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Patient similarity search is a fundamental and important task in artificial

intelligence-assisted medicine service, which is beneficial to medical diagnosis, such

as making accurate predictions for similar diseases and recommending personalized

treatment plans. Existing patient similarity search methods retrieve medical events

associated with patients from Electronic Health Record (EHR) data and map them to

vectors. The similarity between patients is expressed by calculating the similarity or

dissimilarity between the corresponding vectors of medical events, thereby completing

the patient similarity measurement. However, the obtained vectors tend to be high

dimensional and sparse, which makes it hard to calculate patient similarity accurately.

In addition, most of existing methods cannot capture the time information in the EHR,

which is not conducive to analyzing the influence of time factors on patient similarity

search. To solve these problems, we propose a patient similarity search method based

on a heterogeneous information network. On the one hand, the proposed method

uses a heterogeneous information network to connect patients, diseases, and drugs,

which solves the problem of vector representation of mixed information related to

patients, diseases, and drugs. Meanwhile, our method measures the similarity between

patients by calculating the similarity between nodes in the heterogeneous information

network. In this way, the challenges caused by high-dimensional and sparse vectors

can be addressed. On the other hand, the proposed method solves the problem of

inaccurate patient similarity search caused by the lack of use of time information in the

patient similarity measurement process by encoding time information into an annotated

heterogeneous information network. Experiments show that our method is better than

the compared baseline methods.

Keywords: heterogeneous information network, clinical similarity, electronic health records, patient similarity

search, weighted meta path

1. INTRODUCTION

Patient similarity search has been identified as one of the key techniques in artificial
intelligence (AI) medicine service, which is beneficial to medical diagnosis, such as
making accurate predictions for similar diseases and recommending personalized
treatment plans (Sharafoddini et al., 2017). Generally speaking, patient similarity
analysis involves selecting certain clinical records as features of patients in a
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specific medical environment, then quantitatively analyzing the
distance between them. A proper similarity measure should
support various downstream applications, such as personalized
medicine recommendation (Zhang et al., 2014; Lee et al., 2015),
target patient retrieval (Sun et al., 2012), medical diagnoses
(Gottlieb et al., 2013), and cohort study (Che et al., 2017).

The wide availability of Electronic Health Records (EHRs)
makes it possible to quickly and accurately calculate the similarity
between patients. Many similarity learning methods have been
proposed (Tsevas and Iakovidis, 2011; Wang et al., 2012b;
Barkhordari and Niamanesh, 2015; Wang and Sun, 2015; Sha
et al., 2016; Zhan et al., 2016; Sharafoddini et al., 2017; Huai
et al., 2018; Suo et al., 2018) on healthcare datasets. Existing
methods have successfully derived the similarity measure from
EHRs data through mapping the medical events into vector
spaces. However, EHRs contain a variety of data (diagnostics,
drugs, etc.) and a large number of medical events, which usually
results in high-dimensional embedding vectors.

Heterogeneous information network (HIN) contains rich
structure and semantic information, and it can effectively
solve the problem caused by the high-dimensional and sparse
embedding vectors. For calculating the similarity of patients,
the diseases and drugs used by patients provide essential
information. The patient’s disease is critical to the doctor’s clinical
decision. At the same time, the patient’s disease is basically
determined by the patient’s clinical symptoms and clinical
indicators. It can be said that the disease is a comprehensive
reflection of clinical indicators. The medicine is the solution
made by the doctor to the patient’s disease and symptoms, and is
the final manifestation of the doctor’s clinical decision. Therefore,
it is easy to think that patients, diseases, and drugs can be
connected to form HIN.

However, there are many duplicate diseases and drugs
in the EHRs, meaning that if we were to use classic HIN
modeling techniques with the above schema, we would lose the
correlation information between patients and drugs. Considering
this problem, we propose a kind of HIN with annotation: that
is, in links connecting diseases and drugs, we add an annotation
of patient information to enrich the original network with the
information between patients and drugs. We call it annotated
HIN. On the annotated HIN, we propose a novel node similarity
measure S-PathSim to calculate patient similarity. As a node
similarity measure, S-PathSim enjoys some good properties, like
symmetric and self-maximum.

