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Dendritic cells (DCs) can be used for therapeutic vaccination against cancer. The success
of this therapy depends on efficient tumor-antigen presentation to cytotoxic T lymphocytes
(CTLs) and the induction of durable CTL responses by the DCs. Therefore, simulation of
such a biological system by computational modeling is appealing because it can improve
our understanding of the molecular mechanisms underlying CTL induction by DCs and
help identify new strategies to improve therapeutic DC vaccination for cancer. Here, we
developed a multi-level model accounting for the life cycle of DCs during anti-cancer
immunotherapy. Specifically, the model is composed of three parts representing different
stages of DC immunotherapy – the spreading and bio-distribution of intravenously injected
DCs in human organs, the biochemical reactions regulating the DCs’ maturation and
activation, and DC-mediated activation of CTLs. We calibrated the model using
quantitative experimental data that account for the activation of key molecular circuits
within DCs, the bio-distribution of DCs in the body, and the interaction between DCs and
T cells. We showed how such a data-driven model can be exploited in combination with
sensitivity analysis and model simulations to identify targets for enhancing anti-cancer DC
vaccination. Since other previous works show how modeling improves therapy schedules
and DC dosage, we here focused on the molecular optimization of the therapy. In line with
this, we simulated the effect in DC vaccination of the concerted modulation of combined
intracellular regulatory processes and proposed several possibilities that can enhance DC-
mediated immunogenicity. Taken together, we present a comprehensive time-resolved
multi-level model for studying DC vaccination in melanoma. Although the model is not
intended for personalized patient therapy, it could be used as a tool for identifying
molecular targets for optimizing DC-based therapy for cancer, which ultimately should
be tested in in vitro and in vivo experiments.
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INTRODUCTION

Dendritic cells (DCs) are the strongest stimulators of our immune
response (Fong and Engleman, 2000). They are the most
prevalent antigen-presenting cells in the immune system and
regulate the systemic antigen presentation process. The ability to
culture DCs in vitro and load them with exogenous antigens and
their ability to subsequently activate cytotoxic T cell immunity
makes them interesting candidates for cancer immunotherapy
vaccines (Steinman, 1989; Timmerman and Levy, 1999; Bullock
et al., 2003; Michiels et al., 2005; Morandi et al., 2006; Palucka and
Banchereau, 2013; Schaft et al., 2013; Sprooten et al., 2019).
Currently, two approaches to endow DCs with the antigenic
T-cell epitopes are mainly pursued: exogenous peptides can be
loaded directly onto the surface of the DCs, where they replace the
endogenous peptides within the HLA-molecules. Alternatively,
the antigens can be expressed within the DCs by mRNA
transfection, to employ the natural antigen-processing
machinery of the DCs, which generates epitopes from the
encoded antigens and presents them in its HLA molecules
(Sprooten et al., 2019). For instance, DCs are pulsed with
tumor antigens in form of proteins or peptides (Timmerman
and Levy, 1999) or electroporated or transfected with mRNA
encoding tumor antigens to generate cancer vaccines (Michiels
et al., 2005; Schaft et al., 2013). Specifically, the data showed that
successfully transfected DCs express 10 times more antigens than
those electroporated with tumor mRNAs and thus can activate
more T cells (Schaft et al., 2013). Administered as a vaccine, DCs
can induce protective anti-tumor immunity (Timmerman and
Levy, 1999). Furthermore, some studies showed that after
priming T cells with DCs transfected with tumor mRNA,
T cells with both effector and memory phenotypes can be
found and both the primary and the recall T-cell response are
triggered (Bullock et al., 2003; Morandi et al., 2006).

Compared to other therapy approaches such as adoptive T-cell
transfer, the DC therapy shows better tolerance in cancer patients
to enhance immune response (Abbas et al., 2018). For example, it
has been shown that adoptive transfer with tumor-reactive T cells
in melanoma patients can result in tumor regression, but also
induce an autoimmune response to normal tissues that led to
inflammatory skin lesions (Yee et al., 2000; Dudley et al., 2002). In
contrast, Schreurs et al. demonstrated that peptide-loaded DC
vaccine can induce strong anti-tumor immunity and reduce
toxicity of the immune therapy (Schreurs et al., 2000).

DCs can be derived in vitro from blood monocytes, loaded
with tumor antigens and matured by cytokine-cocktails including
TNFα, IL-1β, and IL-6 combined with PGE2 (Pfeiffer et al., 2014)
to be subsequently injected into the patient in the form of a
vaccine (Timmerman and Levy 1999; Fong and Engleman, 2000;
Abbas et al., 2018). Immature DCs are triggered to mature by
stimulation with TNFα or lipopolysaccharide (LPS). Upon
maturation, the DCs become motile and travel from the tissue
to the T-cell areas of peripheral lymphatic organs for the antigen
presentation. They start secreting a variety of cytokines and
chemokines (such as IL-6, IL-8, and IL-12) that serve as co-
stimulators and attractants for the activation of CD8+ cytotoxic
T cells. They also express surface molecules (e.g., CD70) that are

used for the specialized interaction with the CD8+ T cells. CD8+

cytotoxic T lymphocytes are important effectors of anti-tumor
immunity (Vesely et al., 2011; Abbas et al., 2018), and after the
antigen presentation by DCs, successful stimulation of CD8+

T cells depends on the composition of these co-stimulatory
factors such as cytokines and chemokines. The NF-κB
signaling pathway is crucial for DC maturation (Tas et al.,
2005; Morandi et al., 2006; Hernandez et al., 2007; Pfeiffer
et al., 2014), and strategies targeting the pathway are
continuously being developed to further improve this
immunotherapy approach. One promising method, for
example, is the electroporation of DCs with mRNA encoding
constitutively active IKKβ that can activate the NF-κB signaling
pathway and upregulate maturation markers such as CD40,
CD70, CD80, OX40L, IL-12, and IL-8 leading to the persistent
proliferation of CD8+ T cells with a memory phenotype (Pfeiffer
et al., 2014).

