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Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly
in the vertebrate host. Consequently, the cell surface plays a critical role in both
immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats
the entire surface of the parasite and acts as a flexible shield to protect invariant
proteins against immune recognition. Antigenic variation of the VSG coat is the major
virulence mechanism of trypanosomes. In addition, incessant motility of the parasite
contributes to its immune evasion, as the resulting fluid flow on the cell surface drags
immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar
pocket is the sole site of endo- and exocytosis in this organism. After internalization,
VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be
transported to the lysosome for degradation. For this essential step to work, effective
machineries for both sorting and recycling of VSGs must have evolved in trypanosomes.
Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by
far not complete. This review provides an overview of the trypanosome secretory and
endosomal pathways. Longstanding questions are pinpointed that, with the advent of
novel technologies, might be answered in the near future.
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INTRODUCTION

African trypanosomes rely on efficient strategies of immune evasion to successfully establish
and maintain an infection in both their insect and mammalian hosts (Pays et al., 2014). In the
bloodstream forms of Trypanosoma brucei, a dense coat of variant surface glycoprotein (VSG)
constitutes the main virulence factor (Vickerman, 1969; Cross, 1975). The large repertoire of VSG
genes coupled with periodic switches of the expressed VSG enables the parasites to change their
surface epitopes, which allows an escape from the humoral immune response (Cross et al., 2014;
Horn, 2014). VSG mRNA abundance varies slightly depending on the nature of the expressed
VSG, but can amount to as much as ∼15% of total mRNA in T. brucei Lister 427 (Maudlin
et al., 2021) and each trypanosome displays roughly 107 VSG monomers on its cell surface
(Jackson et al., 1985; Bartossek et al., 2017). Thus, assuming a cell cycle of approximately 6 h, this
would require the production of roughly 28,000 VSG molecules per minute. In steady-state cells,
around 90% of the entire VSG is displayed on the cell surface with the remaining 10% found in
intracellular compartments (Grünfelder et al., 2002). Most of the intracellular VSG cargo is found
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in endosomes, which harbor 3-times as many VSG molecules
than the biosynthetic organelles (Grünfelder et al., 2002).

A second trypanosome immune evasion strategy is based on
the high mobility of the VSG coat, which affords resistance
to low levels of VSG binding antibodies. VSG molecules are
covalently bound to a glycosylphosphatidylinositol (GPI) anchor
which mediates their attachment to the outer leaflet of the
lipid bilayer and facilitates lateral diffusion (Bülow et al., 1988;
Hartel et al., 2016). Since the single flagellum is attached over
the entire length of the trypanosome cell body and constantly
beats, the directional motion generates a hydrodynamic flow on
the cell surface, which is directed toward the posterior of the
cell. The fluid flow specifically drags antibody bound VSGs to
the flagellar pocket (FP) (Figure 1; Engstler et al., 2007). The
process of antibody clearance is very fast (30–60 s), with the
predicted clearance time varying as a function of the size of the
antibody (Engstler et al., 2007). The parasite cell is shaped by
a dense subpellicular microtubule cytoskeleton. This cortex is
broken only at the FP rendering this invagination of the plasma
membrane the exclusive place for endo- and exocytosis (Overath
et al., 1997; Gull, 2003).

Both, maintenance of the VSG coat and the high rate of
endocytic bulk membrane flow demand efficient intracellular
transport machineries (Engstler et al., 2004, 2007; Manna
et al., 2014). The components of the trypanosome secretory
and recycling machineries localize to the posterior part of the
cell, filling the volume between nucleus and FP (Grünfelder
et al., 2003; Engstler et al., 2004; Field and Carrington, 2009;
Manna et al., 2014). The exception to this is the endoplasmic
reticulum (ER), which displays tube-like connections to the
flagellar attachment zone (FAZ) and, therefore, longitudinally
spans the entire length of the cell body (Vickerman, 1969;
Lacomble et al., 2012). The fact that trypanosomes possess strictly
localized exo- and endocytosis, combined with a high degree
of cell polarization and full genetic tractability, makes them
an attractive cellular model system. Furthermore, trypanosomes
are placed in the group Discoba and hence, have diverged
earlier than Opisthokonta, to which mammals and yeast belong
(Burki et al., 2020). This opens avenues for modern comparative
cell biology. Here, we will review the mechanisms of VSG
sorting and recycling. For this purpose, we summarize the
main aspects of the corresponding pathways in yeast and
mammals first and subsequently highlight differences and gaps
in our knowledge of the exo- and endocytosis machineries in
T. brucei. In addition, we pinpoint how the advent of new
and improved technologies might contribute to answering the
remaining open questions.

BIOSYNTHESIS AND SORTING OF
SURFACE MOLECULES

The biosynthesis of molecules inside a cell involves many
complex and highly regulated steps, which are collectively
known as the biosynthetic pathway. Despite molecule specific
differences, newly synthesized proteins follow a general route
to their target compartments. During passage through the

biosynthetic pathway, nascent proteins are modified and folded
into their three-dimensional conformations.

Entry Into the Endoplasmic Reticulum
Protein secretion starts with the targeted import of nascent
polypeptides into the ER. In mammals and yeast, two main
ways of protein import into the ER have been described: the
co-translational and post-translational pathways (reviewed in
Aviram and Schuldiner, 2017). In the co-translational pathway,
the interaction between a signal peptide of the nascent protein
with the signal recognition particle (SRP) targets the ribosome-
nascent chain complex to the translocon (Akopian et al., 2013).
In contrast, the post-translational translocation of proteins
from the cytoplasm to the ER is SRP-independent. In this
pathway, cytosolic chaperons bind to the nascent, signal peptide
containing proteins and direct them to the translocon (Rapoport,
2007). The translocon is a conserved heterotrimeric membrane
protein complex which transports the nascent proteins into the
ER (Osborne et al., 2005). In T. brucei, both co- and post-
translational pathways have been observed for the translocation
of signal peptide containing proteins into the ER (Boothroyd
et al., 1981; Lustig et al., 2007; Goldshmidt et al., 2008), suggesting
conservation of the ER-import mechanisms. However, the post-
translational pathway may be favored for GPI-anchored proteins
(Goldshmidt et al., 2008) while co-translational translocation
may be more important for polytopic membrane proteins
(Boothroyd et al., 1981; Lustig et al., 2007).