On the other hand, temporal information is crucial to
understand the dynamics of medical expressions. To leverage the
essential temporal information for patient similarity evaluation,
we propose to use N-disease to encode temporal information into
annotated HINs. N-disease is inspired by the N-grams model
in natural language processing. Its basic idea is to arrange the
patients’ diseases into time series according to the time they
are developed, sequentially collect the N-grams from the disease
sequences, and then replace the disease object with the disease
N-grams in the annotated HIN. The collected N-grams from the
disease time series are called N-diseases.

Finally, two patient similarity search methods, MBH (method
based on annotated HIN) and MBHT (method based on

annotated HIN and temporal information), were defined
according to S-PathSim and N-disease.

The remainder of this paper is structured as follows. The
second section reviews the related research work on the topic
of patient similarity analysis and heterogeneous information
network, while the third section provides some preliminaries on
HIN and shows the limitation of HIN to the calculation of patient
similarity. In the fourth section, we introduced our method in
detail. The experimental results and comparative analysis are
shown in section five. Finally, the last section summarizes this
paper and discusses some possible avenues for future research.

2. RELATED WORK

In this section, we review some related works on evaluating
patient similarity and heterogeneous information network.

Studying patient similarity has practical significance in
many applications (Lee et al., 2015; Li et al., 2015). Ng
et al. provided personalized predictive healthcare model by
matching clinical similar patients with a locally supervised
metric learning measure (Ng et al., 2015). An integrated method
for personalized modeling (IMPM) was proposed to provide
personalized treatment and personalized drug design (Kasabov
and Hu, 2010). The data-driven clinical decision support system
was combined with patient similarity (Xia et al., 2019).

At present, there are many studies to calculate the similarity
of patients. Zhang et al. combined patient similarity and
drug similarity analysis and proposed a heterogeneous label
propagation method to identify which drug is likely to be
effective for a given patient (Zhang et al., 2014). Chan et al.
proposed a patient similarity algorithm named SimSvm that
uses support vector machine to weight the similarity measures
(Chan et al., 2010). Wang et al. proposed a patient similarity
based disease prognosis strategy named SimProX (Wang et al.,
2012a). This model used a local spline regression based method
to embed these patient events into an intrinsic space, and then
measure the patient similarity by the Euclidean distance in
an embedded space. However, these methods do not leverage
temporal information to evaluate patient similarities, which
prevents them from delivering.

Cheng et al. (2016) took temporal information into
consideration and proposed an adjustable temporal fusion
scheme using CNN-extracted features. This method is a
supervised model, but the label data are not easy to obtain,
which limits its use, and the method lacks interpretability.
Zhu et al. proposed the method to solve the problem of high-
dimensional vectors and time series (Zhu et al., 2016). They
embed medical events from HER into fixed-length vectors, but
fixed-length vectors are difficult to obtain complete medical
event information.

Asmentioned above, the current method of measuring patient
similarity is limited, and a better method is needed to calculate
patient similarity.

Since, Sun et al. proposed the concept of HIN (Sun and
Han, 2010), and the meta path concept subsequently (Sun and
Han, 2011), HIN analysis becomes a hot topic rapidly in the
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fields of data mining, database, and information retrieval. He
et al. incorporated temporal information for similarity search in
HINs by assigning different weights to the paths built at different
time (He et al., 2014). But this method is not suitable for the
annotated HIN proposed in this paper. In order to evaluate the
relevance of different-typed objects, Shi et al. (2014) proposed
HeteSim to measure the relevance of any object pairs under
arbitrary meta paths. As an adaption of HeteSim, LSH-HeteSim
(Li et al., 2014) is proposed to mine the drug–target interaction
in heterogeneous biological networks where drugs and targets
are connected with complicated semantic paths. In order to
overcome the shortcoming of HeteSim in high computation
and memory demand, Meng et al. (2014) proposed the AvgSim
measure that evaluates similarity score through two randomwalk
processes along the given meta path and the reversed meta path,
respectively. In order to overcome the problem that the meta
path can only express simple information, Cheng et al. (2017)
proposed meta structure to measure the similarity between the
objects. Until today, HINs have been widely used in other fields
(Wang, 2019; Wang et al., 2020; Zhang et al., 2020).

