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As a key transcription factor, the evolutionarily conserved tumor suppressor p53
(encoded by TP53) plays a central role in response to various cellular stresses.
A variety of biological processes are regulated by p53 such as cell cycle arrest,
apoptosis, senescence and metabolism. Besides these well-known roles of p53,
accumulating evidence show that p53 also regulates innate immune and adaptive
immune responses. p53 influences the innate immune system by secreted factors
that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53
in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune
evasion. p53 can also activate key regulators in immune signaling pathways which
support or impede tumor development. Hence, it seems that the tumor suppressor p53
exerts its tumor suppressive effect to a considerable extent by modulating the immune
response. In this review, we concisely discuss the emerging connections between p53
and immune responses, and their impact on tumor progression. Understanding the
role of p53 in regulation of immunity will help to developing more effective anti-tumor
immunotherapies for patients with TP53 mutation or depletion.

Keywords: p53, immune, inflammation, tumor microenvironment (TME), innate and adaptive immune response

INTRODUCTION

As an intensively studied protein, the fame of p53 mainly stemming from its role as a tumor
suppressor which is activated when responding to stress signals such as genotoxic damage, or
nutrient deprivation (Lowe et al., 2004; Vousden and Lane, 2007; Levine and Oren, 2009).
Mutations of p53 always accompanied dysregulation of metabolism, migration, and invasion, all
of which ultimately result in the development of clinical tumors and an ever more aggressive
malignancy (Hanahan and Weinberg, 2011; Jiang et al., 2013; Schwitalla et al., 2013; Labuschagne
et al., 2018). Cancer cells can be recognized and destructed by innate and adaptive immune effector
cells, a process that is known as cancer immunosurveillance (Zitvogel et al., 2006). In recent
years, various studies have indicated that p53 can also control tumor-immune system crosstalk
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(Watanabe et al., 2014; Guo and Cui, 2015; Blagih et al., 2020b).
p53 loss in tumors provokes an altered myeloid and T cell
responses. Specifically, p53 loss increases myeloid infiltration
through enhanced secretion of cytokines (Blagih et al., 2020b).
Morever, dysfunction of p53 under certain circumstance
reprograms the components of tumor microenvironment
(TME), leading to an altered immunologic milieu which
exacerbates tumor progression. Here, we review the latest
understanding of p53 in regulating the immune response during
tumor development.

p53 REGULATION OF INFLAMMATION

Besides the capability of governing cellular homeostasis to curb
tumourigenesis, accumulating observations suggest that p53 also
plays the role in inflammatory reactions (Gudkov et al., 2011;
Cooks et al., 2014). Chronic inflammation creates a potential
cancer-promoting condition (Karin, 2006; Mantovani et al.,
2008). In inflamed tissues, cytokines or inflammatory mediators
can activate several transcription factors such as NF-κB and
Signal Transducer and Activators of Transcription 3 (STAT3)
which are critical in promoting cancer initiation. The activation
of NF-κB and STAT pathways results in the enrichment of
ROS in TME which ultimately prompts chronic inflammation
(Trinchieri, 2012). Accumulating evidence strongly indicate that
p53 dysfunction in tumors can enhance chronic inflammation
and then promote tumor progression. Below, we discuss the role
of p53 in inflammation.

NF-κB and p53
Chronic inflammation enhances the risk of cancer. As the crucial
transcription factor, NF-κB is constitutively activated in most
tumors. p53 and NF-κB pathways play crucial roles in response
to various stresses and the NF-κB activity usually shows an
antagonistic relationship with that of p53 (Kawauchi et al.,
2008a; Ak and Levine, 2010; Gudkov et al., 2011). In contrast to
p53 whose canonical role is growingly restrictive, NF-κB vastly
promotes cell survival and inflammation. NF-κB and p53 have an
extensive crosstalk in numerous cancers. Specifically, chronically
inflamed and malignant tissues are always accompanied by
constitutive activation of NF-κB where the p53 function is
repressed by persistent infections or tissue irritating factors
(Webster and Perkins, 1999; Schneider et al., 2010; Son et al.,
2012; Natarajan et al., 2014). Mice with intestinal epithelial
cell (IEC)-specific p53 deficiency do not initiate intestinal
tumorigenesis, but significantly enhance carcinogen-induced
tumourigenesis by promoting the establishment of an NF-
κB-dependent inflammatory microenvironment that increases
intestinal permeability and further invasion and metastasis
(Schwitalla et al., 2013). Moreover, activated p53 acts as a
suppressor directly suppressing the transcriptional activity of NF-
κB, and aberrant inflammation can enhance tumor development
when p53 is lost (Kawauchi et al., 2008a,b; Son et al., 2012;
Gudkov and Komarova, 2016; Uehara and Tanaka, 2018).

