2019). NK cells were reported to be critical

immune components in controlling breast tumor growth and
dissemination (Liu et al., 2019). For the cells driven by CDH1,
CD4+ central memory T cell (Tcm) was proposed to be negatively
associated with recurrence-free survival in breast cancer (Deng
et al., 2019). The above results indicate that the SMDIC
method could effectively identify immune-related cells driven by
somatic mutations and may help to facilitate the development of
cancer immunotherapy.

Presentation of the Results
We used the visualization function of the SMDIC package
to demonstrate the analysis results of breast cancer. The
detailed commands for these visualization functions are listed in
Supplementary Material. The “plotwaterfall” function is applied
to show the waterfall plot of mutation genes that drive immune
cells (Figure 2). To further analyze the correlation between
these mutation genes, we used the “plotCoocMutex” function to
plot the co-occurrence and mutual exclusivity plots (Figure 3).
TP53 and CDH1 show significant mutual exclusions (p < 0.05).
For a better display of the immune cell response triggered by
somatic mutation, we used the “heatmapcell” function to plot
a heat map to show the significant difference of cell abundance
between gene mutation and non-mutation status. We selected

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2021 | Volume 9 | Article 715275

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-715275 July 16, 2021 Time: 13:48 # 6

Jiang et al. Identifying of Somatic Mutation-Driven Immune Cells

FIGURE 3 | Co-occurrence and mutual exclusivity plots between mutation genes correlated with immune cells.

the immune cells driven by TP53 as an example to show
their heat map (Figure 4). We can see that the heat maps of
immune cells display two obviously different blocks between
TP53 mutation and non-mutation samples. From the heat maps
of immune cells driven by CDH1, a similar result was obtained
(Supplementary Figure 1). We then used the “survcell” function
to plot the Kaplan–Meier survival curves of patients classified
into high- and low-risk groups using the median of the immune
cell risk score (see Implementation section). The immune cells
driven by TP53, CDH1, NBPF14, and OBSCN mutations were,
respectively, selected to calculate the immune risk score for
plotting Kaplan–Meier survival curves (Figures 5A–D). It can be
seen that immune cells driven by these mutations could be used as
prognostic signatures. These results indicate that these mutations
may be used as neoantigens for immunotherapy.

Robustness Analysis of the SMDIC
Method
We first tested if the immune cells driven by the specific somatic
mutation had the same or similar prognostic value in different
independent datasets. As the public cancer datasets with both
genome and transcriptome are seldom, we used the mutation-
specific immune cell signatures (see Implementation section)

obtained from the TCGA breast cancer dataset to test their
prognosis performance in independent gene expression datasets.
We enrolled four independent datasets of breast cancer, namely,
GSE1992 (Hu et al., 2006), GSE3143 (Bild et al., 2006), GSE1456
(Pawitan et al., 2005), and GSE7390 (Desmedt et al., 2007)
datasets. The cell signature derived from TP53 mutation was
firstly used to classify patients from four independent breast
cancer expression datasets, respectively. For each independent
dataset, the “exp2cell” was applied to convert gene expression
profiles to cell abundance profiles, and the patients were divided
into high-risk and low-risk groups based on the cell signature.
Interestingly, the p-values of log-rank tests in these four datasets
were all < 0.05 (Supplementary Figures 2A–D). For the cell
signature driven by CDH1, it was shown that the CDH1-
specific cell signature could classify patients into high- and
low-risk groups in three of the above four datasets (log-rank
tests p-value < 0.05, Supplementary Figures 3A–D). We also
found that the cell signatures derived from NBPF14 and OBSCN
mutations respectively obtained similar results (Supplementary
Figures 4, 5). These results confirmed that the mutation-driven
immune cells could be used as prognostic signatures.

We then tested if the SMDIC method is robust to missing
data in the gene expression profiles. To do this, we performed
data removal tests using the GDC TCGA breast cancer expression

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 July 2021 | Volume 9 | Article 715275

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-715275 July 16, 2021 Time: 13:48 # 7

Jiang et al. Identifying of Somatic Mutation-Driven Immune Cells

FIGURE 4 | Heat map of cell abundance between TP53 mutation and non-mutation status.

profiles. For the gene expression data, we randomly removed the
genes in the original expression profiles from 5 to 20% at 5%
intervals. For each data removal, we repeated the SMDIC method
to identify somatic mutation-specific immune cells. We then
compared these results with our original results. The mutation
genes which trigger at least five immune cells, namely, TP53,
CDH1, OBSCN, NF1 and NBPF14, were used to test how many
significant immune cells are overlapped. With the data removal
increasing, we found that the number of overlapped cells driven
by each mutation gene fell slowly compared with the original data
(Figure 6). Moreover, 89% (17/19), 66% (8/12), 60% (3/5), and
50% (3/6) cells were shared with our original results for the TP53,
CDH1, NBPF14, and OBSCN mutations, respectively, even after
removal of up to 15% of the gene expression data. These results
indicate that the SMDIC method is robust to missing data in the
gene expression profiles.