HIN rarely results in high-dimensional vectors, and most
similarity calculation methods based on HIN have good
interpretability. But it cannot be perfectly applied to patient
similarity calculation, so in this paper,we propose an improved
method, annotated HIN, which can be well-applied to calculate
the similarity of patients.

3. PRELIMINARIES

In this section, as preliminaries, we will detail the HIN and its
limitation in measures patient similarity.

3.1. HIN
An information network is defined as a directed graphG = (V ,E)
with an object type mapping function ψ :V → A and a link type
mapping function ϕ :E → R, in which each object v ∈ V belongs
to a particular object typeψ(v) ∈ Awhile each link e ∈ E belongs
to a particular relation ϕ(e) ∈ R.

FIGURE 1 | Network schema of the patient heterogeneous information

network.

Different from the traditional network definition, we
explicitly distinguish the object types and relationship types
in these networks. When the types of objects |A| > 1 or
the types of relations |R| > 1, the network is referred to
as a heterogeneous information network; otherwise, it is a
homogeneous information network.

3.2. Limitation of HIN
HIN can link patients, diseases, and drugs. As shown in Figure 1,
we can get the network schema of the patient HIN. P, D, and M
represent patient, disease, and medicine, respectively.

There may be many kinds of drugs to treat one disease,
and one drug can also cure many diseases, which leads to
some incorrect information in the traditional heterogeneous
information network when connecting patients, diseases, and
drugs. We use a specific example below to illustrate this problem.

Table 1 presents three inpatient records for two patients,
all of which were diagnosed with the same disease; patient
231 was hospitalized twice. From the data in Table 1, the
HIN in Figure 2 is obtained. However, the HIN shown in
Figure 2 has two problems. First of all, we need to know that
patient 231 has been hospitalized twice, but this information
cannot be obtained through Figure 2. Second, patient 231 does
not use perindopril in treatment, but the information we get
from the heterogeneous information network is that there is
a relation between patient 231 and perindopril, which leads
to the incorporation of misleading information. Therefore,
traditional HIN-based measurement methods are not suitable for
our problem.

FIGURE 2 | Heterogeneous information network from Table 1.

TABLE 1 | Example of case information.

Hospital ID Patient ID Disease Medicine

564435 231 Arteriosclerotic heart disease Atorvastatin, Bisoprolol, Clopidogrel

561657 200 Arteriosclerotic heart disease Aspirin, Atorvastatin, Perindopril

564677 231 Arteriosclerotic heart disease Atorvastatin, Clopidogrel
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FIGURE 3 | An annotated HIN from Table 1.

4. THE PROPOSED METHOD

4.1. Annotated HIN
As mentioned in section 3, HIN is not suitable for our problem.
In order to measure patient similarity, we propose a new graph
model-annotated HIN.

Definition 1. Annotated Heterogeneous Information

Network. Annotated HIN is a special heterogeneous information
network G = (V ,E,C). In the annotated HIN, there is a set of
one or more link types annotated by < key, value > pairs. For
each < key, value > pair, key corresponds to a specific type of
object ψ(key) ∈ V , while value is used to record the number
of links.