Processing and Quality Control in the ER
Once inside the ER lumen, the immature protein is exposed
to ER-resident enzymes and undergoes several modifications
assisted by chaperones and folding factors, which are usually
referred to as the ER quality control system (Ellgaard and
Helenius, 2003). A modification that occurs in nearly all
glycoproteins, and represents a major function of the ER,
is N-glycosylation (Helenius, 1994). Polypeptides bearing the
glycosylation consensus sequence (N-X-S/T, where X can be
any amino acid except for proline) serve as acceptors for a
preassembled oligosaccharide (Welply et al., 1983; Mohanty et al.,
2020). The reaction is catalyzed by oligosaccharyltransferase
(OST) which transfers Glc3Man9GlcNAc2 en bloc to the
asparagine side chain of the acceptor polypeptide (Mohanty et al.,
2020). Processing of the glycan begins immediately after this
transfer reaction: glucosidase I hydrolyzes the outermost glucose,
which is followed by the sequential removal of the remaining two
glucose residues through glucosidase II (Grinna and Robbins,
1979). Monoglucosylated oligosaccharides are recognized by
the ER lectin-like chaperones calnexin and/or calreticulin
(Williams, 2006; Rutkevich and Williams, 2011), which prevent
aggregation, oligomerization and formation of non-native
disulfide bonds (Moremen and Molinari, 2006). Trimming of
the innermost glucose residue by glucosidase II releases the
protein from calnexin/calreticulin. UDP-glucose/glycoprotein
glucosyl transferase (UGGT) senses the folding state of
released glycoproteins and, if the correct conformation has not
been achieved, UGGT reglucosylates the N-glycan to enable
another cycle of calnexin/calreticulin assisted protein folding
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FIGURE 1 | Schematic representation of exo- and endocytic pathways in Trypanosoma brucei. The known organelles involved in the processes of exo- and
endocytosis in T. brucei are depicted: class I clathrin-coated vesicles (CCV I), class II clathrin-coated vesicles (CCV II), early endosomes (EE), endoplasmic reticulum
(ER), exocytic carrier (EXC), flagellar pocket (FP), Golgi apparatus (G), lysosome (L), late endosomes (LE), nucleus (N), and recycling endosomes (RE). The endocytic
compartment is marked by the presence of small GTPases of the Rab family: Rab5 (EE), Rab7 (LE), and Rab11 (RE). The arrows represent the direction of exo- and
endocytic cargo of T. brucei. The question marks indicate pathways that may exist but are still unknown.

(Solda et al., 2007; D’Alessio et al., 2010). Finally, correctly folded
proteins are released from the cycle (Lederkremer, 2009). The
remarkable ability of UGGT to bind to misfolded or incompletely
folded glycoproteins was already reported in the early 1990s
(Sousa et al., 1992), yet the complete recognition mechanism still
remains unknown.

Proteins that are unable to acquire their native structure must
be degraded to prevent accumulation of misfolded polypeptides
in the ER. This degradation process is known as ER-associated
degradation (ERAD), which usually involves recognition and
retro-translocation from the ER to the cytosol, followed by
ubiquitinoylation and proteasomal degradation (Brodsky, 2012).
A special form of ERAD was reported for some misfolded GPI-
anchored proteins in rat kidney cells (Satpute-Krishnan et al.,
2014; Sikorska et al., 2016). Under acute ER stress, misfolded
GPI-anchored proteins were exported from the ER, along the
secretory pathway, to the plasma membrane from where they
were eventually targeted to lysosomes for degradation (Satpute-
Krishnan et al., 2014). This pathway was termed rapid ER stress-
induced export (RESET) but may also operate constitutively in
unstressed cells (Satpute-Krishnan et al., 2014).

Trypanosomatid protozoa are unable to synthesize dolichyl
phosphate glucose (de la Canal and Parodi, 1987). Thus,

while eukaryotic cells usually transfer the oligosaccharide
Glc3Man9GlcNAc2 to their proteins, trypanosomatids attach
unglucosylated glycans to the polypeptide chains (Parodi, 1993).
In most eukaryotic organisms, the required OST consists of
a multi-subunit protein complex with STT3A and STT3B as
the catalytic domains. In contrast, T. brucei possesses three
STT3 paralogs, with different acceptor specificities, but no other
subunits of the OST complex (Izquierdo et al., 2009b). Thus,
trypanosomes extended their glycosylation ability by duplication
of the STT3 gene and diversification of STT3 specificity
(Izquierdo et al., 2009b; Schwarz and Aebi, 2011). In addition, the
recent finding of O-glycosylation of VSGs might indicate further
unidentified biochemical diversity in protein processing factors
in T. brucei (Pinger et al., 2018).

The orthologs of ER quality control proteins that were found
and characterized in T. brucei include the reglucosylating UGGT,
calreticulin, and glucosidase II (Conte et al., 2003; Jones et al.,
2005; Izquierdo et al., 2009a). Although it is likely that the ER
resident quality control machinery contributes to VSG folding,
there is an ongoing discussion as to whether VSG folding is
inherently energetically favorable and may therefore, not require
chaperones (Rehaber et al., 1990). While some evidence suggests
that VSGs might be synthesized in 2–3-fold excess, with their
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relative abundance regulated by an active ERAD (Field et al.,
2010; Manna et al., 2014), other studies found no evidence for
rapid degradation and promote a model whereby VSG synthesis
is precisely regulated (Tiengwe et al., 2016). Interestingly, recent
findings are adding a new piece to this puzzle. Aroko et al. (2021,
preprint) demonstrated that targeting of several abundantly
expressed proteins to the ER leads to a downregulation of
mRNA levels of the endogenous VSG. Thus, they suggested that
feedback generated at the ER has a central role in regulating VSG
mRNA amounts.