In addition to experimental studies, researchers have
developed computational models to study dynamic systems
accounting for immunity against cancer. Such models not only
help to dissect the molecular mechanism underlying immune
response against cancer but also to design experiments to
improve available anti-cancer immunotherapies. For instance,
the model developed by Castiglione et al. describes the dynamics
between DCs, CD8+ T cells, and tumor cells using a system of
ordinary differential equations (ODEs). The model was used to
search for an optimal protocol for the drug treatment, i.e., the
optimal amount of DCs per vaccine, the optimal timing for one
injection, and the optimal number of injections (Castiglione and
Piccoli, 2007). Another work focuses on a personalized
application using patient-specific parameters, and therefore,
the interaction between immune effector cells and tumor cells
was considered in the model (Kogan et al., 2012). Gong et al. used
multiscale agent-based modeling to describe the dynamics
between cytotoxic T cells and cancer cells and their three-
dimensional distribution. The model provides a framework
that enables predictions of treatment/biomarker combinations
for different cancer types based on patient data (Gong et al.,
2017). Mathematical modeling of T cell-macrophage interactions
within the tumor microenvironment showed that inhibition of
macrophage is the most effective strategy to promote T cell
function, and therefore improving the effectiveness of
immunotherapies that target macrophages (Cess and Finley,
2020). Arulraj and Barik developed an ODE model to
investigate the role of feedback loops in inhibition of T-cell
function by PD-1 and identified that the tyrosine kinase Lck is
a crucial regulator for PD-1 induced inhibition of T-cell receptor
signaling (Arulraj and Barik, 2018). De Pillis and coworkers
developed a mathematical model describing the DC
vaccination for melanoma and utilized it to propose therapy
schedule that can improve the efficacy of the vaccine (DePillis
et al., 2013). Santos and coworkers integrated transcriptomic data
with mechanistic modeling of DC vaccination for melanoma to
detect mechanisms that are related to sensitivity and resistance of
the immunotherapy (Santos et al., 2016). So far, most of the
published models have considered only cell-to-cell
communications through direct contact or the secretion of
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cytokines and chemokines. However, intracellular biochemical
networks that are crucial for regulating cell function can be tuned
to improve immunotherapies (Lai et al., 2021). Therefore,
integrating them into multi-level computational models offers
the opportunity to simulate and analyze molecular events that can
determine the efficiency of anti-cancer immunotherapies.

In this work, we developed a multi-level model accounting for
DC-based anti-cancer immunotherapy. By calibrating,
simulating, and analyzing the model, we aimed to understand
the molecular mechanism and cell-to-cell interactions that are
crucial for regulating DC-mediated immunogenic function and
therefore identifying molecules that can improve the efficiency of
the DC-based immunotherapy. Specifically, the model is
composed of three parts representing different stages of the
DC immunotherapy – the bio-distribution of the DCs in the
human organs, the biochemical reactions regulating the DCs’
maturation, and DC-mediated activation of CD8+ T cells. Next,
we calibrated the model using several experimental data sets
accounting for the dynamics and bio-distribution of
intravenously injected DCs in the human body, the kinetics of
molecules during DC maturation, and the dynamics of the T cell
population after the injection of the DC vaccine, respectively.
Then, we performed sensitivity analysis on model parameters to
identify molecules and biochemical reactions that are impactful
on a DC-mediated T-cell response. We found the NF-κB
regulators (i.e., IKKβ and IκBα) and cytokines (i.e., IL-6 and
IL-8) are top-ranking molecules for regulating the T-cell
response. Finally, we ran simulations to quantify how
modulating the expression of the identified molecules can
change the number of memory T cells. Such results lay the
basis for experimental validation of the effects of the identified
molecules for improving the efficiency of DC immunotherapy.
Taken together, the modeling approach allows for the effective
integration of experimental data into a multi-level model
accounting for DC-based anti-cancer immunotherapy.
Although the model is not intended for personalized patient
therapy, it could be used as a tool for identifying molecular targets
for optimizing DC-based therapy for cancer, which ultimately
should be tested in in vitro and in vivo experiments.

MATERIALS AND METHODS

Model Construction and Simulation
We developed a multi-level model accounting for three stages of
DC immunotherapy – the spreading and distribution of
intravenously injected DCs in the human organs, the
biochemical reactions regulating the DCs’ maturation and
activation, and DC-mediated T-cell responses. The model was
implemented using ODEs and simulated in MATLAB R2015b
(see Supplementary Material for details). We used the MATLAB
function ode45 to solve the system accounting for the maturation
of DCs. The function is based on the Dormand and Prince Runge-
Kutta methods. We used the MATLAB function dde23 to solve
the equations accounting for a DC-mediated T-cell response. This
method is based on an explicit Runge-Kutta method pair and
especially for delay differential equations with constant delay. We

ran simulations on a computer with a four core CPU (3.2 GHz)
and 8 GB RAM.

Here, we listed some representative equations for each part of
the model. Specifically, we used four ODEs to describe the
temporal dynamics of DCs in the blood, the spleen, the liver,
and the lung. A representative equation is shown as follows

d

dt
DCSpleen(t) � μBS

QBlood

QSpleen
DCBlood(t) − μS0DCSpleen(t) (1)

The number of DCs in the spleen (DCSpleen) is determined by
the flow of DCs from the blood (DCBlood) into the spleen at the
rate (μBS) and its degradation rate (μS0).QBlood andQSpleen denote
the volume of the blood and spleen, respectively.

The maturation of DCs in the spleen is characterized by 20
ODEs that account for the activation of the NF-κB pathway and
its downstream targets such as cytokines that are crucial for T-cell
responses. The equations accounting for the mRNA and protein
of IL-8 are shown below

d
dt
mIL8(t) � kmIL8

transc1 + kmIL8
trancs2 ·NFκB(t) − kmIL8

deg ·mIL8(t) (2)
d
dt
IL8DC(t) � kIL8transl ·mIL8(t) − kIL8deg · IL8DC(t) − kIL8sec · IL8DC(t)

(3)
The transcription of IL-8 mRNA is determined by its basal

transcription rate (kmIL8
transc1) and another term (kmIL8

trancs2 ·NFκB(t))
accounting for the regulation by NF-κB. kmIL8

deg denotes the
degradation of the IL-8 mRNA. The protein expression of IL-8
is determined by its translation from its mRNA (kIL8transl), its
degradation (kIL8deg), and its secretion (kIL8sec ) from DCs into the
spleen.

The activation of T cells is modeled using four ODEs. The
equations describe the process of how lymph node T cell
activation translates to different phenotypes of T cell subsets
such as early effector, short-lived effector, and memory T cells.
The equation describing memory T cells is shown as follows

d
dt
M(t) � kEEdiff 2 · EE(t) + 0.1 · kSLEdeg · SLE(t) (4)

The number of memory T cells (M) is translated from early
effector (EE) and short-lived effector (SLE) T cells with the rates
of kEEdiff2 and kSLEdeg , respectively. The constant 0.1 denotes that in
experiments only 10% of the short-lived effector T cells become
memory T cells (Badovinac et al., 2002; Mueller et al., 2013).