As above mentioned, we regard the set of < key, value >

pairs as the annotations of a heterogeneous information network,
represented by C. The number of key-value pairs in the set is
referred to the length of the annotation, which is represented by
L. Annotations can be added to one or more link types of the
classic heterogeneous information network. These annotations
can be used to record the source and number of connections and
can thus represent more information.

Figure 3 is a real example diagram of an annotated HIN,
and we named it patient-annotated HIN. It can be seen that
the connection with “Clopidogrel” has annotation CClopidogrel =

{< 231, 2 >}, and that the annotation length is L =

1. Combined with the annotated heterogeneous information
network, we can interpret it as follows: Patient 231 was diagnosed
with atherosclerotic heart disease in both hospitalizations, and
clopidogrel was used in both treatments. Moreover, there is no
corresponding record of patient 200 in the note, so it can be
concluded that clopidogrel was not used in the treatment of
patient 200. In this way, the two problems described in the
previous section are solved.

For a given annotated HIN, in order to help readers better
understand the object type, link type, and annotation type in the
network, we provide its meta-description.

Definition 2. AHIN Network Schema. The network schema
of AHIN is recorded as SG = (A,R, I). This is a meta template
of AHIN G = (V ,E,C). It has object type mapping ψ(v) ∈ A,

FIGURE 4 | Schema of patient-annotated HIN.

relation type mapping ϕ(e) ∈ R, and annotation type mapping
θ :C → I. It is defined on object type set A, relation type set R,
and annotation type set I.

4.2. Weighted Meta Path and S-PathSim
The weighted meta path, designed to capture complex
relationship between two annotated HIN objects, is based
on network expansion structure. And the network expansion
structure is defined as follows.

Definition 3. Network Expansion Structure. Network
expansion structure S is a set of directed weighted graphs, which
is defined on an annotatedHIN schema SG = (A,R, I). It expands
the annotated heterogeneous information network into an easy-
to-process format. Formally, S = (D1,D2, . . . ,Dn), where Dn =

(Vn,En) is a directed weighted graph with Dn, Vn being the set of
nodes and edges, respectively. For any edge e ∈ En, a weight w(e)
is associated, with the default value 1.

Below we use an example to introduce the expansion of
the network structure. Figure 5A demonstrates the expansion
from a given annotated heterogeneous information network
into the network expansion structure. There are annotations
{< P1, 2 >,< P2, 3 >}, and {< P1, 3 >} in graph G. The key-
value pairs < P1, 2 > and < P1, 3 > correspond to the entity
P1, so we can get the graph D1, and the corresponding edge
weights are 2, 3, respectively. And the key-value pair < P2, 3 >
corresponds to the entity P2, so we get the graph D2, and the
corresponding edge weight is 3. For the other edges, our default
weight is 1.

After introducing the network expansion structure, we
propose the concept of weighted meta path.

Definition 4. Weighted Meta Path. Weighted
meta path P is a path defined on the network schema
SG = (A,R, I), and based on network expansion structure
S = (D1,D2, . . . ,Dn). Weighted meta path is denoted in the

form of A1
R1 ,w(e1)
−→ A2

R2 ,w(e2)
−→ . . .

Rl ,w(el)
−→ Al+1, which defines

a composite relation between object A1 and Al+1, where Rl
represents the relationship between A1 and Al+1, and w(el)
represents the weight of the relationship.

Just like the meta path, if the relationship of the weighted
meta path P is symmetric, then we say that it is symmetric. For a
specified weighted meta path, it has a specified template. If there
is no multiple relationship between the same object types, we
can use the type name to represent the template of the weighted
meta path: P = (A1A2 . . .Al+1). As shown in Figure 5B, P1 and
P2 have the same template PDMDP. P1 and P2 are symmetric
weighted meta paths.

When Al+1 = A′
1, the weighted meta paths P =

(A1A2 . . .Al+1) and P′ = (A′
1A

′
2 . . .A

′
l+1

) are concatenable,
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FIGURE 5 | Network expansion structure and weighted meta path. (A) Network expansion structure. (B) Weighted meta path.