Intriguingly, the reciprocal activation of p53 and NF-κB
has been also found in certain cases (Lowe et al., 2014).

It has been reported that p53 and NF-κB co-regulate the
induction of pro-inflammatory genes, such as IL-6 and CXCL1, in
human macrophages to drive the induction of pro-inflammatory
cytokines (Lowe et al., 2014). Moreover, the activation of NF-κB
promotes the secretion of numerous inflammatory cytokines and
chemokines in senescent cells with highly activated p53 (Rodier
and Campisi, 2011; Davalos et al., 2013).

As the most frequently genetic alterations in cancer, p53
mutations exist in over half of human cancers. However, many
p53 mutants (mutp53) gain new activities to augment pro-
inflammatory and survival properties, termed gain-of-function
(GOF). Several studies have shown that GOF mutp53 can activate
some of the NF-κB target genes (Cooks et al., 2013; Di Minin
et al., 2014; Rahnamoun et al., 2017). For example, Cooks et al.
(2013) demonstrated that mutp53 prolong NF-κB activation,
leading to a significant proinflammatory activity and promoting
colitis-associated colorectal cancer in mouse model. Di Minin
et al. (2014) reported that mutp53 in cancer cells reprogram
NF-κB and JNK activation in response to TNFα through the
binding and interfering the tumor suppressor RasGAP Disabled
2 Interacting Protein (DAB2IP) in the cytoplasm. Mutp53 can
also interact with NF-κB directly, enhancing RNA polymerase
II recruitment in response to chronic TNF signaling which
shapes the enhancer landscape and oncogenic gene expression
(Rahnamoun et al., 2017). Therefore, inhibition of NF-κB to
restore wild-type (WT) p53 function or reactivation of WT
p53 in the context of mutp53 would be a very attractive target
for cancer therapy.

Small Molecule Modulators
Simultaneously Activate p53 and Inhibit
NF-κB
As mentioned above, killing strategies that directly target the p53
and NF-κB pathways can be utilized to improve cancer therapy
(Cheok et al., 2011; Khoo et al., 2014; Muller and Vousden,
2014). Several moleculers targeting both pathways have been
indentified and some of which are already in clinical trials.
For example, anti-malaria drug quinacrine was identified to
have the ability to kill cancer cells by simultaneously inhibiting
NF-κB and activating p53 (Gurova et al., 2005). Quinine and
other aminoacridine derivatives mimic DNA damage, are non-
genotoxic, and have good therapeutic potential for cancer in
mouse xenograft models. This is noteworthy because anticancer
drugs such as cisplatin induce p53 by forming covalent DNA
adducts. r-Roscovitine, another small molecule, targets multiple
signaling pathways simultaneously and prevents tumor growth.
It activates p53 while blocking NF-κB activity and has shown its
anticancer properties in phase II clinical trials (Lu et al., 2001; Dey
et al., 2008). Interestingly, r-Roscovitine was originally developed
as a cell cyclin-dependent kinase (CDK) inhibitor, which was
shown to inhibit MDM2 expression and stabilize p53 (Lu et al.,
2001). r-Roscovitine downregulates NF-κB activation in response
to TNF-α and IL-1 by inhibiting IκB kinase (IKK) activity. It also
inhibits the phosphorylation of p65 at Ser536 via IKK, which
is required for nuclear localization. At the transcriptional level,
r-Roscovitine inhibits the transcription of NF-κB-regulated genes

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2021 | Volume 9 | Article 762651

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-762651 October 12, 2021 Time: 14:27 # 3

Shi and Jiang p53 and Immunity

such as MCP-1, ICAM-1, COX2, FLIP, and IL-8 (Dey et al., 2008).
Nutlin is the first Mdm2 antagonist reported to inhibit the p53-
Mdm2 interaction and was shown to inhibit tumor growth in
mouse models (Vassilev et al., 2004; Tovar et al., 2006). It was
shown that Nutlin also strongly inhibits the protein expression
of NF-κB target genes ICAM-1 and MCP-1, depending on p53
status (Dey et al., 2007). Clearly, more research is needed to
better understand the mechanisms behind these drugs and to find
more small molecules with higher specificity to activate p53 and
inhibit NF-κB.

