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Background: Ferroptosis plays an important role in glioma and significantly affects the
prognosis, but the specific mechanism has not yet been elucidated. Recent studies
suggest that autophagy regulates the process of ferroptosis. This study aimed to find
potential autophagy-ferroptosis genes and explore the prognostic significance in glioma.

Methods: Ferroptosis and autophagy genes were obtained from two online databases
(zhounan.org/ferrdb and autophagy.lu/). The RNAseq data and clinical information were
obtained from the Chinese Glioma Genome Atlas (CGGA) database (http://www.cgga.org.
cn/). Univariate, multivariate, lasso and Cox regression analysis screened out prognosis-
related genes, and a risk model was constructed. Receiver operating characteristic (ROC)
curve analysis evaluated the predictive efficiency of the model. Finally, a nomogram was
constructed to more accurately predict the prognosis of glioma.

Results: We developed a Venn diagram showing 23 autophagy-ferroptosis genes. A total
of 660 cases (including RNA sequences and complete clinical information) from two
different cohorts (training group n = 413, verification group n = 247) of the CGGA database
was acquired. Cohorts were screened to include five prognosis-related genes (MTOR,
BID, HSPA5, CDKN2A, GABARAPLA?2). Kaplan-Meier curves showed that the risk model
was a good prognostic indicator (p < 0.001). ROC analysis showed good efficacy of the
risk model. Multivariate Cox analysis also revealed that the risk model was suitable for
clinical factors related to prognosis, including type of disease (primary, recurrence), grade
(N-1Vv), age, temozolomide treatment, and 1p19q state. Using the five prognosis-related
genes and the risk score, we constructed a nomogram assessed by C-index (0.7205) and
a calibration plot that could more accurately predict glioma prognosis.

Conclusion: Using a current database of autophagy and ferroptosis genes, we confirmed
the prognostic significance of autophagy-ferroptosis genes in glioma, and we constructed
a prognostic model to help guide treatment for high grade glioma in the future.
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INTRODUCTION

Glioma is the most common primary malignant tumor in the
brain. Current treatments for glioma include surgical resection,
chemotherapy, radiotherapy, immunotherapy, and electric field
therapy. Although many treatments exist, prognosis has not
significantly improved (Duffau and Taillandier, 2015; Tan
et al, 2020). Traditionally, gliomas have been divided into
grades I-IV in pathological classification, of which grades I-II
belong to low grades, and grades III-IV belong to high grades.
According to the latest WHO classification in 2016, molecular
pathology is now included in the classification of gliomas (Louis
etal.,, 2016; White et al., 2020). This change shows the importance
of molecular pathology for the diagnosis and treatment of glioma.
Currently, molecular markers that affect prognosis have been
identified for gliomas, but no exact and efficient target for clinical
application yet exists.

Studies have found that ferroptosis plays an important role in
nervous system tumors and notably affects the prognosis of
gliomas (Buccarelli et al., 2018; Wan et al.,, 2021). Ferroptosis
was initially described as a unique type of regulated cell death that
is, observed in oncogenic RAS-mutated cancer cells and that is,
distinct from apoptosis, necrosis, and autophagy at the
morphological, biochemical, and genetic levels (Dixon et al,
2012; Xie et al, 2016). However, increasing evidence
challenges these early observations and suggests that the
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TABLE 1 | Clinical characteristics.

Verification P
group (n = 247)

Clinical characteristics Training

group (n = 413)

Age
<50 294 164 0.2
> 50 119 83

Gender
Female 182 98 0.27
Male 231 149

Type
Primary 248 194 < 0.05
Recurrence 165 53

Grade
Il 47 81 < 0.05
Il 87 64
v 279 102

IDH mutation
Yes 228 125 0.25
No 185 122

1p19qg codeletion
Yes 87 50 0.8
No 326 197

MGMT
Yes 244 125 0.038
No 169 122

Radiation therapy
Yes 328 198 0.82
No 85 49

TMZ therapy
Yes 324 158 < 0.05
No 89 89

autophagic machinery, at least under certain conditions,
contributes to ferroptosis.