FIGURE 6 | Concatenation of weighted meta path.

so that a new weighted meta path (A1A2 . . .Al+1A
′
2 . . .A

′
l+1

)
is obtained.

For each weighted meta path P, there is a score S(P), and
S(P) is the product of the weights of the relationships in P. For
example, the weighted meta path P1, S(P1) = 1 ∗ 2 ∗ 3 ∗ 1 = 6.
In fact, S(P) represents the weight of the relationship between
the first and last objects in the weighted meta path P, and can
also be understood as the number of connection paths between
the two objects. As shown in Figure 6, the weighted meta path
P3, W({D1,M1}P3) = 2, represents that patient P1 has used
the drug M1 twice because of disease D1. Therefore, S(P3) =

W({P1,D1}P3 ) ∗ W({D1,M1}P3 ) = 2 can also be obtained, then
the number of connection paths between P1 and M1 is 2. In the
same way, S(P4) = W({M1,D1}P4 )∗W({D1, P2}P4 ) = 3, then the
number of connection paths between patient P2 and drug M1 is
3. P1 can be obtained by concatenating P3 and P4, then we can
get that the number of connection paths between patient P1 and
patient P2 is S(P1) = S(P3) ∗ S(P4) = 6.

Based on the annotated HIN and weighted meta path, we
propose a new measure, named S-PathSim.

Definition 5. S-PathSim. Given a symmetric weighted meta
path, S-PathSim between two objects of the same type x and y is:

s(x, y) =
2× Ssum(Px→y)

Ssum(Px→x)+ Ssum(Py→y)
, (1)

where Ssum(Px→y) is the sum of score of the weighted meta
path between x and y, Ssum(Px→x) is that between x and x, and
Ssum(Py→y) is that between y and y. If there are two weighted
meta-paths Pa and Pb between x and y, and S(Pa) = 4, S(Pb) = 3,
then Ssum(Px→y) = S(Pa)+ S(Pb) = 7.

Take the patients in Table 1 as an example, and patient
231 has two admissions. During his first hospitalization, he
developed arteriosclerotic heart disease and had some medicine
including atorvastatin, bisoprolol, and clopidogrel. Patient 200
also developed arteriosclerotic heart disease and he had the
medicine aspirin, atorvastatin, and perindopril. According to
these information, we can get an heterogeneous information
network G as shown in Figure 5A. According to Definition
5, we can get S_sum(patient231 → patient200) = 6,
Ssum(patient231 → patient231) = 22, Ssum(patient200 →

patient200) = 9, therefore s(patient231, patient200) = 6/11.
Asmentioned before, S(P) can be understood as the number of

connecting paths of the first and last two objects in the weighted
meta path P. If there are more connection paths between two
objects, then we can consider them to have a higher similarity.
However, the result obtained by using the number of paths as the
judgment condition will be biased toward high-visibility objects.
Therefore, we use the number of connection paths from two
objects to their own as a balance factor. This idea has been applied
to PathSim, and we extend it to the annotated HIN here, and
propose S-PathSim.
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FIGURE 7 | Annotated HIN after (A) 2-disease and (B) 3-disease operations.

Properties of S-PathSim:

• (1) Symmetric: s(x, y) = s(y, x). Considering the semantics
of Ssum(Px→y), it is easy to understand Ssum(Px→y) =

Ssum(Py→x), so s(x, y) = s(y, x).
• (2) Self-maximum: s(x, y) ∈ [0, 1], and s(x, x) = 1. The

weighted meta path templatemn and nm can be concatenated
into a new weighted meta path mnm.mnmi is the ith path of
the weighted meta-path template mnm, as mentioned before,
S(mnmi) = S(mni)∗S(nmi). Assuming thatmn is the weighted
meta path template, the kth weighted element path is expressed
as ak, and nm is the weighted meta path template, and the kth
weighted element path is expressed as bk, then Ssum(Px→y) =∑p

k=1
S(ak)∗S(bk); the same can be obtained as Ssum(Px→x) =∑q

k=1
S(ak)

