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Editorial on the Research Topic

Novel Insights Into Ferroptosis

Most cancer deaths are caused by metastatic cancers (Hanahan and Weinberg, 2000; Gupta and
Massagué, 2006; Seyfried and Huysentruyt, 2013). Consequently, better therapeutic approaches are
urgently needed for targetingmetastatic cancer cells. Recently, ferroptosis, a newly recognized form
of programmed cell death, is being acknowledged as an important tumor suppression mechanism
with a significant therapeutic potential (Lei et al., 2021). In this editorial, we review recent evidence
that suggest ferroptosis may be especially relevant as the metabolic Achilles’ heel of metastatic
cancer cells. We further review how triggering ferroptosis may hold a significant therapeutic
potential for preventing and treating metastatic cancer.

Ferroptosis is a recently appreciated cell death as coined by Dixon et al., but it is an ancient
form of programed cell death that is mechanistically and morphologically distinct from apoptosis,
autophagy, and necrosis. Ferroptosis is usually triggered by oxidative stress and characterized
by lipid peroxide accumulation and iron imbalance in the cell. The depletion of the antioxidant
glutathione (GSH) and the loss of activity from the lipid repair enzyme glutathione peroxidase
4 (GPX4) prevents the metabolism of lipid peroxides, which in turn leads to Fe2+ oxidization
of lipids and the massive accumulation of lipid reactive oxygen species (ROS) (Dixon et al.,
2012; Li et al., 2020; Jiang et al., 2021). Additional ferroptosis protection mechanisms include
ferroptosis suppressor protein 1 (FSP1) (Bersuker et al., 2019; Doll et al., 2019) and dihydroorotate
dehydrogenase (DHODH) (Mao et al., 2021), which generate ubiquinol to defend against
ferroptosis on the plasmamembrane and innermitochondrial membrane, respectively. This unique
type of programmed cell death has been recognized as a major tumor suppression mechanism and
possesses therapeutic potential for eradicating tumor cells (Lei et al., 2021). Experimental drugs,
such as erastin, which inhibits the cystine import system x−c , and RSL3 and FIN56, which inhibit
GPX4, cystine deprivation, and knockdown of established anti-ferroptotic genes have shown cancer
cells to be sensitive to ferroptosis-inducing treatments (Li et al., 2020).

Most intriguingly, many metastasis-associated processes are found to promote ferroptosis
(Brown et al., 2017; Viswanathan et al., 2017). Metastasis transpires in multiple steps of a metastatic
cascade. These processes start with the local infiltration of the tumor cells into adjacent tissues
(Hapach et al., 2019). This first step involves the epithelial-mesenchymal transition (EMT) of cancer
cells that prompt epithelial cells to assume “mesenchymal” migratory and invasive phenotypes.
EMT is strongly associated with metastasis (Mittal, 2018). Interestingly, several EMT regulators
are recognized to promote ferroptosis and cystine addictions (Tang et al., 2017; Viswanathan et al.,
2017). Following EMT, cancer cells detach from the extracellular matrix (ECM) and adjacent cells,
which enable the migration and dissemination of tumor cells (Brown et al., 2017; Hapach et al.,
2019). Wu et al. (2019) show that cell-cell contact can protect against ferroptosis and hence tumor
cells going through EMT and ECM detachment are especially vulnerable to ferroptosis. We have
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also reported that low cell density and loss of cell-cell contact
promote ferroptosis through the activation of YAP (Yes-
associated protein 1) (Yang et al., 2021) or TAZ (transcriptional
coactivator with PDZ-binding motif) (Yang et al., 2019, 2020);
we showed that TAZ activation enhances ferroptosis at low cell
density and TAZ removal renders cells resistant to ferroptosis.
Importantly, both YAP and TAZ are critical regulators of multiple
steps in the metastatic cascade (Piccolo et al., 2014; Zanconato
et al., 2016). Wu et al. (2019) further establish this finding
by showing that high cell density enhances cellular contacts
and suppresses ferroptosis through inhibiting YAP. YAP/TAZ
are critical for tumor development and its metastasis via the
regulation and transduction of the cellular structure in the tumor
microenvironment (Zanconato et al., 2016). Another metastasis-
promoting factor is the increased stromal collagen deposition
through the collagen receptor discoidin domain receptor 2
(DDR2) (Zhang et al., 2013; Gonzalez et al., 2017). DDR2 is
concordantly upregulated in metastatic cancer and maintains
a fibroblastic phenotype. Interestingly, we report in Lin et al.
(2021) that DDR2 is essential for ferroptosis susceptibility. Given
the ability of YAP/TAZ and DDR2 to promote both ferroptosis
and metastasis, triggering ferroptosis is an incredibly promising
approach to target cancer cells at their initial stage of metastasis.

The metastatic process also involves the intravasation of
tumor cells into the vasculature or lymphatic system, in which
the cells must survive while traveling in the circulatory systems
before extravasation from the circulation and colonization of
a secondary tumor site (Hapach et al., 2019). At this stage,
too, tumor cells are particularly susceptible to ferroptosis, but
Ubellacker et al. (2020) shows that metastatic melanoma cells
undergo significant ferroptosis in the blood stream and only
survive in the lymphatic system when protected from ferroptosis
by lymph. In further support of this finding, Magtanong et al.
(2019) also report that extrinsic monosaturated fatty acids
(MUFAs) protect cancer cells against ferroptosis by blocking the
accumulation of lipid peroxides in the plasma membrane in an
A synthetase long-chain family member 3 (ACSL3)-dependent
manner. Yet another study, Hong et al. (2021), found that the
circulating cancer cells (CTC) employ the lipogenesis regulator,
SREBP2 (Sterol Regulatory Element Binding Transcription

Factor 2) to resist ferroptosis by the induction of transferrin,
which reduces intracellular iron pools. Collectively, these studies
point to the major influence of the intrinsic and extrinsic
factors that enable CTC to survive ferroptosis, which further
highlights the significant potential of targeting such protections
for treatment of metastasizing cancer cells.

In summary, evidence is accumulating to suggest that
ferroptosis shows an incredibly promising potential as a
therapeutic approach for metastatic tumors. Several agents
have been developed to trigger ferroptosis in vivo to further
characterize and understand the therapeutic potential of
ferroptosis. For example, Imidazole ketone erastin (IKE), an
erastin analog, and the human engineered Cyst(e)inase (Cramer
et al., 2017) can be used to trigger in vivo ferroptosis. Cyst(e)inase
can also synergize with immunotherapy (Wang et al., 2019) and
is effective in pancreatic cancers (Badgley et al., 2020). Therefore,
these reagents will need to be further optimized for the future
clinical application in patients. However, the use of ferroptosis
as a therapeutics approach in the setting of metastatic cancers is
still in development. Understanding what mechanisms to disable
and/or how to manipulate the microenvironment of tumor cells
so they become sensitive to ferroptosis would have a significant
impact in the field of cancer genetics and will accelerate the
progress and possibility of using ferroptosis in novel therapeutic
approaches for millions of patients with metastatic cancer.
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