Structural Identifiability Analysis
Before model calibration, it is useful to investigate whether it is
possible to obtain identifiable parameters using experimental
data. Global structural identifiability analysis can provide a
good indication of this. Therefore, we used the MATLAB
toolbox GenSSI to perform structural identifiability analysis
(Chis et al., 2011). The algorithm uses Lie derivatives of the
ODE model to investigate the structural identifiability of ODE
models. Theoretically, if sub-models are structurally identifiable,
so is the entire model (Villaverde et al., 2016). Therefore, to
reduce computation time we divided our model into separated
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parts, including DC distribution, NF-κB activation, NF-κB-
mediated secretion of cytokines, and T-cell response, and
performed the analysis on each part.

Model Calibration
We used a hybrid method that combines global and local
optimization algorithms to perform parameter optimization.
Such a method facilitates global exploration of parameter
space and fast local convergence (Villaverde et al., 2019).
Specifically, we derived 1000 parameter sets using Latin
hypercube sampling that not only samples random parameter
values but also guarantees a uniformed distribution of parameter
values in their defined ranges (Tang, 1993). The 1000 parameter
sets are initial values of model parameters and were used for
model calibration. We first fit the model to the experimental data
using the pattern search algorithm (MATLAB function
patternsearch) that is a global derivative-free optimization
algorithm. The top 100 the solutions of the global
optimization results (quantified by the cost function) were
used for subsequent local optimization. The local optimization
algorithm (MATLAB function fmincon) is gradient-based and
allows for efficient searching that makes the cost function
converge fast. We obtained the optimum parameter set that
minimizes the cost function

Φ(p) � ∑
i,j

⎛⎜⎜⎜⎜⎜⎝ yi(tj) − yi(tj, p)
max

j
(yi(tj)) · sd(yi(tj))⎞⎟⎟⎟⎟⎟⎠

2

, (5)

Where yi(tj) represents the experimental data that shows the
value of the observation yi(tj) at time point j. yi(tj, p) is the
corresponding model simulation with a specific set of parameter
values p. The cost function is normalized using the maximum
value of each experimental data set (i.e., max

j
(yi(tj))) to prevent

the biased effects caused by different data scaling during
parameter estimation. If available, the cost function is
additionally weighted by the standard deviation of the
experimental data sd(yi(tj)).

We used the experimental data accounting for in vitro
differentiated DCs into the liver, the spleen, the lung and
other periphery after intravenous injection (Mackensen et al.,
1999) to characterize the dynamics of DCs in human organs
(Supplementary Table S1). We characterized NF-κB pathway
activation in DCs (Supplementary Table S2), cytokine and
chemokine production by DCs (Supplementary Table S2),
and DC-mediated T cell responses (Supplementary Table S3)
using the data from our previous publication (Pfeiffer et al., 2014).
A detailed description of how each part of the model is calibrated
can be found in Supplementary Material.

Practical Identifiability Analysis and
Confidence Intervals of Parameters
To analyze the uncertainty in parameter estimates, we computed
Pearson correlation coefficients to quantify their linear
dependence using the top 100 out of 1000 estimates. Among
the top 100 parameter estimates, we used the best 15 parameter

estimates that show the minimum value in the cost function to
calculate the confidence intervals of estimated parameters.
Specifically, for each estimated parameter we generated 1000
bootstrap samples using its estimated values in the best 15
parameter estimates. Then, we used the mean value and
standard deviation of the 1000 samples to derive the
parameters’ 95% confidence intervals. We performed the
analyses using the MATLAB function bootci.

Sensitivity Analysis
We performed global sensitivity analyses to quantify the impact
of model parameters on the dynamics of the system. We used the
Sobol method that considers variations within the entire
variability space of the model parameters (Saltelli et al., 2008;
Sarrazin et al., 2016). We computed two types of indices: first-
order indices (main-effects) and total-order indices (total-
effects). The former measures the direct contribution from a
model parameter (e.g., the total amount of NF-κB) to a model
variable (e.g., the count of memory T cells), while the latter
measures the overall contribution including the direct
contribution and the amplification of this contribution due
to interactions with all other model parameters (Sarrazin
et al., 2016). The analysis was performed using the MATLAB
toolbox SAFE (Pianosi et al., 2016) and the detailed
computation of the sensitivity indices can be found in
Supplementary Material.

RESULTS

The Multi-Scale Model Accounting for
DC-Based Anti-cancer Immunotherapy
We developed a multi-scale model accounting for DC-based anti-
cancer immunotherapy. We considered different stages of the DC
therapy: 1) the bio-distribution of DCs in the human body after
the treatment, 2) the biochemical pathways underlying DC
maturation, and 3) the DC-induced immune response such as
activation of CD8+ T cells.

We characterized the trafficking and distribution of dendritic
cells (DCs) in the human body using published data (Ludewig
et al., 2004) (Figure 1; see Supplementary Material for details).
Specifically, DCs are administrated into patients through
intravenous injection. The injected DCs mainly spread into the
liver, the lung, the spleen, and other peripheries. According to the
data (Mackensen et al., 1999; Ludewig et al., 2004), after reaching
the liver, DCs reside there, while DCs enter quickly into the lung
but also decrease to a minimal level. In our model, we used the
spleen as a representative lymphoid organ, in which effective,
antigen presentation-mediated interactions between T and
dendritic cells happen (Mackensen et al., 1999; Barinov et al.,
2017; Abbas et al., 2018).

Concerning the pathways underlying DC maturation and
activation, we further considered in the model the NF-κB
pathway underlying DC maturation; this part of the model
was adapted from our previous results (Schulz et al., 2017)
(Figure 1; see Supplementary Material for details). In our
model, mature DCs secrete a variety of cytokines (e.g., IL-12,
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IL-6, and IL-8) that can lead to T cell activation. The production
of the cytokines is due to the stimulation of receptors (such as
TNFα receptor, IL-1 receptor, CD40 receptor, and TLR4), leading
to the activation of the NF-κB signaling pathway. Besides, we
considered a surface protein CD70 expressed by DCs after
stimulation, as the protein can induce the expansion of
antigen-specific CD8+ T cells.

Finally, we included a model module accounting for T cell
activation by DCs in the spleen. The process was modeled
considering three phases: 1) a short-term interaction between
the naive T cells and DCs; 2) upregulation of activation markers

and initiation of IFNγ and IL-2; and 3) T cell proliferation after
contact with DCs.

Taken together, we developed a model accounting for the life
cycle of intravenously injected DCs from their spreading in
human organs to inducing a T-cell response in the spleen. The
resulting model contains 25 variables and 46 parameters (see
Supplementary Material for details). The model includes not
only cell population dynamics in human organs but also
biochemical reactions that are crucial for DC maturation,
making it an in silico platform to investigate intracellular
manipulation of DCs utilized in vaccination against the tumor.