2, Ssum(Py→y) =
∑o

k=1 S(bk)
2. There must be

p ≤ q, p ≤ o. Then 2
∑p

k=1
S(ak) ∗ S(bk) ≤

∑p

k=1
S(ak)

2 +∑p

k=1
S(bk)

2 ≤
∑q

k=1
S(ak)

2 + S(bk)
2, so S(x, y) ≤ 1. And

it is easy to understand that s(x, y) ≥ 0, so s(x, y) ∈ [0, 1],
s(x, x) = 1. In the above formula, p represents the number of
weighted meta path between x and y, q represents the number
of weighted meta path between x and x, and o represents the
number of weighted meta path between y and y.

4.3. Temporal Information Encoding
Temporal information is critical to understanding the patients’
dynamics. However, the AHIN described previously cannot
capture the temporal information, so for the problem to be
solved in this article, we propose an N-disease method to embed
temporal information into the AHIN.

N-disease is inspired by the natural language processing
model N-grams. Its basic idea is to arrange the patients’ diseases
set into time series according to the time when they were
developed, sequentially collect the N-grams from the disease
sequences, and then replace the disease object with the disease N-
grams in the annotated HIN. Assuming that P1 has the diseases
[D1,D2,D3] and P2 has the disease [D2,D3,D4], then the results
obtained after the 2-disease operation and the 3-disease operation
are shown in Figure 7. In fact, the patient annotation HIN
given in Figure 4 is essentially the patient annotation HIN after
1-disease operation.

It should be noted that as N becomes larger and larger,
the accuracy of the patient’s annotation of diseases and drug
connections in the HIN will gradually decrease. As shown in

Figure 7A, the node [D1,D2] is connected to the drug; then
you do not know whether this drug is used to treat disease D1

or disease D2. Fortunately, we can trade off the accuracy and
temporal information by changing N.

4.4. MBH and MBHT
Retrieving top-k similar patients of specified patients has
practical significance. It allows doctors to analyze similar
patients to provide better treatment options. Previously, we
have introduced the annotatedHIN–basedmeasurementmethod
S-PathSim and temporal information embedding method N-
disease. In this section, we define two patient similarity
search methods, MBH and MBHT, according to the definition
introduced earlier.

MBH is a method based on annotated HIN. In detail,
first, annotated HIN is constructed using the patient’s medical
record information. After specifying a patient, S-PathSim is
used to calculate the patient similarity and return the top-k
similar patient.

MBHT is a method based on annotating HIN and temporal
information. The difference between MBHT and MBH is that
MBHT needs to construct the annotated HIN processed by the
N-disease based on patient’s medical record information, and
embed the temporal information into the annotated HIN, then
use S-PathSim to calculate the patient similarity and return the
top-k similar patient.

It is easy to understand that MBHT is the combination of N-
disease and MBH. When N = 1, MBHT is MBH. MBHT uses the
temporal information in the patient’s medical records, but it also
loses some accuracy, and we need to make a trade-off between
timing and accuracy.

5. SIMULATION EXPERIMENTS AND
RESULTS ANALYSIS

5.1. Data Description
We perform experiments on a real dataset, which primarily
includes information about the medical treatments and drug
details of each person. Each person has multiple records (n > 2).
Moreover, each record contains a diagnosis (i.e., ICD10) and
information about multiple drugs. To improve the experiment
quality, we randomly divided the data into four sub-datasets.
Table 2 shows the description of the divided datasets. In addition,
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TABLE 2 | Description of datasets.