p53 and Signal Transducer and
Activators of Transcription Pathways
Signal transducer and activators of transcription family is a
group of transcription factors that regulate cytokine-dependent
inflammation and immunity (Grivennikov et al., 2010).
Constitutively activated STATs, especially STAT3, induce and
maintain a protumourigenic inflammatory microenvironment
to stimulate the initiate and survival of malignant cells (Catlett-
Falcone et al., 1999; Mantovani et al., 2008; Grivennikov et al.,
2009). p53 regulates inflammation response through STAT3 that
is activated by inflammatory cytokine IL-6. And, p53 loss in
pancreatic cancer results in activated STAT3 phosphorylation,
which is initiated by IL-6 (Wormann et al., 2016). Like NF-
κB, STAT3 binds to the p53 promoter directly to inhibit p53
transcription, limiting its canonical tumor suppressor function.
Blocking STAT3 activates expression of p53, leading to p53-
dependent tumor cell apoptosis (Niu et al., 2005). It has been
shown that tumor cells dependent on long-term STAT3 signaling
are more sensitive to STAT3 inhibitors than normal cells (Yu and
Jove, 2004). Thus, STAT3 proteins can be targeted as novel cancer
therapeutics, and more effective and selective STAT inhibitors
can be expected to be developed in the future.

Besides the reciprocal relationship of STAT3 and p53, it has
also been reported that inactivation of p53 in macrophages results
in elevated levels of total and phosphorylated STAT1, thereby
increases the production of proinflammatory cytokines (Zheng
et al., 2005). Furthermore, p53 stimulates Treg cell differentiation
via direct interaction with STAT5 (Park et al., 2013). Therefore,
it is likely that p53 can balance the activity of various STAT
pathways to impact host immune response.

CELLULAR CONSTITUENTS OF THE
TUMOR MICROENVIRONMENT

Emerging studies suggest that tumor cell growth and invasion are
markedly affected by tumor microenvironment (TME) (Kerkar
and Restifo, 2012; Swartz et al., 2012). The TME contains not
only cells but also signaling molecules, extracellular matrix, and
mechanical cues. The immunological landscape of TME is shaped
by all these cellular and molecular components that support
neoplastic transformation, protects the cancer cells from host
immunity, and provides niches for metastasis. Besides the cell-
autonomous effects of p53, emerging evidence show that p53 can
also have effects on neighboring cells, i.e., non-cell-autonomous
activities of p53 (Bar et al., 2010; Lujambio et al., 2013). Thus,

better understanding the function of p53 in TME may be
potentially used to tailor personalized therapies for patients with
tumors bearing p53 mutations.

Cancer-Associated Fibroblasts
In the TME, cancer-associated fibroblasts (CAFs) play an
important role in modulating tumor progression and metastasis
(Ohlund et al., 2014; Kalluri, 2016). In CAFs of highly inflamed
cancers, p53 mutations are frequently detected (Patocs et al.,
2007). The tumor inflammatory milieu can be affected by altered
p53 status in CAFs which is accompanied by an increased
rate of tumor metastasis and worse prognosis. Mechanically,
p53 dysfunction in CAFs can promote tumor invasion and
malignancy through upregulation of chemokines and cytokines,
including CXCL12 and SDF-1 (Figure 1; Moskovits et al.,
2006; Addadi et al., 2010). Surprisingly, Arandkar et al. (2018)
found that non-mutated CAF p53 is functionally distinct from
normal fibroblast p53. p53 in lung-derived CAFs is usually
hypophosphorylated and is able to modify the transcriptional
program, affect the CAF secretome, and promot cancer cell
migration and invasion. Overall, tumor progression may require
functionally altered p53 in CAFs, and it can be speculated
that agents capable of “re-educating” p53 in cancer-associated
stromal cells may be able to provide clues for cancer therapy
(Arandkar et al., 2018).