FIGURE 1 | Scheme of the multi-scale model accounting for DC vaccine against cancer. Themulti-level model contains three parts: the kinetics and bio-distribution
of intravenously injected DCs in human organs (including the liver, the lung, and the spleen), the signaling pathways underlying DC maturation, and DC-mediated T-cell
response. The labels next to the blue arrowed lines are the corresponding model parameters. The signaling pathway in DCs is drawn using Systems Biology Graphical
Notation. A detailed description of the model can be found in Supplementary Material.
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Model Calibration Using Experimental Data
After constructing the multi-scale model, we performed
structural identifiability analysis to identify whether model
parametrizations with different values can produce the same
simulations results (see Materials and Methods). The results
showed that the whole model is not structurally identifiable.
Specifically, the DC distribution part of the model is
structurally non-identifiable, and this is caused by the
parameters accounting for volumes of human organs (QBlood,
QSpleen, QLung, and QLiver), So, we fixed their values using the
physiological information (Supplementary Table S1). The part
accounting for NF-κB activation is structurally non-identifiable,
and this is caused by parameters accounting for the
phosphorylation rate of IRAK1 (kIRAK1ph2 ) and TRAF2 (kTRAF2ph2 ).
Hence, we made their values equal to other phosphorylation
processes catalyzed by other enzymes (Supplementary Table S2).
The other model parts are structurally identifiable, and they
account for NF-κB-mediated secretion of cytokines and
chemokines and T cell response.

Next, we characterized the model parameters using published
experimental data sets (see Materials and Methods). We
separately calibrated the model using independent datasets
that account for the dynamics of the system at different levels.
Such a strategy is suitable and has been used for biological models
composed of parts with different structural, time, and space scales
(Vera et al., 2013).

We used the data that quantify injected DCs’ activities in the
lung, liver, spleen, and blood to characterize model parameters
associated with the trafficking and distribution of DCs in the
human body (Mackensen et al., 1999). The obtained model can
reproduce the data available (Figure 2). After DCs are injected
into the blood, they quickly spread into the other organs and the
amount of DCs decreases to zero in the blood. DCs traffic into the
lung leading to a temporal increase followed by a quick drop, and
afterward, the DCs stay at a low level. DCs enter the liver and
remain stable in number for up to 72 h (Mackensen et al., 1999).
In the spleen, the amount of DCs rapidly reaches a peak and
gradually decreases as they circulate in the body after provoking a
T-cell response.

As the model equations accounting for the NF-κB pathway
underlying DC maturation were adapted from our previous
model, we used their original parameter values as initial values
and re-calibrated them by fitting the model simulations to the
experimental data measuring NF-κB pathway activation after LPS
stimulation (Bode et al., 2009). Using the data, we characterized
the dynamics of IκBα mRNA and protein and NF-κB in DCs
(Figure 3). The LPS stimulation upregulates the expression of free
NF-κB, as the increased IKKβ by the stimulation releases NF-κB
from the complex formed by NF-κB and IκBα and degrades IκBα
through phosphorylation. The free NF-κB promotes the
transcription of the IκBα mRNA, leading to the recovery of
IκBα that downregulates the expression of free NF-κB through

FIGURE 2 |Dynamics of DCs in human organs. The plots show the bio-distribution and kinetics of DCs in (A) the blood (B) the lung, (C) the spleen, and (D) the liver.
The data show the uptake (y-axis) of intravenously injected DCs over time (x-axis). The lines and star asterisks denote model simulations and experimental data,
respectively. The experimental data is from Figure 2 in Mackensen et al. (1999). The temporal distribution of DCs were quantified by radioactivity in the lung, spleen, and
liver of a patient after intravenous injection for 72 h.
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a negative feedback loop. Besides, we used another set of data to
characterize the dynamics of cytokines and surface markers after
electroporating DCs with RNAs encoding constitutively active
IKKα and -β (caIKK) that can activate the NF-κB pathway
(Pfeiffer et al., 2014). Such treatment results in upregulation of
IL-12, IL-6, IL-8, and CD70 for 72 h (Figure 4) and these markers
are crucial for priming a T-cell response.

To characterize the model parameters that are associated with
T-cell priming by DCs in the spleen, we used the in vitro data that
show dynamics of the T-cell population after co-culturing them
with control DCs or caIKK-DCs (Pfeiffer et al., 2014). Compared
to the control DCs, the caIKK-DCs secret more cytokines such as
IL-12, IL-8, IL-6, and TNF (Pfeiffer et al., 2014) and increase the
production of T cells (Figure 5).

Furthermore, we performed practical identifiability analysis in
parameter estimates (see Materials and Methods). This allowed
us to examine whether the estimated parameters are practically
identifiable – the estimated model parameters have unique values
that fit model simulations to experimental data used for model
calibration. As shown in Figure 6A, the estimated parameters for
DC distribution have no correlation with each other suggesting
the corresponding parameters are practically identifiable. This is
confirmed by the distribution of estimated parameter values in

the best 15 parameter estimates that show the minimum cost
function value (Supplementary Figure S1). All estimated
parameters for DC distribution have unique values for the best
parameter estimates. In addition, the model parameters
accounting for the NF-κB pathway underlying DC maturation
show moderate correlations (Figures 6B,C). Among the 28
estimated parameters, five are practically non-identifiable and
they are kTRAF2ph1 , kTRAF2pdeg , kmIL6

deg , kmIL8
transc2, and k

IL8
deg (Supplementary

Figure S2). The non-identifiable parameters show small
variances in their estimated values (Supplementary Table S2).
This is due to the relatively small number of experimental data
that are available for parameter estimation (Raue et al., 2009). The
Michaelis-Menten coefficient K4 is the only parameter estimated
to fit model simulations to the data accounting for T-cell
dynamics (Supplementary Table S3). The estimated value of
K4 is practically identifiable for its unique value in the best
parameter estimates (Supplementary Figure S3). Taken
together, most model parameters are practically
identifiable because of their unique estimated values in the
best parameter estimates. The practically non-identifiable
parameters have confidence intervals with small ranges,
suggesting minor influences on their biological
interpretability.