Export From the ER
Proteins exit the ER at specific locations named ER exit sites
(ERES) via vesicles coated with coat protein (COP) II. The highly
conserved and essential COP II coatomer is generally composed
of two protein complexes Sec23/Sec24 and Sec13/Sec31, and
the small GTPase Sar1 (Lopez et al., 2019). Vesicle formation
is initiated by Sec12, a guanine exchange factor localized in
the ER, which activates Sar1 (Nakano and Muramatsu, 1989;
Barlowe and Schekman, 1993; Futai et al., 2004). Activated Sar1
embeds into the ER membrane and recruits the first heterodimer
Sec23/24 via a specific interaction with Sec23 to the ERES
(Bi et al., 2002; Fath et al., 2007). This “prebudding complex”
selectively binds secretory cargo mainly via interaction with
Sec24 and to a lesser extent with Sec23 (Miller et al., 2003,
2005; Cai et al., 2007; Farhan et al., 2007). Following this,
the heterotetramer Sec13/Sec31 is recruited, which stimulates
membrane deformation and vesicle fission from the ERES
(Matsuoka et al., 1998). While transmembrane secretory cargo is
selectively recruited via direct interactions between their cytosolic
motifs and Sec24 (Aridor et al., 1998; Kuehn et al., 1998; Miller
et al., 2003), soluble and GPI-anchored proteins cannot interact
directly with the COP II machinery (Barlowe, 2003). These
proteins require transmembrane cargo receptors, such as p24,
which link them to the COP II coat (Schimmoller et al., 1995).
The subsequent transport of COP II vesicles from the ER to the
Golgi is likely to be mediated by the small GTPases Rab1 and
Rab2 (Tisdale et al., 1992).

In T. brucei, two isoforms each of Sec23 and Sec24 have been
found, with TbSec23.2 and TbSec24.1 responsible for VSG export
(Sevova and Bangs, 2009). While the abundance of synthesized
and transported VSG may explain the requirement for an
additional specific heterodimer, the mechanism by which VSGs
are selectively incorporated into TbSec23.2/TbSec24.1 COP II
vesicles remains unknown. Recently, it was hypothesized that
p24 orthologs in T. brucei may facilitate VSG incorporation into
COP II vesicles (Kruzel et al., 2017). Studies with TbRab1 and
TbRab2 have validated the role of these GTPases in ER to Golgi
and intra-Golgi transport (Dhir et al., 2004).

Golgi Traffic
The Golgi apparatus is a central membrane organelle that
has a function in glycan maturation, trafficking and sorting.
Each Golgi stack is formed by several tightly aligned flattened
cisternae, which are referred to as cis-, medial- or trans-
compartments. While the cis-Golgi network receives cargo from
the ER, the medial-Golgi cisternae contain glycosylation enzymes

and process cargo proteins and lipids, and the trans-Golgi
network (TGN) sorts cargo molecules for delivery to different
destinations (e.g., to the cell surface or to vacuolar or lysosomal
compartments) (reviewed in Di Martino et al., 2019; Huang
and Wang, 2017). In addition, the TGN can also be separated
from the Golgi stack and may act as an early endosome in
yeast and plants, suggesting that this compartment might be an
independent organelle that is distinct from the Golgi apparatus
(Uemura et al., 2004; Dettmer et al., 2006; Staehelin and Kang,
2008; Day et al., 2018).

Surprisingly, the mechanism of transport through the Golgi,
is still controversial and different models that are not mutually
exclusive have been suggested. The most prominent models
suggest stable cisternae with COP I vesicles transporting
cargo between them or cisternal maturation with progressive
movement of cisternae toward the trans face (reviewed in Glick
and Luini, 2011). COP I vesicles are also responsible for Golgi
retrograde transport which returns ER resident proteins to the
ER lumen (Maier et al., 2001). However, the exact mechanism of
delivery and the extent to which this occurs both remain unclear.

In T. brucei, the stable cisternae model offers the most likely
explanation for intra-Golgi transport (Warren, 2013). TbRab18
(Jeffries et al., 2002), and TbRabX2 (also called TbRab31) (Field
et al., 2000) have been associated with the Golgi apparatus
and may be related to Golgi dependent transport pathways. In
TrypTag.org, a project that aims to determine the localization of
every trypanosome protein within the cell (Dean et al., 2017),
TbRab6 (Tb927.2.2130) was also found to be located in the
region of the Golgi.

Post-Golgi Transport to the Plasma
Membrane
Cargo proteins destined for the plasma membrane are loaded into
post-Golgi carriers and follow the secretory pathway (Luini et al.,
2005). In Saccharomyces cerevisiae, the molecules involved in this
transport were identified by the isolation of sec mutants that
were unable to secrete the extracellular enzyme invertase (Novick
et al., 1980, 1981). Subsequent studies in yeast have strongly
indicated an additional role of the Rab11 GTPase family in Golgi
exit and transport to the sites of exocytosis (Jedd et al., 1997;
Morozova et al., 2006; Lipatova et al., 2008). Secretory carriers are
directed by tropomyosin-actin cables and delivered to the plasma
membrane to which they are tethered by the exocyst complex
prior to SNARE complex dependent fusion in a Sec4 GTPase
manner (TerBush et al., 1996; Guo et al., 1999).

In T. brucei, the mechanism of transport from the Golgi to the
FP remains elusive and it may be possible that different carriers,
perhaps containing different cargos, are involved (Figure 1). The
role and involvement of TbRab11 in the secretory pathway is still
contentious. VSG has been demonstrated to be transported inside
TbRab11-enriched exocytic carriers during VSG recycling using
immunoelectron microscopy (Grünfelder et al., 2003). However,
RNAi silencing of TbRab11 showed no effect on exocytosis of
newly synthesized VSG in pulse-chase radiolabel experiments
(Hall et al., 2005). In accordance with these results, another
study, also using pulse-chase radiolabeling of VSGs, validated
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that depletion of TbRab11 had no impact on the transport
of newly synthesized VSG (Umaer et al., 2018). However, no
reports of TbRab11 negative secretory carriers can be found
in the literature. This could be explained by the existence
of a yet unidentified route from the Golgi to the FP that
could easily have been overlooked due to the comparatively
small proportion of biosynthetic VSG in the total intracellular
VSG pool. Furthermore, the exocyst has been shown to be an
important mediator of the late steps of exocytosis. This complex
presents one subunit (Sec15) which interacts with TbRab11
(Boehm et al., 2017), highlighting once more the importance of
this GTPase in the exocytosis process of T. brucei. Altogether,
these findings suggest the need to characterize the role of
TbRab11 in a more detailed manner. Is TbRab11 involved
in post-Golgi transport to the FP? Is this transport mediated
via endosomes? Does TbRab11 distinguish between VSG and
other cargo transport? Another intriguing aspect regarding Golgi
transport to the FP is related to the role of the cytoskeleton. The
export of newly biosynthesized VSG from the Golgi has been
reported to be independent of actin (Nolan and Garcia-Salcedo,
2008). No further reports about the involvement of cytoskeleton
components in cargo transport exist, but it is unlikely that
these pathways can be entirely independent of interactions with
the cytoskeleton. Thus, the role of the cytoskeleton remains
largely undefined.