Extracellular Matrix Remodeling
One of the most important components in TME is the
extracellular matrix (ECM), which are comprised of various
macromolecules that regulate cellular functions in tumors.
Tumor cells manipulate the arrangement and orientation of
ECM to enhance tumor progression and create a positive
tumourigenic feedback loop (Cox and Erler, 2011). Previous
studies have demonstrated that p53 expression and nuclear
localization are modulated by ECM signals (Li et al., 2003).
In recent years, the role of p53 in regulating ECM has been
verified especially in hypoxic contexts (Petrova et al., 2018).
In hypoxic tumor environments, the activation of transcription
factors hypoxia inducible factors (HIF) results in the expression
of pro-angiogenic factors such as vascular endothelial growth
factor (VEGF), which directly participate in the rearrangement
of ECM. It has recently been reported that the formation of
HIF-1/GOF mutp53 complex in hypoxic cancer cells promotes
the transcription of protumourigenic genes and codifys the
components of ECM (Figure 1; Amelio et al., 2018). p53 can
also negatively regulate extracellular matrix metalloproteinase
inducer (EMMPRIN), a transmembrane glycoprotein known
to promote metastasis and invasion of tumor by enhancing
the production of several matrix metalloproteinases (MMPs)
(Figure 1; Zhu et al., 2009). All these findings underscore the
importance that restoring the function of p53 in the ECM may
help in the development of anti-cancer therapies.

Immune Cells
Immune cells are important cellular compartments in TME
that are heterogeneous across tumor types and are associated
with cancer progression and prognosis (Angell and Galon, 2013;
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FIGURE 1 | Dysfunction of p53 shapes its immunogenic niche. The TME contains cellular and molecular components that shape immunological landscape of
growing tumors. Altered or mutant p53 functions in CAFs increases expression of chemokines and cytokines, which drives tumor invasion and malignancy. In
hypoxic tumor environments, GOF mutp53 cooperate with HIF-1 promoting expression of a subset of protumourigenic genes which participate in the rearrangement
of ECM. In myeloid cells, p53 deficiency helps to accelerate tumourigenesis. Deletion of p53 in T cells increases the expression of pro-inflammatory cytokines which
could help to enhance tumor progression.

Sun et al., 2015; Mlecnik et al., 2016a,b). Productive antitumour
immunity largely relies on the tumor-reactive T cells. However,
the cytotoxicity of T cells are frequently frustrated in the
TME, where the cross-talk between MDSC, macrophages,
DC and Treg amplifies the anti-tumor immune effects
(Ostrand-Rosenberg et al., 2012).

The function of immune cells can also be regulated by p53.
Previous studies have reported that p53−/− mice show more
susceptibility to inflammation and auto-immunity which favors
tumor establishment and progression (Okuda et al., 2003; Zheng
et al., 2005; Guo et al., 2017). And the function of p53 in
various immune cells has also been dissected. For instance, p53
deficiency in myeloid lineage accelerates tumourigenesis in an
intestinal cancer model, and activation of p53 attenuates the
inflammatory response and resists tumor development (Figure 1;
Guo et al., 2013; He et al., 2015). Furthermore, deficiency of
p53 in T cells spontaneously develops inflammatory lesions and
autoimmunity, which may help promote tumor development
(Zhang et al., 2011).

However, p53 also has a role in regulating the polarization
of CD4+ T cells by enhancing the transcription of Foxp3, a
master regulator of Tregs, which predicts that the loss of this
role of p53 could enhance antitumour immunity (Kawashima
et al., 2013). Moreover, deletion of p53 in cytolytic T cells
exhibits enhanced glycolytic commitment and reduces murine
melanoma (Banerjee et al., 2016). The concept that p53 deletion
in T cells enhances antitumour immunity is interesting. However,
it may be influenced by other stromal compartments, as p53-
deficient mice have substantially faster subcutaneous tumor
growth and more regulatory T cells compared to wild-type
controls (Guo et al., 2013).

More recently, studies from Dr. Weiping Zou’s team reveal
that targeting p53–MDM2 interactions augments MDM2 in

T cells, thereby stabilizing STAT5 and improving T cell-
mediated anti-tumor immunity. Interestingly, these effects
are independent of the p53 status of the tumor. Therefore,
targeting this pathway could be explored to develop and select
additional MDM2-targeted drugs independent of tumor p53
status (Zhou et al., 2021).

Together, these results highlight the important role of p53 in
maintaining appropriate TME to suppress tumourigenesis and
the potential development of new therapeutic approaches by
targeting the p53 pathway.