FIGURE 3 | Dynamics of IκBα and NF-κB in DCs. The plots show the dynamics of (A) NF-κB protein and (B) IκBα mRNA and (C) protein in DCs after LPS
stimulation. The lines and asterisks denote model simulations and experimental data, respectively. The NF-lB activation was characterized by its binding activity to DNA,
and the experimental data were normalized to the maximal binding activity (Figure 3C in Bode et al., 2009). The data shown here is a representative of three independent
experiments. The IκBα mRNA was measured by qPCR (Figure 5A in Bode et al., 2009) and its relative mean expression (normalized to the maximal value) in
comparison to the mRNA encoding the house-keeping gene β-actin was shown. The IκBα protein expression was quantified using a representative western blot
(Figure 3A in Bode et al., 2009) and normalized to the maximal value. The western blot data was quantified using the software ImageJ.
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Due to the lack of a complete data set that can characterize the
dynamics of DCs used as an anti-cancer therapy, we calibrated
model modules separately using relevant datasets from different
publications. In all cases, the datasets were produced using
human material or relevant experimental models that are
generally accepted in the context of DC vaccine development
(Brossart et al., 2001). We think they are complementary because
they characterize the dynamics of the DC vaccination at different
levels. This strategy has been used in other data-driven
computational models (Sobotta et al., 2017, Hesse et al., 2021,
Fey et al., 2015).

Identification of Crucial Parameters
Affecting DC-Mediated T-Cell Responses
After finishing calibrating the model with experimental data, we
used it to simulate a DC-mediated T-cell response. Before
running simulations, we set DCin = 105 as the data showed
that about 105 DCs are required for a T-cell response with a
70% probability (Celli et al., 2012). We set QSpleen = 105 as the
measured volume of a spleen is 105 mm3 (Odorico et al., 1999).
Besides, we assumed that the initial number of antigen-specific
naive T cells in the spleen is 106, so we set T0 = 106 (Celli et al.,

2012, Henrickson et al., 2008). We simulated the dynamics of
different T cells in the spleen after injection with two different
DC vaccines: normal DCs and DCs electroporated with caIKKβ-
RNA (caIKK-DCs). In the simulations, both types of DCs were
injected at t = 0 h with different degradation rates of IKKβ that are
caused by caIKK in DCs (kIKKbdeg = 0.840 h−1 for normal DCs and
kIKKbdeg,mod = 0.216 h−1 for caIKK DCs).

As shown in Figures 7A–D, the DC vaccines result in the loss
of naive T cells that differentiate into early effector T cells, which
show a quick increase after the DC stimulation. The early effector
cells gradually differentiate into short-lived effector T cells and
memory T cells, both of which saturate at high levels. Compared
to the normal DC vaccine, the caIKK-DCs increase the levels of
short-lived effector and memory T cells by about 7-fold,
demonstrating the enhanced immunogenic potency of the
caIKK-DCs. At the molecular level, such improved
immunogenic potency is caused by the upregulated activation
of NF-κB pathway by IKKβ in DCs (Figures 7E,F).

Successful activation of naive T cells depends mainly on
successful and strong interaction with antigen-presenting DCs
(Timmerman and Levy, 1999, Abbas et al., 2018). The goal of a
DC vaccine is to increase the number of the resulting memory
T cells that contribute to a rapid immune response upon

FIGURE 4 | Dynamics of cytokines and membrane proteins in DCs. The bar plots show the temporal concentrations of (A) IL-12, (B) IL-6, (C) IL-8, and (D) CD70
after electroporating DCs with mRNAs encoding constitutively active IKKβ. The red and blue bars denote model simulations (the best fitting) and experimental data
(mean ± standard deviation), respectively. The experiments were repeated for four times. The cytokine data are from Figure 3A in Pfeiffer et al. (Pfeiffer et al., 2014). The
matured DCs’ cytokine concentrations after electroporation of IKKβ mRNA in the supernatants were determined by cytometric bead array. The data were
measured using samples from eight different donors at the respective time points. The CD70 data is from Figure 1B in Pfeiffer et al. (Pfeiffer et al., 2014). It was assessed
by flow cytometry in matured DCs electroporated with IKKβmRNA. Fold-changes of CD70 compared to the controls (no electroporation of IKKβmRNA) were calculated
using the mean fluorescence intensity.
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reactivation and form a long-lasting immunity (Akondy et al.,
2017, Ando et al., 2019, Ahmed und Gray, 1996). Therefore, we
performed sensitivity analyses to investigate the molecular
mechanisms that are crucial for regulating the differentiation
from naive T cells into early effectors and thus into memory
T cells. Specifically, we used the global sensitivity method Sobol to
compute sensitivities of model parameters to the population of
memory T cells over the simulation time interval [0, 200] h (see
Material and Methods). As shown in Figures 8A,B, the top-
ranking 15 parameters show similar patterns in their sensitivity
indices – the values are low shortly after the DC stimulation,
gradually increase to a higher level, and stays at the high level
until the end of the simulations. Among the top-ranking
parameters, the most influential ones on the production of
memory T cells are kIKKb

deg , kNact, and Ntot that account for the

degradation rate of IKKβ, the activation rate of naive T cells, and
the total amount of free NF-κB. The less influential parameters
are those associated with the degradation rate of IκBα mRNA
(kmIkBa

mRNA), the degradation rate of the IKK protein (kIKK
deg , short-

lived T-cell differentiation (kEEdiff2), loss of free IκBα (kIkBaloss ), and

the production of IκBα mRNA and protein (kmIkBa
transc and kIkBatranl).

The least influential parameters are the degradation rate and
NF-κB-mediated transcription rate of IL-8 mRNA (kmIL8

deg and

kmIL8
transc2), the degradation rate and NF-κB-mediated transcription
rate of IL-6 mRNA (kmIL6

deg and kmIL6
transc2), the injected number of

DCs (DCin), and the homing rate of DCs into spleen (μBS). We
obtained similar results while computing the sensitivities of

model parameters to the total amount of memory T cells
(computed by taking the integral over the simulation interval
[0, 200] h) (Figure 8C). The only difference is that the DC
emigration rate from blood to other organs (µ) replaces kEEdiff2
and appears as the least influencing parameters.

Further analysis showed that the length of simulation time and
the variation of estimated parameter values have limited effects
on model parameters’ sensitivity indices for the total amount of
memory T cells over the simulation interval. Specifically, after
extending the simulation time to 500 h, the most influential
parameters (i.e., kIKKbdeg , Ntot, kNact, kmIkBa

deg , and kIKKdeg ) remain
unchanged (Supplementary Table S5). In longer stimulation
time, several parameters (i.e., µ, µBS, DCin, kIkBatranl, k

mIL6
deg and

kmIL6
transc2) become less influential and two parameters kIL6deg (the
degradation rate of IL-6) and K4 become more influential. After
increasing parameter variations to 90% of their estimated values,
most of the top 15 parameters remain in the list but have different
ranking (Supplementary Table S6). The exceptions are µBS,
kmIL6
transc2, and kmIL8

deg that become less influential and drop out of
the top 15 parameters. Besides, kTRAF2pdeg (degradation rate of
TRAF2), kIL8deg, and kEEdiff2 (differentiation rate of early effector
T cells into memory T cells) become more influential and are new
top 15 parameters.