ENDOCYTOSIS AND MEMBRANE
RECYCLING

Endocytosis allows eukaryotic cells to internalize plasma
membrane proteins and extracellular molecules for various
physiological processes, including nutrient uptake, degradation,
cell signaling and recycling. The endocytosis processes are
generally divided into fluid-phase and receptor-mediated
endocytosis. The first refers to the non-specific uptake of
extracellular material, and the second is characterized by the
triggered uptake of a ligand after binding to its receptor.
Different endocytic pathways exist in eukaryotes, such as
caveolae-mediated (Kiss and Botos, 2009) and raft-dependent
endocytosis (Lajoie and Nabi, 2007). However, the major
endocytic pathway is mediated by clathrin (Bitsikas et al.,
2014), which explains why the term endocytosis is often used
synonymously with clathrin-mediated endocytosis. In T. brucei,
all endocytic processes, for both fluid phase and receptor-
mediated uptake, are clathrin-mediated (Allen et al., 2003;
Grünfelder et al., 2003; Engstler et al., 2004).

Clathrin-Mediated Endocytosis and
Endocytic Trafficking in Mammals and
Yeast
Clathrin molecules are trimers composed of three heavy chains,
each associated with one light chain, connected through a central
core (Crowther and Pearse, 1981; Ungewickell and Branton,
1981). Due to the architecture of the molecule, clathrin trimers
are called triskelions (Ungewickell and Branton, 1981). Clathrin

triskelions can connect with one another to form flat lattices or
a cage-like structure (Crowther and Pearse, 1981; Kirchhausen
and Harrison, 1981; Sochacki and Taraska, 2019). The curvature
of clathrin lattices linked to the membrane contributes to the
forces required for local deformation, that culminates in pit
formation and vesicle budding (Kirchhausen and Harrison, 1981;
Kaksonen and Roux, 2018; Sochacki and Taraska, 2019). Flat
hexagonal clathrin lattices need to reorganize to form the curved
mix of pentagonal and hexagonal lattices (Sochacki and Taraska,
2019). The organization of clathrin triskelions into flat lattices has
also been shown to occur spontaneously in vitro (Dannhauser
et al., 2015). However, the conformational change from flat to
curved clathrin lattices in vivo most likely demands energy and
requires the participation of accessory molecules (reviewed in
Kaksonen and Roux, 2018; Sochacki and Taraska, 2019). The
recruitment of clathrin to the plasma membrane requires several
proteins that form the pioneer module, a complex with several
characterized components, such as F-BAR domain only protein
1 and 2 complex (FCHO1/2), adaptor protein 2 (AP-2), and
epidermal growth factor receptor substrate 15 (EPS15) (Shih
et al., 1995; Ma et al., 2016; Kaksonen and Roux, 2018). In
addition, several molecules such as actin-related protein 2/3
complex (Arp2/3), protein-rich protein Las17 (Las17), type I
myosins (Myo3/5), Sla2 and epsin 1 (Ent1) (Galletta et al., 2008;
Cheng et al., 2012; Feliciano and Di Pietro, 2012; Kaksonen and
Roux, 2018; Lizarrondo et al., 2021), contribute to polymerization
of the actin cytoskeleton. Finally, the progressive invagination
of the membrane is associated with a constriction process,
which culminates in membrane scission (Kaksonen and Roux,
2018). Constriction involves actin, dynamin, and PI(4,5)P2
(reviewed in Mettlen et al., 2009). This phosphoinositide can
bind to the epsin N-terminal homology (ENTH) and AP180
N-terminal homology (ANTH) domains of proteins and is
considered critical for the recruitment of adaptors and formation
of clathrin coated pits (CCP) (Wendland et al., 1999; Zoncu
et al., 2007; Kaksonen and Roux, 2018), which bud as clathrin
coated vesicles (CCVs). These CCVs are then uncoated in a
process involving dephosphorylation of PI(4,5)P2 by inositol 5-
phosphatases and disruption of the clathrin–clathrin interactions
by HSC70 (Prasad et al., 1993; Ungewickell et al., 1995;
Kaksonen and Roux, 2018). The uncoated vesicles are able to
fuse with endosomes, a polymorphic, dynamic endomembrane
system, commonly divided into subpopulations named early (or
sorting) endosomes (EEs), late endosomes (LEs), and recycling
endosomes (REs) (Goldenring, 2015; Naslavsky and Caplan,
2018). These different subclasses can be distinguished according
to marker proteins enriched in their membranes, especially those
belonging to the Rab family, as well as by differences in luminal
pH (Feng et al., 1995; Rink et al., 2005; Wandinger-Ness and
Zerial, 2014; Raiborg et al., 2015; Naslavsky and Caplan, 2018)
which is controlled by a V-ATPase pump (Hurtado-Lorenzo et al.,
2006; Scott et al., 2014).

Endocytosed cargo enters EEs first, from where the molecules
are sorted for different fates, either degradation or recycling.
When destined for degradation, the cargo passes through LEs
before arriving in the lysosome. In the recycling pathway, there
are two possible routes: anterograde transport, which returns
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the molecules to the cell surface, and retrograde transport,
which transports cargo to the TGN (Cullen and Steinberg,
2018; Naslavsky and Caplan, 2018). The dynamics of cargo
transport is still a topic of debate and distinct models have been
proposed. The vesicular-transport model suggests that vesicles
budding from steady-state organelles move their cargo to the
different endocytic compartments. However, studies on living
mammalian cells have suggested the existence of a maturation
process in which these organelles/compartments are formed from
progressive differentiation of endocytic vesicles (Rink et al., 2005;
Scott et al., 2014; Langemeyer et al., 2018; Trivedi et al., 2020).