We further tested if the SMDIC method is robust to different
methods for estimating abundance of immune cell infiltration.
The default method for estimating cell abundance is xCell (Aran
et al., 2017) in the package. We used an alternative ssGSEA

estimated method (Senbabaoglu et al., 2016) to test if the SMDIC
method could obtain consistent results. In the GDC TCGA
breast cancer datasets, the SMDIC method identified 19 and
15 TP53 mutation-specific immune cell response in the xCell
and ssGSEA cell abundance estimated methods (Table 2 and
Supplementary Table 1). There are only five overlapped immune
cells, namely, type 1 T-helper (Th1) cell, type 2 T-helper (Th2)
cell, gamma delta T cells (Tgd), regulatory T cells (Tregs), and
NK cell. This is because xCell and ssGSEA use different cell
estimated strategies and quantify different cell types. However,
through calculating the Pearson correlation between xCell and
ssGSEA values for relevant cell types driven by TP53 mutation,
we observed relatively stronger levels of concordance (e.g., CD8+
naive T cells vs. CD8 T cells, Pearson r = 0.31, p-value < 1e-
20; dendritic cells vs. activated dendritic cells, Pearson r = 0.53,
p-value < 1e-20) (Supplementary Table 2). These validation
results show that our somatic mutation-driven immune cell
method is robust to different cell abundance estimated methods.

To further illustrate the applicability of our SMDIC method,
we applied it to TCGA skin cutaneous melanoma (SKCM) data,
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FIGURE 5 | Kaplan–Meier survival curves of patients with breast cancer classified into high- and low-risk groups based on the immune cells driven by (A) TP53,
(B) CDH1, (C) NBPF14, and (D) OBSCN mutations, respectively.

which were downloaded from the GDC data portal (see text
footnote 2). We inputted all the related data into the SMDIC
package and performed the same operations like in the breast
cancer data. The detailed results are listed in Supplementary
Table 3. We found that some mutation cell associations identified
by the method have been reported in the literature. For example,
it has been proposed that deficiency of E3 ubiquitin ligase (ITCH)
altered CD4 T-cell and B-cell responses in mice and humans
(Field et al., 2020); HIVEP2 was found to play a crucial role in the
control of Th2 cell differentiation by regulating NF-κB function,
whose ortholog gene HIVEP3 may substitute for the function of
HIVEP2 (Kimura et al., 2005). This indicates that the SMDIC
method could identify mutation-specific cells in different cancers.

DISCUSSION

Recently, a number of calculated methods have been
developed to identify dysregulated genes and pathways in
cancer using molecular omics data (genome or transcriptome)

(Cheng et al., 2019; Han et al., 2020; Sheng et al., 2021). Moreover,
some methods were proposed to prioritize cancer candidate
drugs and prognostic markers (Han et al., 2018, 2021; Di et al.,
2019). However, the methods for identifying immune cells driven
by specific somatic mutations are mainly based on biological
experiments, and as far as we have known, no calculated tools
could systematically identify mutation-specific immune cells.

In the study, SMDIC R package is an automated,
computationally fast, and efficient tool for exploring somatic
mutation-driven immune cell response by integrating genome
and transcriptome data. The users input the somatic mutation
data and gene expression data with the same samples; the
package will return the immune cells triggered by each mutation
and provide visualization of results. Moreover, our package
is not specifically designed for breast cancers and can be
generally applicable for various cancer datasets with genomic
and transcriptome data. The SMDIC tool was designed to
identify somatic mutation-specific immune cells by integrating
high-throughput genomic and transcriptome data, which may
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FIGURE 6 | Robustness analysis of the SMDIC method. The gene expression values were randomly removed from 5 to 20% at 5% intervals. For each removal, the
overlapped number of the immune cells with the original results was calculated for the mutation genes which activate at least five immune cells.

help to find neoantigens and facilitate the development of
personalized immunotherapy to patients with cancers.
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