BECNI is a key regulator of autophagy. The BECNI-SLC7A11
complex directly inhibits the activity of systemXc (-) and promotes
ferroptosis (Kang et al, 2018). Nrf2 is a key anti-ferroptosis
transcription factor in liver cancer, and it can inhibit ferroptosis
induced by sorafenib and erastin through the p62-keapl-Nrf2
pathway (Sun et al,, 2016). RAB7A can mediate the degradation of
lipid droplets by the lipophagy pathway, increase the level of
intracellular lipids, promote lipid peroxidation, and promote the
ferroptosis of liver cancer cells induced by RSL3. Knockdown of
the RAB7A gene inhibits lipophages and the degradation of lipid
droplets, which can reverse RSL3-induced cell ferroptosis (Bai et al.,
2019). NCOA4 targets ferritin to the lysosome for autophagic
degradation, increases unstable iron levels in cells, promotes
reactive oxygen species production, and leads to cell ferroptosis.
Knockout of the NCOA4 gene inhibits ferritin autophagy, alleviates
iron overload, and reverses erastin-induced cell ferroptosis (Mancias
et al,, 2014; Mancias et al., 2015).

However, the relationship between autophagy and ferroptosis in
tumors is complex; Autophagy not only promotes but also inhibits
ferroptosis. Adjusting autophagy activity to promote ferroptosis of
tumor cells is of great significance to cancer treatment. Little research
on the autophagy-ferroptosis connection in glioma has been
conducted. In this study, we screened autophagy-ferroptosis genes
using RNA sequences and clinical data in the Chinese Glioma
Genome Atlas (CGGA) database. The purpose of this study was

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 739097


https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Zhou et al.

Autophagy-Ferroptosis Genes in Glioma

04

Coefficients

0.0

-0.2

-04

Log Lambda

prognosis-related genes.

FIGURE 2 | (A) Venn diagram showing that 23 genes have dual functions of autophagy and iron death. (B-D) Univariate and lasso regression screened the best
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to investigate and verify the expression characteristics of autophagy-
ferroptosis genes to predict the prognosis of glioma. This study also
established a new predictive nomogram for related genes to more
accurately assess the prognosis of glioma. These selected genes also
provide a basis for subsequent research.

MATERIALS AND METHODS

Patient Data

The RNAseq data and clinical information of a training group and a
verification group were obtained from the CGGA database (http://
www.cgga.org.cn/); all data were complete and uniform (Zhao et al.,
2017). We normalized gene expression by the RPKM (transcriptome
reads per kilobase reads per million reads) method (Mortazavi et al.,
2008). The study process is shown in Figure 1.

Construction and Verification of Risk
Models

Univariate and lasso regression analysis screened for the best
prognosis-related genes with p < 0.01. A prognostic risk model for
predicting overall survival (OS) was established. Patients with

glioma were divided into high and low expression groups
according to their median expression levels of prognosis-
related genes. Kaplan-Meier survival analysis evaluated the
relationship between the expression levels of prognostic-related
genes and OS. Then, the correlations between the risk model and
clinical characteristics were analyzed.

Enrichment Analysis and Protein-Protein

Interaction Network Construction

Gene Set Enrichment Analysis (GSEA) was used to enrich signal
pathways between the low- and high-risk groups of patients with
glioma (Subramanian et al., 2005). The cutoff criteria were a |
normalized enrichment score (NES)| > 1.5 and a nominal p <
0.05. A protein-protein interaction (PPI) network of autophagy-
ferroptosis genes was constructed to understand the relationship
among genes.

Construction and Verification of Nomogram
A nomogram was constructed according to the five prognosis-
related genes to more accurately predict the prognosis for patients
with glioma (Iasonos et al, 2008). This constructed allowed
investigation of the 1-, 3-, 5-, 7-, and 9-years survival rates of
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FIGURE 3| (A) The risk model of the experimental group and the validation group (o < 0.001). (B) The receiver operating characteristic curve suggests that the risk
model has good short-term and long-term predictive values between the training and verification groups. (C) Component analysis suggests that the model can
accurately distinguish high- and low-risk groups. (D) The risk curve and risk status show the survival status of the patient as the score increases. The risk heat map shows
the expression of prognosis-related genes in the high- and low-risk groups.
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FIGURE 4 | (A) Univariate and multivariate analyses screened clinical factors related to prognosis.(B) The relationship between the expression of five prognosis-

patients with glioma. The concordance index (C-index) was
calculated, and a calibration curve was plotted to assess the
discrimination and accuracy of the nomogram.