Compelling evidence suggests that effective cancer therapy
requires a multifaceted and integrated approach that not only
exposes the tumor but also induces strong anti-tumor immunity.
However, current approaches have focused on activating or
restoring p53 function in cancer cells. As mentioned above,
activation of p53 in TME also affects the immune response.
Furthermore, local activation of the p53 pathway rather than
overall activation may be sufficient to cause tumor death.
Therefore, activation of p53 in TME is an exciting strategy for
improving antitumour therapy in the future.

p53 FUNCTIONS IN INNATE AND
ADAPTIVE IMMUNITY

The Role of p53 in Innate Immunity
As the first line of defense to detect invaders, innate immune
cells are engaged in immediate short-term immune operations
upon detection of pathogenic threats to attack and engulf
the outsider without establishing immunological memory. The
activation of innate immunity is initiated by the stimulation of
cell-surface or intracellular pattern recognition receptors (PRRs),
including retinoic-acid- inducible gene I (RIG-I)-like receptors
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(RLRs), stimulator of IFN genes (STING) protein, and Toll-
like receptors (TLRs) (Kawai and Akira, 2010; Trinchieri, 2010;
Burdette et al., 2011). The role of p53 in antiviral response has
been well reviewed. Here, we discuss how p53 functions in innate
immunosurveillance of tumor cells.

The TLRs are membrane glycoproteins and previous
studies reveal that p53 transcriptionally regulate several TLRs,
constituting a crucial bridge between cellular stresses and
TLR-induced innate immune response (Taura et al., 2008;
Menendez et al., 2011). Notably, TLR4 has been reported to
possess dichotomous role during breast cancer growth, based
on the status of p53. TLR4 activation in wtp53 cancer cells
leads to the secretion of anti-inflammatory cytokines into
microenvironment, resulting in the induction of p21 and cell
growth arrest. By contrast, TLR4 activation in mutp53 cells
increases secretion of progrowth cytokines such as CXCL1
and CD154. Furthermore, the influence of p53 status on
TLR4 activity may extend across cancer types, suggesting
that the connection between TLR4 and p53 may provide
a therapeutic clue for specifically targeting mutp53 tumors
(Haricharan and Brown, 2015).

The cGAS-STING pathway also plays essential role in anti-
tumor immunity in vivo via up-regulation of type I IFNs
(Ablasser and Chen, 2019). More recently, Ghosh et al. (2021)
reported that GOF activity of mutp53 can antagonize the
STING/TBK1/IRF3 pathway. Mutp53, but not wtp53, binds
to TANK-binding protein kinase 1 (TBK1), preventing the
formation of the STING-TBK1-IRF3 trimeric complex, which
is required for cytokine production and ultimately leads to
the onset of immune evasion (Figure 2). This finding may
provide a key clue to therapeutic approaches aimed at restoring
TBK1 function to reactivate immunosurveillance in mutp53-
expressing tumors.

Besides myeloid cells, NKG2D-mediated NK cells are also
regulated by p53. Restoration of p53 upregulates cell surface
expression of ULBP1 and ULBP2 (the NKG2D ligands) that
enhance NK cell-mediated cytotoxicity (Textor et al., 2011).
However, activation of p53 by Nutlin-3a reduces the expression
of ULBP2 in melanoma cells due to the induction of miR-34a/c
(Heinemann et al., 2012; Figure 2). Thus, it appears that the effect
of p53 activation on innate immune regulation is governed by the
conditions of its induction.

FIGURE 2 | p53 regulates immune responses. Mutp53 binds to TBK1 preventing the formation of STING-TBK1-IRF3 trimeric complexes and rendering immune
evasion. p53 upregulation ULBP1 and ULBP2, the NKG2G ligands, to enhance NK cell-mediate cytotoxicity. However, activation of p53 in melanoma cells increases
the expression level of miR34, a ULBP2 inhibitor that reduces the recognition of tumor cells by NK cells. Moreover, p53 and miR-34a can cooperate to regulate
tumor immune evasion via PD-L1. In addition, activation of p53 is able to promote the transport and expression of MHC-I by upregulating TAP1 and ERAP1.
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The Role of p53 in Adaptive Immunity
The development of effective immunotherapies for oncology
patients is now becoming a clinical reality. Notably, the
interaction between T cells and DCs is developing as one of
the key targets for immunotherapy. As an important sensor to
activate adaptive immune responses, p53-mediated activation of
innate immune cells, particularly DC, is expected to promote
adaptive immunity. Although the direct effect of p53 on the
function of DCs has not been clarified, many results suggest
that p53 activation is necessary for DC function. Treatment with
Nutlin 3, an MDM2 inhibitor that activates wild-type p53, has
been reported to increase the ability of DCs to stimulate T-cell
proliferation, suggesting that p53 is involved in the activation
of DCs (Gasparini et al., 2012). It has also been shown that
the induction of p53 promotes peptide processing and MHC-I
expression on the cell surface (Figure 2; Zhu et al., 1999; Wang
et al., 2013). Therefore, it can be speculated that the enhancement
of DC function by p53 may further improve the induction of
cytotoxic CD8+ T cells, and the direct role of p53 in DC antigen
presentation requires further exploration.