In mammals, the EEs have been characterized to be a vacuolar
organelle associated with tubular membranous extensions
(Cullen and Steinberg, 2018). They are further characterized
by the presence of Rab4, Rab5, Rab10, Rab14, Rab21, and
Rab22, which are found in distinct microdomains of the EE
membrane (Scott et al., 2014; Naslavsky and Caplan, 2018).
Inside the EEs, molecules destined for degradation are sorted
with the participation of the endosomal sorting complex required
for transport (ESCRT) into luminal invaginations of the EE
membrane. These invaginations pinch off into the EE luminal
space, thereby forming intralumenal vesicles (ILVs). The ILVs
accumulate in vacuolar regions of EEs, which will detach
and become free multivesicular bodies (MVBs) or endosomal
carrier vesicles (ECVs). The MVBs/ECVs are subsequently
transported on microtubules to a different location in the cell
(Scott et al., 2014; Raiborg et al., 2015). Interestingly, live-cell
microscopy studies suggested the maturation of these Rab5-
positive MVBs/EVCs into Rab7-positive LEs, with Rab5 gradually
replaced by Rab7 (Rink et al., 2005; Scott et al., 2014; Langemeyer
et al., 2018). Thus, the LEs are mature MVBs with a different set
of marker proteins and a more acidic pH. The morphology of
LEs, with tubular-cisternae and multivesicular regions, is similar
to that of EEs, which are also formed through ESCRT sorting
into ILVs (Scott et al., 2014; Cullen and Steinberg, 2018). From
the LEs, the cargo can follow either the degradation or the
recycling pathway. For degradation, LEs fuse with lysosomes,
forming a hybrid organelle referred to as the endo-lysosome.
This transient organelle matures into the classical lysosome,
which can be distinguished from LEs through its spherical and
electron-dense structure (Rink et al., 2005; Scott et al., 2014).
Cargo from the LEs that is not destined for the lysosome, can
be routed to the cell surface through tubular-vesicular carriers
which fuse with the plasma membrane (van Weering et al.,
2012; Cullen and Steinberg, 2018). Another path back to the
cell surface is via REs, which also have contact sites with
EEs. This compartment is composed of highly dynamic tubular
structures that are characterized by the presence of Rab11 and
Rab8 (reviewed in Hsu and Prekeris, 2010; Scott et al., 2014;
Goldenring, 2015). Interestingly, in polarized cells, Rab11 seems
to participate in direct recycling of cargo to the plasma membrane
while Rab8 functions in transport via the TGN (Hsu and Prekeris,
2010; Cullen and Steinberg, 2018). Rab11-positive vesicles that
bud from REs are directed to the plasma membrane through
interaction with actin-motor proteins (Ji et al., 2019). Thus, actin
is not only involved in CCV budding but also in the transport
of endocytic cargo. The retrograde transport of molecules to

the TGN is mediated by the retromer complex. This complex
is formed by at least three cargo selection molecules (Vps35,
Vps26 and Vps29) that interact with members of the sorting
nexin (SNX) family (reviewed in Scott et al., 2014).

Endocytosis in T. brucei
T. brucei restricts both endo- and exocytosis to the FP (Figure 2;
Vickerman, 1969; Overath et al., 1997; Gull, 2003; Engstler et al.,
2004; Field and Carrington, 2009). Uptake from the FP involves
the formation of CCPs (Morgan et al., 2001; Allen et al., 2003;
Grünfelder et al., 2003; Engstler et al., 2004), which rapidly pinch
off as CCVs with a diameter of 135 nm, known as class I CCV
(CCV I) (Grünfelder et al., 2003; Overath and Engstler, 2004).

Clathrin can be recruited to the entire FP membrane with
the exception of the region of the microtubule quartet (4MT)
(Gadelha et al., 2009). This recruitment involves many proteins,
which will interact with each other as well as with clathrin, cargo,
other adaptors, and phosphoinositides. TbEpsinR and TbCALM
are two characterized proteins that possess a phosphoinositide
binding domain (ENTH and ANTH, respectively) and are critical
for the recruitment of adaptors as well as for formation of
CCPs (Gabernet-Castello et al., 2009; Manna et al., 2015). While
TbEpsinR has been shown to colocalize with clathrin (Gabernet-
Castello et al., 2009), the colocalization of clathrin and TbCALM
has been inferred from their individual localization to the
cytoplasmic side of the FP (Manna et al., 2015). Interestingly,
TbEpsinR was distributed throughout the cytoplasm in clathrin-
depleted cells leading to the proposition of targeting-dependency
between TbEpsinR and clathrin (Gabernet-Castello et al., 2009).
The depletion of either TbEpsinR or TbCALM led to a small
reduction in receptor-mediated endocytosis and morphological
aberrations in both CCP and CCVI (Manna et al., 2015). The
simultaneous knockdown of both proteins led to FP enlargement
and inhibition of endocytosis, suggesting redundancy in the roles
of the two proteins (Manna et al., 2015).

The ATPase TbHsc70 co-precipitates with clathrin and
colocalizes with clathrin-enriched structures (Adung’a et al.,
2013). Knockdown of TbHsc70 reduces FITC-concanavalin A
(ConA) trafficking into late endosomal compartments (Adung’a
et al., 2013), suggesting a probable involvement in uncoating as
observed in vitro and in vivo for mammals and yeast (DeLuca-
Flaherty et al., 1990; Rapoport et al., 2008; Yim et al., 2010).
Currently, no other proteins involved in clathrin uncoating have
been detected in T. brucei.