Sub-dataset Dataset A Dataset B Dataset C Dataset D Total

Number of patient 13,461 13,461 13,461 13,460 53,853

Disease types 946 953 946 943 1,928

Drug types 1,400 1,412 1,403 1,390 2,217

Number of diagnoses per capita 6.653 6.540 6.647 6.456 6.620

we did not perform any other desensitization treatment (such as
removing diseases with less than five patients), so our experiment
is performed on a real-world dataset without any unjustifiable
data manipulations.

5.2. Experimental Settings
In application, comparative analysis is often performed by
retrieving top-k similar patients of designated patients to support
clinical decision making. In the experiment, we also evaluate
the model by retrieving the top-k similar patients of the
specified patients. We set k = 10. We used two metrics for
quantitative evaluation.

nDCG (normalized Discounted Cumulative Gain, with the
value between 0 and 1, the higher the better) Zhang et al. (2020)
is an indicator used to measure the quality of the ranking. The
main idea is that the products that the user likes are supposed
to be ranked in front of the recommendation list rather than in
the back so as to significantly increase the user experience. It is
obtained by DCG (Discounted Cumulative Gain) normalization,
where rel is a sorted list, i is the position number of the current
result, and IDCG is the largest DCG in the ideal state.

DCG =

p∑

i

reli

log2i+ 1
(2)

nDCG =
DCG

IDCG
(3)

The HL (half-life utility) (Sarwar et al., 2001) index is proposed
under the assumption that the probability that the user browses
the product and the specific ranking value of the product in
the recommendation list decrease exponentially. It measures the
practicality of the recommendation system for a user. It is the
difference between the user’s actual rating and the model rating.
So HL can also be used to evaluate top-k search results.

HLu =
∑

α

max(rua − d, 0)

2(lua−1)/(h−1)
(4)

Among them, rua represents the true similarity of patient u and
patient a, d is the default score, in the experiment we set d to
the average similarity, and lua is the ranking of patient a in the
recommended list of patient u. h is the half-life of the system,
that is, there is a 50% probability that the user will browse the
recommended list position, we set h= 3.

In order to verify the effectiveness of the proposedMBH based
on S-PathSim, we set up a comparison experiment betweenMBH

and the similarity search method based on PathSim. In addition,
in order to explore the effect of N-disease on the results, N was
set to 1, 2, 3, 4, respectively, and count the results of MBHT
for comparative analysis. Finally, we explored the effect of N-
disease on algorithm efficiency. The experimental environment
is as follows: INTELCorei5 CPU, 2.80 GHz; 4G memory.

5.3. Comparison of Patient Similarity
Search Method
This article proposes annotated HIN and S-PathSim, and defines
MBH, a patient similarity search method based on the annotated
HIN and S-PathSim. PathSim is an excellent object similarity
measurement method based on HIN. PathSim can be used to
retrieve the similarity of patients. Here, we compare MBH with
PathSim-based methods to verify the effectiveness of MBH:

(1) MBH: Map the patient information to the annotated HIN,
the schema is shown in Figure 4, through the weighted meta
path as shown in Figure 5B; the S-PathSim is used to measure
the similarity of patients, and get the top-k similar patients of
the specified patients.

(2) Baseline: Map patient information into HIN. The schema is
shown in Figure 1. The meta path used is (PDMDP). PathSim
is used to calculate the patient similarity, and the top-k search
result of the specified patient is obtained.

It is worth mentioning that the above steps are
run simultaneously in 4 sets of datasets, effectively
avoiding accidental.

Figure 8 shows the experimental results of the two models
on 4 sets of datasets. Figure 8A uses nDCG as the evaluation
criterion, and it can be observed that MBH is superior to baseline
on four datasets. Figure 8B uses HL as the evaluation criterion,
which proves that MBH has better practicability than baseline.