Statistical Analysis
All statistical analysis were performed with R (version 3.63, http://
Www.r-project.org/).

RESULTS

Patient Database

Data from 660 patients with glioma were collected after missing
values (RNAseq data and clinical characteristics) were excluded. Of
this total, data from 413 patients were collected as a training group,
and data from 247 patients were collected as a verification group.
The clinical characteristics of the two cohorts are shown in Table 1.

Construction and Verification of Risk
Models

Overall, 147 autophagy genes were obtained from an online
database (http://www.autophagy.lu/) (Wang et al., 2019), and 150
ferroptosis genes were obtained from an online database (http://
www.zhounan.org/) (Zheng et al, 2021). A constructed Venn
diagram displayed 23 autophagy-ferroptosis genes (Figure 2A).
Univariate and lasso regression analysis screened for five
prognosis-related genes (MTOR, BID, HSPA5, CDKNZ2A, and
GABARAPLA?2) (Figures 2B-D). The risk score was defined as
0.40 x HSPA5 + 0.34 x MTOR - 0.33 x BID — 0.08 x CDKN2A - 0.
33 x GABARAPLA2. Kaplan-Meier survival analysis using the
survival package estimated the associations between the
expression levels of the prognosis-related genes and OS
(Figure 3A). The prognostic performance was evaluated using
time-dependent receiver operating characteristic (ROC) curve
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futime

analysis within 1, 3, 5, 7, and 9 years to evaluate the predictive
accuracy of the prognostic model (Figure 3B). The risk curve and
risk status, risk heat maps, risk scatter plots, and PCA were drawn to
evaluate the model’s ability to distinguish between high- and low-
risk groups (Figures 3C,D). Then, the relationship between risk
models and clinical characteristics was explored. Type, grade, age,
temozolomide use, and 1p19q state were the risk factors associated
with prognosis in glioma (Figure 4A). This risk model is applicable
to these clinical risk factors except WHO grade II (Figure 5). The
expression of the five prognosis-related genes was explored in
relation to different clinical characteristics as well (Figure 4B).

GSEA Enrichment Analysis and PPI

Construction

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis showed no significant enrichment in the high-risk group
(p > 0.05); in the low-risk group, the main pathways of
enrichment were in basal cell carcinoma, linoleic acid
metabolism, and mature-onset diabetes of the young
(Figure 6B). MTOR had the strongest correlation of
23 autophagy-ferroptosis genes in PPI (Figures 6C-E).

Prognosis of Different Glioma Subgroups

There were significant prognostic differences in 4 glioma
subgroups (GBM IDH wildtype, GBM IDH mutant,
Oligodendroglioma II-III, Astrocytoma II-III) (Figure 7).
15 autophagy-ferroptosis genes were analyzed (Figure 8). The
prognostic genes of GBM IDH mutant were HSPA5 and NFE2L2;
GBM IDH wildtype were ATG7 and MAPK9; A/AA group
includes BID, LAMP2 and MAPK3; ATG5, BECNI,

GABARAPL1 and HSPA5 were prognostic genes in the O/AO
subgroup; In the clinical risk assessment (Figure 8), Type
(primary/recurrence), radiotherapy, and TMZ were prognostic
factors for GBM IDH wildtype; Type (primary/recurrence) and
Grade were prognostic factors for O/AO.

Construction and Verification of Nomogram
A nomogram was built for accurately predicting 1-, 3-, 5-, 7-, and
9-years OS. The five prognosis-related genes were added to the
prediction model (Figure 6A). The discrimination and accuracy
of the nomogram were evaluated by C-index and calibration. The
C-index was 0.72 in the training group and was 0.74 in
verification group. Calibration curves of 1-, 5-, and 9-years
survival rates were relatively close between prediction and
observation.