Intriguingly, AP-2, one of the major clathrin recruiters
in opisthokonts, has not been identified in the genome of
African trypanosomes although it is present in the genome of
other trypanosomes, such as Trypanosoma cruzi, Trypanosoma
theileri, Trypanosoma grayi, and Trypanosoma carassii (Morgan
et al., 2002; Manna et al., 2013). The authors suggested that
the high density of the VSG coat would not require cargo
selection/accumulation to be coordinated by AP-2. They also
proposed that the absence of this protein could increase the
speed of endocytosis by reducing the need for dephosphorylation
reactions in the clathrin uncoating processes (Manna et al., 2013).
However, clathrin uncoating is essential for cargo progression to
the endosomal system. Therefore, dephosphorylation reactions
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FIGURE 2 | Schematic structure of the flagellar pocket with emphasis on its cytoskeleton components involved in endocytosis. The flagellar pocket (FP) of
Trypanosoma brucei is a subdomain of the plasma membrane, corresponding to approximately 2–5% of its total area (Grünfelder et al., 2002; Engstler et al., 2004;
Field and Carrington, 2009). On its most external face lies the flagellar pocket collar (FP collar) of which TbBILBO1 is the main component (Sherwin and Gull, 1989;
Bonhivers et al., 2008; Lacomble et al., 2009). On top of the FP collar lies the hook complex (HC), a multiprotein structure, of which three components (TbMORN1,
TbSmee1, and TbPIPKA) have been shown to be involved in endocytosis (Morriswood et al., 2009; Zhou et al., 2010; Esson et al., 2012; Demmel et al., 2014;
Morriswood and Schmidt, 2015; Perry et al., 2018; Sajko et al., 2020).

are necessary in the presence of any clathrin-coat accessory
molecules that bind to phosphoinositide, such as PI(4,5)P2 that
is present in the FP membrane of T. brucei (Demmel et al., 2014).
Thus, the abolishment of AP-2 dephosphorylation alone might
not explain a faster endocytosis rate.

A proteomic approach revealed the existence of T. brucei
clathrin-associating proteins (TbCAP) that had not been
identified through in silico screening (Adung’a et al., 2013).
Of these, eight were found to be exclusive to trypanosomatids:
TbCAP116, TbCAP118, TbCAP125, TbCAP161, TbCAP186,
TbCAP292, TbCAP334, and TbTOR-like 1 (Adung’a et al.,
2013). Interestingly, knockdown of TbCAP100, TbCAP116,
TbCAP161 and TbCAP334 decreased endocytosis of FITC-ConA
at early time-points and led to FP enlargement, suggesting
their involvement in clathrin assembly and VSG trafficking
(Adung’a et al., 2013).

The cytoskeleton is another important factor in endocytosis.
Recently, genetic screening confirmed the presence of actin
and actin-related proteins in T. brucei (reviewed in Gupta
et al., 2020). In bloodstream forms, actin is localized in the
posterior region of the cell body, between the nucleus and
kinetoplast, and its depletion causes impairment of endocytosis
and enlargement of the FP (Garcia-Salcedo et al., 2004).
The actin cytoskeleton also seems to play a role in the
polarization of the mechanoenzyme TbMyo1 in the posterior
region of bloodstream form cells (Spitznagel et al., 2010).

Immunofluorescence assays on fixed cells revealed differences
in both the number and the fluorescence intensity of TbMyo1
spots inside the population suggesting a dynamic nature of
the protein (Spitznagel et al., 2010). Knockdown of TbMyo1
led to the impairment of endocytosis and changes in the
subcellular distribution of clathrin, which clearly demonstrates
its role in endocytosis (Spitznagel et al., 2010). Previous
studies had suggested that dynamin, involved in CCV budding
in mammals and yeast, was not involved in endocytosis in
T. brucei (Morgan et al., 2004). However, the single dynamin-like
protein of T. brucei has two paralogs (TbDLP1 and TbDLP2),
which were found to have distinct expression patterns and
functions depending on the life cycle stage of the parasite
(Benz et al., 2017).

Compared to mammals and yeast, both the description and
characterization of clathrin endocytosis in T. brucei lack details
and require further analysis to be better understood. Among
the questions to be elucidated are, for example, how clathrin
recruitment and association with the CCP is coordinated and
how cytoskeleton elements participate in vesicle budding from
the FP membrane and in their subsequent transport. The use
of proteomic methods to investigate the cohort of molecules
involved in clathrin assembly in trypanosomes (Adung’a et al.,
2013) highlighted the low conservation of the components
compared to other eukaryote supergroups. This can either be
explained by a reduced clathrin system in T. brucei, as suggested
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previously, or it demonstrates the need for new experimental
strategies to complement in silico homology searches.

Endosomal Trafficking in T. brucei
In T. brucei, all endosomal compartments are in the posterior
part of the cell (Figure 1). All endocytosed cargo, VSG and
fluid phase, pass through EEs (Grünfelder et al., 2003; Engstler
et al., 2004). Following uptake, VSG starts to colocalize with
EEs after 2.2 s and finally fills up to 85% of the compartment
volume (Engstler et al., 2004). From this compartment, 53% of
the VSG pool moves to the REs and returns to the surface,
a route known as the fast route, which is completed within
approximately 10 s (Engstler et al., 2004). Alternatively, 47%
of VSGs are recycled through the slow route, which takes
approximately 50 s to complete (Engstler et al., 2004). Here,
VSG passes first from the EE to the LE, a path also followed by
the fluid phase cargo, and then returns to the surface via the
RE. Interestingly, while the fluid phase cargo moves from the
LE to the lysosome for degradation no VSG was detected inside
this organelle (Engstler et al., 2004). The retrograde transport of
cargo to the TGN has not yet been characterized in T. brucei.
Studies on the endosomal compartment of T. brucei have only
been conducted on fixed samples. This, allied to the transient
nature of the maturation model, limits our comprehension of
the endosomal compartment in this organism. Nevertheless, the
endocytic compartment of T. brucei also has the characteristic
tubular-vesicular shape found in other organisms (Engstler et al.,
2004). One molecule, TbMBAP1, was found in all endosomal
membranes (Engstler et al., 2005). Four EE markers in this
parasite have been identified through homology searches: one
homolog of Rab4 (TbRab4), two homologs of Rab5, TbRab5A,
and TbRab5B (Field and Boothroyd, 1995; Field et al., 1998),
and one homolog of Rab21, TbRab21 (Ali et al., 2014). Studies
using epifluorescence microscopy have suggested TbRab4 and
both subpopulations of TbRab5 to be present in vesicles in the
cytoplasm of bloodstream forms (Field et al., 1998). These vesicles
were localized between nucleus and kinetoplast, which is where
the endosomal compartment of T. brucei is found, and some
overlap was observed (Field et al., 1998). However, it is crucial to
remember that the resolution of widefield microscopy combined
with the close proximity of different endocytic compartments
does not allow an accurate localization. In addition, it is tempting
to ask if these markers might all be part of a single structure with
distinct subdomains. If that were the case, how is the cargo sorted
inside this structure? To answer these questions (Figure 3), it is
crucial to use super-resolution microscopy.