5.4. The Impact of N-Disease
We propose N-disease to embed temporal information into
annotated HIN, and the difference between MBH and MBHT
is whether N-disease is used or not. In this section, we explore
the comparison results of MBH and MBHT, and the effect of
N-disease on MBHT. We set N to 1, 2, 3, and 4, respectively.
When N = 1, the annotated HIN does not contain temporal
information, and MBHT is MBH. When N = 4, annotated
HIN contains the largest amount of temporal information.
However, after a threshold, with the increase of N, the annotated
HIN captures increasingly more temporal information while
its patient similarity search performance decreases steadily. We
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FIGURE 8 | Comparison result of MBH (method based on annotated HIN)

and baseline. (A) uses nDCG as the evaluation criterion and (B) uses HL as

the evaluation criterion.

TABLE 3 | The effect of N-disease measured by nDCG (normalized Discounted

Cumulative Gain).

Dataset N = 1 N = 2 N = 3 N = 4

Dataset A 0.696 0.704 0.695 0.694

Dataset B 0.855 0.859 0.807 0.761

Dataset C 0.778 0.767 0.800 0.791

Dataset D 0.825 0.837 0.799 0.787

Mean 0.788 0.791 0.775 0.758

Note: The bold values are the best results.

should carefully choose the threshold for N to obtain the
best results.

The experimental results are shown in Table 3. In datasets A,
C, and D, MBHT has the best results when N = 2; in dataset B,
MBHT achieved the best results whenN = 3. Among the average
values of the 4 datasets, N = 2 makes MBHT achieve the best
results. In general, N = 2 can achieve the best results of MBHT,
and N = 2 can balance the time-consuming and accuracy of
annotated HIN. At the same time, the experimental results also
show that MBHT is better than MBH.

In the following, we explore the effect of N-disease on MBHT
efficiency. We assume that when N-disease method is not used

TABLE 4 | The effect of N-disease on efficiency.

Dataset N = 1 N = 2 N = 3 N = 4

Dataset A 1 0.918 0.978 0.972

Dataset B 1 0.828 0.902 0.893

Dataset C 1 0.767 0.957 0.893

Dataset D 1 0.893 0.929 0.954

Mean 1 0.883 0.941 0.928

(i.e., N = 1), the running time of the program is unit 1. The
experimental results are as follows.

It can be seen from Table 4 that the efficiency of the algorithm
is improved by using N-disease; especially when N = 2, the
algorithm has the highest efficiency. The use of N-disease changes
the number of annotated HIN nodes and the relationship
between the nodes, which in turn changes the efficiency of the
algorithm. Since N-disease will affect the efficiency of MBHT, this
paper gives an explanation from a practical point of view.

When the program is implemented, we divide MBHT into
two steps. The first step is data statistics, and the second step is
S-PathSim calculation. The use of MBHT has more data statistics
steps than the use of MBH alone, but we know from practice
that the time consumed by the data statistics step is quite small
and can even be ignored. When we calculate S-PathSim, we use
a lot of multiplication, which takes most of the total running
time. We found that when N = 2, the number of multiplication
operations is significantly smaller than when MBH is used alone.
This explains why the running time of the program when N = 2
is shorter than that when using MBH alone.

In short, we conclude that when N =2, annotated HIN
achieves a balance between time consuming and accuracy, and
can effectively improve the efficiency of the algorithm.

6. CONCLUSION

In this paper, a new method of patient similarity calculation is
proposed that uses the disease and drug data of patients, and
further uses the annotated HIN proposed in this paper to create
a model. The heterogeneous network adds the annotation of
patient information to the connecting links between diseases
and drugs, which solves the problem of the classic HIN in
losing the information regarding these associations. At the same
time, based on the annotated HIN, we propose S-PathSim to
measure patient similarity. Furthermore, N-disease is proposed
to encode temporal information into the annotated HIN. Our
measurement does not rely on high-dimensional and sparse
vectors, and effectively captures the patient’s medical events and
the temporal information in EHRs. Finally, based on S-PathSim
and N-disease, two patient similarity search methods, MBH
and MBHT, are proposed. The experimental results show that
the method proposed in this paper is superior to competitive
baseline method.
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