DISCUSSION

Previous study explains the specific mechanism of ferroptosis in
glioma. ATF4 increases tumor angiogenesis and vascular
structure shaping in an xCT activity-dependent manner, and
downregulating ATF4 expression can enhance the sensitivity of
nerve tumor cells, which control the proliferation and vasculature
of tumors, to ferroptosis (Chen et al., 2017). The overexpression
of Nrf2 and the knockout of Keapl can promote the proliferation
and migration of tumor cells by upregulating the activity of xCT,
thus changing the tumor microenvironment and inhibiting
ferroptosis  (Fan al, 2017). The combined wuse of
temozolomide and ferroptosis inducers can improve the
therapeutic effect on glioma cells (Sehm et al, 2016).

et
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However, the mechanism of ferroptosis remains unclear.
Although ferroptosis differs from other types of regulated cell
death, studies have found that autophagy can regulate the process

of ferroptosis. Few studies on autophagy-ferroptosis in gliomas
have been conducted. In one study, amentoflavone treatment led
to reduced cell viability and cell death by triggering ferroptosis in
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an autophagy-dependent manner in glioma (Chen et al., 2020).
Additional study of autophagy-ferroptosis may provide new
concepts to treat glioma in the future.

In this study, we first identified 23 genes with dual functions of
autophagy and ferroptosis. We designated these genes as
autophagy-ferroptosis genes to distinguish them from the
autophagy-dependent ferroptosis pathway, and because the
relationship between the autophagy and ferroptosis genes has
not been elucidated in previous studies, to our knowledge. We
conducted various methods of statistical analysis, such as lasso
regression, Cox regression, ROC curve analysis, and GSEA. We
found that the risk model constructed by autophagy-ferroptosis
genes are independently related to glioma prognosis. Summarized
in Figure 9. Our model can improve the therapeutic effect of
TMZ and the prognosis of high-grade gliomas, except for low-
grade gliomas. Among the prognostic-related molecular subtypes
included in the 2016 WHO guidelines, IDH wild type, MGMT
unmethylated, and 1p19q no deletion showed poor prognosis.
The model can also significantly improve the prognosis in these
subtypes. This is a very promising result and provides a direction
for future multi-target research. The disadvantage is that other
molecular markers such as p53, TERT, EGFRv III, miR-181d etc
can not be analyzed due to lack of relevant data in CGGA. Further
exploring the expression differences of each gene, it is found that
the expression differences of all genes are significantly related to
the tumor grade, especially in grade IV gliomas, which further
enhances the application value of the model in high-grade
gliomas. In the high- and low-risk groups of the model, all
genes also show expression differences, which implies that the
selected genes are credible, because the expression differences
gene are the basis for studying the pathogenic mechanism.
Previous literature reported that gender differences in
glioblastoma, estrogen and testosterone can affect the tumor
microenvironment and thus change the prognosis, but our

model has good predictive value in female and male without
the discrepancy. The mechanism to overcome this gender
difference is still need further research. With the continuous
discovery of new molecular markers and the clinical application
of new technologies such as immunotherapy and viral therapyj, it
is unclear whether the new theory will affect the predictive value
of the model.

We identified five autophagy-ferroptosis genes related to
prognosis: MTOR, BID, HSPA5, CDKN2A, and GABARAPLA2.
In the previous literature, both the autophagy inducer rapamycin
and the ferroptosis activator RSL3 blocked MTOR activation
and caused GPX4 protein degradation in human pancreatic
cancer cells, GPX4 depletion enhances the anticancer activity
of rapamycin and RSL3 in vitro or in vivo. In gestational
diabetes, upregulated SIRT3 enhanced autophagy activation by
promoting the AMPK-mTOR pathway and decreasing GPX4
levels to induce ferroptosis in trophoblastic cells (Han et al,
20205 Liu et al, 2021). Although studies involving BID have
focused on autophagy and ferroptosis individually (Lamparska-
Przybysz et al., 2006; Yang et al., 2013; Oppermann et al., 2014;
Neitemeier et al., 2017), it remains unclear whether BID is involved
in an autophagy-dependent ferroptosis pathway. HSPA5 has
inhibited autophagy and ferroptosis separately in previous
studies (Cerezo and Rocchi, 2017; Zhu et al., 2017; Chen et al.,
2019). Studies with CDKN2A and GABARAPLA2 have not yet
been reported. Basic biology requires experiments (in vivo or
in vitro) and clinical studies to verify the functional
characteristics of these genes.

CONCLUSION

Using databases of autophagy and ferroptosis genes, we explored
the prognostic significance of autophagy-ferroptosis genes in

Frontiers in Cell and Developmental Biology | www.frontiersin.org

November 2021 | Volume 9 | Article 739097


https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Zhou et al.

glioma and constructed a prognostic model to help improve care
for patients with high grade glioma in the future.
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