In bloodstream forms TbRab4 acts in fluid phase transport
to the lysosome and in the accumulation of the constitutive
transmembrane glycoprotein p67 (Hall B. S. et al., 2004; Peck
et al., 2008). TbRab5A was related to IgG, transferrin, VSG, and
invariant surface glycoprotein (ISG) 65 transport, while TbRab5B
has so far only been linked to ISG100 (Field et al., 1998; Chung
et al., 2004; Hall B. et al., 2004).

The expression level of TbRab21 is low in the bloodstream
forms of the parasite, but the overexpression of tagged TbRab21
revealed its localization in the posterior part of the cell (Ali
et al., 2014). Immunofluorescence assays showed a partial

overlap of TbRab21 with clathrin, TbRab5A and TbRab11, and
juxtaposition with p67. However, some variation in the relative
position of TbRab21 to TbRab11 and p67-positive structures
was observed within the population (Ali et al., 2014). These
variations in position could again be related to the limited
resolution of the microscopy techniques used in the study along
with cell-to-cell expression level variations. Furthermore, despite
partial colocalization with TbRab5A, knockdown of TbRab21
did not have an impact upon the early steps of endocytosis,
though it did have an effect on the degradation pathway. These
observations together with the colocalization of TbRab21 with
TbRab28 and TbVps23 might suggest a role in late steps of
endocytosis (Ali et al., 2014).

Orthologs of the ESCRT machinery, such as TbVps4,
TbVps23, TbVps24, and TbVps28 were found in T. brucei (Leung
et al., 2008; Silverman et al., 2013; Gilden et al., 2017; Umaer and
Bangs, 2020). These ESCRT components as well as TbFab1 kinase
and its product PI(3,5)P2, one of the ligands of TbVps24, localize
in LE membranes of T. brucei (Leung et al., 2008; Silverman
et al., 2013; Gilden et al., 2017; Umaer and Bangs, 2020). Despite
the role of ESCRT in ILV formation and MVB development in
mammalian cells, T. brucei lacks a well-defined MVB (Silverman
et al., 2013). Another typical membrane-bound protein of LEs is
TbRab7 (Engstler et al., 2004). TbRab7 depletion does not affect
the endocytosis rate, but leads to complete cessation of delivery
of the endocytosed cargo to the lysosome, a similar effect to that
observed upon silencing of TbVps23 and TbVps4 (Silverman
et al., 2011, 2013). Interestingly, while TbRab7 has no influence
on biosynthetic trafficking of the lysosomal markers p67 and
TbCathepsin L (TbCatL), the ESCRT components TbVps4,
TbVps23 and TbVps24 do (Silverman et al., 2011, 2013; Umaer
and Bangs, 2020). Another Rab, TbRab28, seems to be involved
in transport to the lysosome. Depletion of the protein by RNAi
resulted in reduced ConA transport to the lysosome in 80% of
the cells (Lumb et al., 2011). LEs and lysosome localize proximal
to the nucleus (Engstler et al., 2004). The transport from EEs
to LEs and/or lysosome is performed by class II clathrin-coated
vesicles (CCV II) found budding from endosomes (Grünfelder
et al., 2003). CCVs II are 50–60 nm in diameter and are depleted
in VSG and enriched in the fluid-phase markers ferritin and
horseradish peroxidase (Grünfelder et al., 2003; Engstler et al.,
2004). Interestingly, a detailed study of the kinetics of endocytosis
in T. brucei showed that the fluid-phase marker dextran and
biotinylated VSG (VSGbiotin) were endocytosed at the same time
and then were gradually segregated, reaching a maximum of
spatial separation after approximately 1 min (Engstler et al.,
2004). At steady state 37% of the intracellular VSGbiotin did not
lie on the endocytic route of internalized dextran (Engstler et al.,
2004). The authors suggested that the separation of VSG from
the fluid-phase marker occurred concurrently with the biphasic
filling of the RE (Engstler et al., 2004).

The RE is a compartment where cargo transported from EEs
and LEs can be redirected to the plasma membrane (Grünfelder
et al., 2003; Engstler et al., 2004; Overath and Engstler, 2004).
This endosomal compartment is predominantly marked by
TbRab11 and has, to a certain extent, an interface with EEs
(Grünfelder et al., 2003; Chung et al., 2004; Engstler et al., 2004;
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FIGURE 3 | Open questions about endocytosis of trypanosomes. The general route of endocytosis and recycling in Trypanosoma brucei is depicted. The gray
arrows represent the direction of all cargo while the red arrows refer solely to fluid-phase cargo. Endo- and exocytosis is restricted to a single site in trypanosomes:
the flagellar pocket. Thus, the first intriguing question is how does the cell discriminate between cargo entering and leaving the pocket? All molecules are
endocytosed via clathrin mediated endocytosis (CME), the recycling rates are incredibly fast, and T. brucei lacks AP-2 (Grünfelder et al., 2002; Morgan et al., 2002;
Engstler et al., 2004). Therefore, the naturally following questions are: how fast is CME and does the lack of AP-2 influence this process? VSGs have never been
observed in the lysosome and the route to this organelle is likely to be mediated by class II clathrin-coated vesicles (CCV II). So, the remaining questions here are
how VSG is excluded from CCV II sorting and how these vesicles are routed to the lysosome. Furthermore, the number of endosomes in T. brucei cells and the origin
of exocytic carriers remain elusive as does the mechanism of excretion of 95% of the cargo. Overall, the essentiality of the VSG coat for trypanosomes allied to the
natural increase of volume of the cell during the cell cycle advocates for a precise regulatory mechanism to maintain the dense surface coat. However, such a
mechanism has not yet been elucidated.