Taken together, the results demonstrated the ability of the
multi-scale model to differentiate the ability of different DC
vaccines to stimulate a T-cell response and to reveal the
molecular mechanisms that are important for CD8+ T-cell
activation through sensitivity analysis.

In Silico Experiments to Predict the Effects
of Modulation of Selected Molecules on
DC-Mediated T-Cell Responses
After identifying influential parameters that can modulate the
production of memory T cells, we ran simulations to predict how
corresponding biological processes can change the dynamics of
the memory T-cell population. From the 15 most influential
parameters, we have selected five corresponding to specific genes
that could be experimentally manipulated. Specifically, we
perturbed those parameters in an interval that decreases and
increases their estimated values by 10 folds (i.e., the estimated
value × [0.1, 10]) and computed the steady state of memory
T cells. As shown in Figure 9, the total amount of free NF-κB
(Ntot) and the degradation rate of IκBα mRNA (kmIkBa

deg ) can

positively affect the population of memory T cells. Decreasing
the value of Ntot by 90% eliminates the T memory cells while
increasing its value leads to an increased cell population. The cell
population peaks when the value of Ntot increases by about 3–4
folds and slightly decreases when Ntot is at its maximum level.
Such a phenomenon could be explained by the negative feedback
loop formed by NF-κB and IκBα. Free NF-κB activates the
transcription of IκBα, whose encoding protein reduces free
NF-κB by forming complexes. Thus, when the level of IκBα
protein reaches a certain threshold, free NF-κB starts decreasing
leading to a reduced number of T cells. In contrast, the decreasing
of kmIkBa

deg by 90% results in a slight reduction of T memory cells,

FIGURE 5 | Dynamics of T-cell populations after co-culturing them with
DCs. The plot shows the number of short-lived effector cells after priming with
mock-electroporated DCs (red lines) and DCs electroporated with mRNAs
encoding constitutively active IKKβ (blue lines). The experimental data is
from Figure 4B in Pfeiffer et al. (Pfeiffer et al., 2014). Four hours after
electroporation, the DCs were used to stimulate MelA-specific CD8+ T cells. In
total, three stimulations were performed with an interval of 1 week between
two subsequent stimulations. After each stimulation, the number of T cells was
determined by tetramer-staining.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 7463599

Lai et al. Modeling Anti-Cancer Dendritic Cell Vaccination

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


and a 10-fold upregulation in the parameter value leads to about a
3-fold increase in the cell population. Biologically, the IκBα
protein is an inhibitor of NF-κB and traps free NF-κB through
forming complexes (Hayden and Matthew, 2008), so decreasing
the IκBα mRNA results in the reduced level of the protein,
thereby releasing more free NF-κB in DCs that is required for
T-cell activation.

On the other hand, perturbation of the degradation rates of
IKKβ (kIKKbdeg ), IL-6 mRNA (kmIL6

deg ), and IL-8 mRNA (kmIL8
deg )

negatively affect the memory T-cell population. The dynamics of
the cell population show similar patterns when the three parameters
are perturbed in the specified interval – memory T cells are at the

maximum level when the values of the parameters are reduced by
90% and at the minimum level when the values of the parameters
increase by 10-folds. Biologically, IKKβ induces degradation of IκBα
through phosphorylation (Hayden and Matthew, 2008), thereby
releasing NF-κB from the complexes. Therefore, increasing
the degradation of IKKβ leads to downregulation of NF-κB in
DCs that reduce the induction of memory T cells. IL-6 and IL-8
secreted by DCs are required for differentiation of naive T cells into
early effector T cells that further differentiate into short-lived
effector T cells and memory T cells (Hunter and Jones, 2017,
Taub et al., 1996), thereby increasing the degradation of the
cytokines results in the decreased level of memory T cells.

FIGURE 6 |Correlation analysis of model parameters. We computed the Pearson correlation coefficients for estimatedmodel parameters of bio-distribution of DCs
(A), signal transmission (B) and cytokine production (C) in NF-κB pathway. The correlation coefficients are visualized by circles. Their values are proportional to the size of
the circles, and their signs are denoted by colors (positive: yellow; negative: blue). A value of zero (empty grids) means that two parameters are not correlated because
either or both of their estimated values are unique.
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Furthermore, we simulated how the population of memory
T cells changes when combining two parameters and perturbing
them simultaneously. We are particularly interested in
modulating the expression levels of genes that can be
manipulated in DCs and thereby improving the immunogenic
potency of DC vaccines (Figure 10A). For instance, one can
upregulate the expression level of NF-κB through electroporating
DCs with mRNA encoding constitutively active IKKβ. In
addition, one could downregulate IκBα using microRNAs that
repress gene expression at the post-transcriptional level to
increase the level of NF-κB in DCs. One could also increase
the levels of DC-secreted cytokines (such as IL-6 and IL-8) that
are involved in the T-cell response through electroporation of the
corresponding mRNAs into DCs.

As shown in Figure 10B left column, directly increasing the
expression of free NF-κB shows dominant effects on the

upregulation of memory T cells for any combination with
other parameters. However, this manipulation is
experimentally difficult, as NF-κB is a protein complex and
requires the presence of subunits and heterodimerization to be
functional. Alternatively, it is experimentally achievable by
manipulating the expression of NF-κB regulators.
Simultaneously modulating the expression of IKKβ
(upregulation) and IκBα (downregulation) can result in an
effective increase of memory T cells (Figure 10B middle
column). Modulating the expression of IκBα has stronger
effects than modulating IKKβ. Compared to single modulation
of the NF-κB regulators, the combined modulation increases the
population of memory T cells by 80–120%. Modulating the levels
of IκBα together with DC-secreted cytokines (IL-6 and IL-8) is
also an effective regulation of memory T cells but shows different
dynamics compared to the modulation of both NF-κB regulators
(i.e., IKKβ and IκBα) (Figure 10Bmiddle column). The cytokines
are less influential than IκBα in regulating the T-cell response, as
modulating IκBα directly affects the expression of free NF-κB that
can regulate the expression of multiple cytokines and membrane
proteins (i.e., IL-6, IL-8, IL-12, and CD70) involved in T-cell
activation. When we manipulated the expression level of IKKβ
with a cytokine, the effects on increasing memory T cells are mild
(Figure 10B right column). When both cytokines were
simultaneously modulated, the effect on increasing memory
T cells is also limited. This is due to the reason that T-cell
activation also depends on other proteins (i.e., IL-12 and
CD70), and their unchanged levels act as a limiting factor in
the increase of memory T cells. This is in line with findings in a
biological model system examining CTL-priming and memory
formation in the presence or absence of T-cell help, where it was
shown that direct cell-cell contact was crucial and soluble factors
were not sufficient (Hoyer et al., 2014). Taken together, the
simulations predicted that combined manipulation of IκBα
and cytokines is an efficient strategy for increasing memory
T cells in experiments, and such manipulation shows better
performance than manipulating the expression levels of only
the NF-κB regulators or the cytokines.