Field et al., 2009). From the REs, the recycling cargo is
destined for the FP via TbRab11-positive exocytic carriers.
These disk-shaped carriers, with a diameter of ca. 154 nm
and thickness of approximately 34 nm, were found close to
both the FP and the cisternae-shaped endosomal compartment
near the lysosome (Grünfelder et al., 2003; Engstler et al.,
2004). Interestingly, electron microscopy revealed both VSG and
horseradish peroxidase within the EXCs (Grünfelder et al., 2003;
Engstler et al., 2004). Thus, TbRab11 has been proposed to
be involved in both fluid-phase and receptor-mediated cargo
recycling to the cell surface. Consistent with these results,
TbRab11 RNAi depleted cells showed an approximately 80%
reduction in recycling of transferrin (Hall et al., 2005). However,
conflicting observations were reported in a further study that
used the same knockdown strategy. In this study, TbRab11
depleted and control cells were treated with cycloheximide to
flush nascent VSG from the exocytic pathway and free surface
amino groups were blocked by acetylation at 4◦C (Umaer et al.,
2018). Subsequently, shifting to 37◦C allowed the recycling
of internal unblocked VSG, which is susceptible to surface
biotinylation. Flow cytometry revealed an increase of about 10%
in surface biotinylation 5 min after the temperature shift (Umaer

et al., 2018). The authors considered this to be similar to the
kinetics of exocytosis in control cells. This led to the proposition
of the existence of a redundant mechanism to recycle VSG to
the cell surface (Umaer et al., 2018). However, the endocytosis
kinetics published by Engstler et al. (2004) reports that around
10% of total VSG (equivalent to the intracellular VSG pool) is
recycled per minute. Consequently, the measurement after 5 min
can mask an up to five times slower recycling kinetics and the
possibility of a functional, but less efficient, recycling pathway
without TbRab11. Another possibility could be related to the
activity of residual TbRab11 following RNAi, which might still
be contributing to VSG transport. It would be desirable to look at
earlier timepoints (e.g., 1 min) to establish differences in kinetics
of TbRab11 depleted and control cells. Therefore, the existence of
a redundant mechanism in VSG recycling remains controversial.

A third class of clathrin-coated vesicles was observed close
to the outermost trans-Golgi cisterna, which was proposed to
be the TGN equivalent in T. brucei (Grünfelder et al., 2003).
The TGN-homolog marker, TbGRIP70, was localized in the
outer Golgi cisterna of the trypanosomatid Leishmania mexicana
that had been genetically modified to express TbGRIP70,
through immunoelectron microscopy (McConville et al., 2002).
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The same localization was observed in T. brucei through
immunofluorescence assays using widefield microscopy (Sealey-
Cardona et al., 2014). However, whether this third class of
clathrin vesicles in trypanosomes is part of the biosynthetic route,
as observed in HeLa cells infected with varicella-zoster virus
(Alconada et al., 1996), or of the retrograde recycling route is not
clear. Furthermore, homologs of the retromer complex subunits,
associated with the retrograde transport in other organisms, were
found in T. brucei (TbVps26, TbVps29, and TbVps35) as was one
homolog of the SNX family interactor (TbVps5) (Koumandou
et al., 2011). Immunofluorescence assays suggested a close
association of the T. brucei retromer complex and the endocytic
apparatus components (Koumandou et al., 2011). However, a
structural characterization is not available to date. The depletion
of TbRab28 led to a decrease in the expression of TbVps26
and the ESCRT components TbVps23 and TbVps28 suggesting
that these components may have a functional connection (Lumb
et al., 2011). Notably, the retrograde recycling mechanism is not
associated with VSG (Engstler et al., 2004).

CONCLUSION

In trypanosomes, most studies to identify adaptor/accessory
proteins of the endocytic/exocytic machinery have employed
homology searches based on genes found in mammals and yeast.
Based on this, the trypanosome machinery has been deemed to be
simpler than the machineries of the opisthokont models (Manna
et al., 2014). However, genomic BLAST is limited to similarity
searches, indicating not the complexity of the characteristics
of different organisms but the conservation between them.
Therefore, it is interesting and not entirely unexpected that
studies using direct screening for trypanosome-specific proteins
have led to the discovery of new components involved in distinct
steps within the endocytic/exocytic machinery (Adung’a et al.,
2013; Boehm et al., 2017).

Investigations into the maturation model and evidence
of endosomal mobility are still missing from T. brucei cell
biology. For example, our knowledge of the contribution of
the cytoskeleton to vesicle budding and transport is limited.
Consequently, it would be interesting to analyze transport
mechanisms for directed vesicle motion in T. brucei. In addition,
specific VSG sorting at different trafficking steps is likely to exist
but remains to be studied.

The methods used for subcellular localization and
morphological descriptions of the endocytic/exocytic apparatus
are another important aspect to be considered. The compartment
markers have usually been located via widefield fluorescence
microscopy and characterized via RNAi knockdown. The use
of electron microscopy has been restricted to the morphological

analysis of the FP. However, considering the high dynamicity
observed in endosomal tubules of living cells, analyses of
fixed samples could give the impression of a fragmented
morphology (Baetz and Goldenring, 2013; Goldenring, 2015).
Furthermore, microscope resolution is an important limiting
factor that could also lead to inaccuracies in morphological
descriptions, as overlapping signals in epifluorescence
microscopy can be resolved into subdomains inside an
organelle when investigated by super-resolution microscopy
(Baetz and Goldenring, 2014).

Therefore, our understanding of the divergent endomembrane
system of T. brucei still lags behind that of the classical
opisthokont systems. A greater focus on trypanosomes could
contribute to a broader comprehension of cell biology. In fact,
a more wholesome understanding of the biodiversity requires
an in depth look at a range of diverged organisms. Detailing
the dynamics of endocytic processes with nanoscale resolution
using novel and emerging technologies, such as live correlative
light and electron microscopy (live CLEM) (Fu et al., 2019) or
expansion microscopy (Chen et al., 2015), will be the next step
for all cell biology model systems, and this time there is no reason
for the trypanosome model to lag behind.
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