DISCUSSION

Model derivation. In this work, we developed a multi-level model
to study DC-based anti-cancer immunotherapy. The model
considers three spatiotemporal, different but interlinked stages.
The first stage models the bio-distribution of the intravenously
injected maturated DCs into key organs of the human body
including the lung, liver, and spleen. They are used as a
representative immune organ to which DCs are trafficked.
Except for intravenous injection, there are other clinical
administrations of DC vaccine such as intra-lymph node
injection and subcutaneous injection. However, from the
physiological point of view, the immune response triggered by
DCs may be similar (Mackensen et al., 1999). The rationale to
include this mechanism was to achieve a precise quantitative
description of how DCs get distributed between organs, how
many DCs reach the spleen, and how long DCs remain in the

FIGURE 7 | Simulations of DC-mediated T-cell response. The plots
show dynamics of (A) Naive T cells, (B) early effector T cells, (C) short-lived
effector T cells, and (D) memory T cells in the spleen after stimulation with
mock-electroporated DCs (dotted line) and caIKKβ-mRNA-
electroporated DCs (solid line). Besides, we show the dynamics of (E) IKKβ
and (F) NF-κB in DCs (non-dimensionalized).
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FIGURE 8 | Sensitivity analysis of model parameters. (A) The heat map shows the time-dependent sensitivity indices of model parameters. The bar plots show (B)
average time-dependent sensitivity indices of model parameters and (C) sensitivity indices of model parameters to the total amount of memory T cells. The main effect
(blue bar) measures the direct contribution from an individual parameter to the model variable, while the total effect (red bar) measures the overall contribution including
direct contribution and the amplification of the direct contribution due to interaction with all model parameters. Each graph shows the result for themost 15 sensitive
parameters. The sensitivity indices of all parameters can be found in Supplementary Table S4.
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spleen for stimulating CTL response (Ludewig et al., 2004, Eggert
et al., 1999). The second stage of the model accounts for the
intracellular processes responsible for the in vitro maturation of
DCs. This activation is induced by the activation of signaling
pathways through ligands like TNFα, IL-1β, or LPS. Then,
matured DCs secret cytokines (such as IL-6, IL-8, and IL-12)
that are involved in the stimulation of a CTL response. It was
important to include this level in the model because our aim was
to investigate computationally the effect of molecular modulation
of key regulatory pathways. In the last stage, the model simulates
interactions between DCs and naive spleen resident T cells. The
equations used account for the differentiation of T cells into early
effector cells and the transformation of T cells into either short-
lived effector cells or memory cells. Specifically, we simulated the

effect of tumor antigen presentation, key cytokines secretions,
and surface protein markers expression in the interaction of DC
and T cells, and therefore the molecular and cell-cell
communication are interlinked in the model. The amount of
memory T cells is used as an indicator of the effectiveness of the
DC-based immunotherapy.

In the literature, there are serval models devoted to
understanding DC-mediated T-cell response in the context of
immune response or immunotherapy. Most of them have a focus
on only the cell populations’ interactions and dynamics. For
instance, Bianca et al. used ODEs to account for the different
stages of the therapy including vaccination, immune cells, and
tumor cells. The model includes the dynamics of both humoral
and cellular immune responses to associated tumor antigens. The
goal was to investigate different vaccination protocols using
sensitivity analyses to improve treatment (Bianca et al., 2012).
Ludewig et al. (2004) modeled DC distribution after vaccination
to determine key parameters that control interactions between
DCs and T cells. Furthermore, Serre et al. developed a
mathematical model accounting for a cancer treatment
combining immunotherapy with radiotherapy. The author
used the model to simulate the primary and secondary (or
memory) immune response induced by the combined therapy
and proposed an optimal schedule for the therapy (Serre et al.,
2016). By modeling the interactions between DCs with different
types of T cells, Arabameri et al., (2018) showed an optimal
configuration of DC vaccine to strengthen DC-T cell interactions,
and therefore efficiently reducing tumor size. Castillo-Montiel
et al. developed a model with delay differential equations to study
cellular mechanisms of DC-based immunotherapy for
melanoma. The authors showed the power of the model in
reproducing data from experimental trials and predicting
possible protocols to improve the immunotherapy while
producing them in labs (Castillo-Montiel et al., 2015). Our
model not only considers interactions between DCs and
T cells but also the effect of signaling pathways governing the
triggering of phenotypic changes in DCs, which underlie the
efficacy of the CTL response. Such a multi-level model allows for
the identification of molecular targets and other therapy
parameters (such as vaccination schedules and DC dosage)
that can be experimentally manipulated to improve the
effectiveness of the therapy. In the future, the model can
be expanded by considering the interactions between
immune cells and tumor cells, such as the regulatory role
of checkpoint proteins (e.g., CTLA-4 and PD-1) on T cell
activation. This expansion will make the model suitable for
studying the dynamics of immune-tumor interactions in the
tumor microenvironment.

Model calibration. To calibrate the multi-level model, we used
different data sets accounting for the three stages of the DC
immunotherapy because in the literature, we could not find a
single, comprehensive data set that measures the dynamics of all
different aspects of the DC vaccination. Furthermore, obtaining
new data for some of the processes in the model is currently very
challenging due to ethical considerations. For example, the data
on DC bio-distribution in humans utilized in the model could not
be generated de novo with the current ethical rules, at least in

FIGURE 9 | Simulations of memory T-cell dynamics by perturbing the
values of sensitive parameters. The response of memory T cells to the
modulation of (A) total amount of NF-κB, (B) degradation rate of IκBαmRNA,
(C) degradation rate of IKK, (D) degradation rate of IL-6 mRNA, and (E)
IL-8 mRNA. The steady state of memory T cells was determined at t = 4000 h.
Each parameter was perturbed within the interval (the estimated value ×
[0.1, 10]).
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Europe. An alternative is to calibrate the model utilizing mouse
data, but we think the animal data could compromise the
precision of cell dynamics such as the timing of DC bio-
distribution. To circumvent these issues, we selected consistent
data sets that represent the dynamics of the DC vaccination at

different levels. In such a manner, the data complement each
other to characterize the model at all scales.

While performing parameter optimization, we combined
global and local optimization methods and fitted different
parts of the model to the corresponding data set separately.

FIGURE 10 | Model predictions of DC-mediated T-cell responses. (A) Scheme of experimental strategies to increase T-cell responses. The manipulation of the
identified molecules includes upregulation of IKKβ and cytokines using transfected mRNAs encoding the corresponding proteins and downregulation of IκBα using
transfected microRNAs. It has been shown that miR-30e, miR-196a, and miR-126 can repress the expression of IκBα (Jiang et al., 2012, Huang et al., 2014, Feng et al.,
2012). (B)We simulated the dynamics of memory T cells for simultaneous modifying the values of two combined parameters. The number of memory T cells was
determined at its steady state (t = 4000 h). Each parameter was perturbed within the interval (the estimated value × [0.1, 10]).
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This strategy is widely used by the community to deal with
complex and large systems whose objective functions are usually
multi-modal and non-convex (Villaverde et al., 2019).
Alternatively, one can perform parameter optimization using a
multi-starting strategy that locally searches for the parameter
space from different starting points (Raue et al., 2013). However,
such a strategy becomes time-consuming when a model contains
many parameters because to ensure reasonable coverage of the
parameter space by local searches, the number of starting points
will increase exponentially. A solution for such an issue is
utilizing parallel computing that can significantly increase the
computation efficacy on a high-performance computing cluster
(Penas et al., 2017).

The hybrid approach (i.e., global pattern search followed by a
gradient-based method) for ensures that the cost function for
parameter estimation is not trapped in local minima. The best
parameter estimates with the minimum cost function were used
to assess practical identifiability of estimated parameters. The
analysis showed that a few parameters in the NF-κB pathway
underlying DC maturation are practically unidentifiable. Such
uncertainties are most likely due to the lack of experimental data
and the small variances of the estimated parameter values imply
limited impacts on their biological interpretations. More advanced
methods are available for analyzing the practical identifiability of
estimated parameters (Fröhlich et al., 2014). For instance, the profile
likelihood approach perturbs the value of a parameter in a small
interval while keeping the other parameters unchanged to draw a
profile of the cost function. The shape of the profile is used to identify
whether or not the parameter is identifiable (Flassig and Sundmacher,
2012). In a fully clinic-oriented setup for model calibration and to
solve the practical identifiability issue of parameters, one can produce
additional experimental data for parameter estimation, simplify the
model by reducing parameters, or fix the values of unidentifiable
parameters using prior knowledge (Villaverde et al., 2021).

Sensitivity analyses to detect key parameters and processes.
We performed sensitivity analyses to identify model parameters
that are crucial to biological processes. Such a method has been
widely used to evaluate the influence of model parameters (e.g.,
kinetic rate constants) on model outputs (e.g., the steady states of
model variables) (Zi, 2011, Nikolov et al., 2010). Depending on
strategies used for perturbing model parameters, sensitivity
analysis can be classified into local and global analysis. Local
sensitivity analysis provides a description of the behavior near a
specified operating condition, whereas global sensitivity analysis
uses wide ranges of parameter spaces and addresses global
behavior of model parameters using statistical methods (Frey
and Patil, 2002). We used the Sobol method for performing
sensitivity analysis, but there are other methods for computing
sensitivity coefficients based on rank transforms (such as partial
rank regression coefficient) that show better performance on
nonlinear and non-monotonic models (Frey and Patil, 2002).
Using both local and global sensitivity analysis, our data showed
consistent results in identifying sensitive parameters for affecting
the population of memory T cells, implying the significant impact
of the corresponding molecules on CTL responses. The results
indicated that intracellular or intercellular processes (i.e., DC bio-
distribution or DC-T cell interaction) influence the efficacy of DC

vaccination at inducing memory T cells. Since others investigated
cell-cell interactions (see (DePillis et al., 2013) for example.), we
focused on the wiring of the intracellular DC circuits. The
simulations suggested that the activity of several proteins
belonging to the network can affect the therapy effectiveness
in terms of memory T cell induction.

Predictive model simulations. Our simulations showed that
the perturbation of NF-κB and its regulators (i.e., IKKβ and IκBα)
have a strong impact on the population of memory T cells. This
suggested that enhanced and long-lasting activation of the NF-κB
pathway is particularly effective in improving the immunogenic
potency of DCs. Since our model accounts for the effect of known
negative feedback loops regulating NF-κB activation, the model
predictions point to strategies that can help in circumventing the
detrimental effect of these loops. However, only improving the
population of effective T cells may not be enough to ensure the
long-term survival of cancer patients, as T cell subsets and
heterogeneity of T cell states in tumors also play a major role
in mediating immunotherapy responses (Philip and Schietinger,
2021). In addition, we showed that the cytokines (i.e., IL-6 and IL-
8), necessary for the efficient activation of T-cell responses, are
also influential on the effectiveness for the DC immunotherapy. It
is also worth noting that IL-12 is another important
immunostimulatory cytokine and incorporation or endogenous
induction of this cytokine is shown to consistently benefit DC-
based immunotherapy (Brussel et al., 2012). Furthermore, the
production of cytokines by DCs depends not only on the
activation of the NF-κB pathway but also on the methods
used for isolating human monocytes that can differentiate into
DCs (Elkord et al., 2005).

In the current version of the model, the intracellular signaling
module is centered on the activation of the NF-κB signaling
pathway, which is known to be pivotal in the maturation and
activation of DCs. However, other regulatory pathways also play
an important role in DC vaccination, and these pathways can
crosstalk with each other forming a large regulatory network (Lai
et al., 2021). Including these pathways into an intracellular
module requires access to time-series data of their activation
in DCs. Alternatively, they could be transformed into a Boolean
or multi-logic model reproducing the wiring of the network as
shown by others in the context of cancer (Khan et al., 2017) and
immunity (Saez-Rodriguez et al., 2007). One could also build
a hybrid model by combining ODE and Boolean modeling.
The ODE model accounts for the core regulatory circuit
around NF-κB and the Boolean model for genes and
signaling proteins not belonging to the core circuit (Khan
et al., 2014). Similarly, one could add spatial details into the
interactions between DCs and T cells in the spleen. To do so,
one has to develop models in partial differential equations or
use agent-based models. Both types of models require
detailed spatial information like the one provided by in
vivo imaging. This is doable and has been implemented in
mouse models for characterizing DC-T cell interactions in
the lymph nodes (Celli et al., 2012).

Taken together, we demonstrated the potential of our multi-
level model in tackling the complexity of DC-based
immunotherapy and identifying potential molecules for
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improving its effectiveness. Besides, we believe such an approach
is adaptable and applicable to optimize other cell-based cancer
immunotherapies like CAR-T cells.
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