Cancer cells normally upregulate immune checkpoint
molecules such as programmed cell death 1 ligand 1 (PD-L1)
and cytotoxic T lymphocyte antigen 4 (CTLA4), which are
important for T cell tolerance to evade immune attack (Le
Mercier et al., 2015; Sharma and Allison, 2015; Baumeister
et al., 2016). Links between p53 and immune checkpoints have
recently been uncovered. IFN-γ-induced upregulation of PD-L1
expression in melanoma is dependent on p53 (Thiem et al.,
2019). Moreover, a number of microRNAs (miRs), which are
targets for p53, also play an important role in adaptive and
innate immunity. For example, as a transcriptional target of
p53, miR-34a inhibits the expression of PD-L1, and dysfunction
of p53 increases PD-L1 expression, thereby suppressing T-cell
function (Figure 2). This result indicates that p53 and miR-34a
cooperate to regulate tumor immune evasion via PD-L1 (Cortez
et al., 2016). Consistent with this, tumor cells carrying p53
dysfunction are usually accompanied with increased expression
of PD-L1, which may help to identify patients who respond to
immune checkpoint inhibitors against PD-L1 (Cha et al., 2016;
Cortez et al., 2016; Biton et al., 2018; Blagih et al., 2020a).

p53 AND DEAD CELL CLEARANCE

During the resolution of injury and infection, normal cell
turnover and clearance is an important process in preventing
autoimmunity and triggering immune recognition of antigens
by dying cells (Green et al., 2009). Failure to sustain efficient
clearance is the key contributor to foster disease such as cancer
and chronic inflammatory (Elliott and Ravichandran, 2010;
Nagata et al., 2010; Fuchs and Steller, 2011; Arandjelovic and
Ravichandran, 2015). In normal immune system, phagocytosis
of dying cells can induce some degree of immune tolerance to
prevent self-antigen recognition. p53 is well-documented as an
important regulator of apoptosis, and the role of p53 involved
in post-apoptosis has been recently identified. The immune
checkpoint regulator DD1α has been reported to be a direct
transcriptional target of p53. p53-induced expression of DD1α

enhances clearance of apoptotic cells by promoting phagocytosis
of macrophages, suggesting that p53 provides protection against
inflammatory diseases caused by apoptotic cell accumulation
(Yoon et al., 2015). Interactions between macrophage DD1α and
T cell DD1α were also observed, making them susceptible to
immunosuppression (Zitvogel and Kroemer, 2015). Therefore,
this association warrants further preclinical characterization as a
potential therapeutic target.

POTENTIAL OF p53 IN
IMMUNOTHERAPY

As mentioned above, the regulation of p53 in the tumor immune
response exhibits a yin-yang balance. On the one hand, p53
counteracts pro-inflammatory factors, such as NF-κB and STAT3,
to promote tissue homeostasis and avoid excessive immune
responses. On the other hand, p53 contributes to the recognition
of non-self antigens and thus activates anti-tumor immunity
through multiple pathways. All these p53 features will allow us
to develop more effective tumor therapies in combination with
current immunotherapies.

Mutant p53 as a Tumor Antigen
Cancer cells are always accompanied by unstable genetic changes
and produce new antigens that distinguish cancer cells from
normal cells. The accumulation of p53 hotspot mutations
in cancer has been considered as immunologically active
neoantigens for immunotherapy. However, progress in this field
has been limited by the lack of efficiency of recognition of mutant
p53 antigens in cells (Yen et al., 2000; Nijman et al., 2005;
Lane et al., 2011). A recent clinical trial in metastatic ovarian
cancer showed that p53 hotspot mutations (G245S and Y220C)
cause infiltration of mutation-reactive T cells into ovarian
cancer metastases (Deniger et al., 2018). A subsequent analysis
of 140 patients with multiple types of epithelium confirmed
this observation (Malekzadeh et al., 2019). p53 neoantigen-
specific HLA-restricted elements and TCRs were found in thirty
percent of patients carrying p53 hotspot mutations. And TIL
and TCR genetically engineered T cells recognize tumor cell
lines that endogenously express these p53 neoantigens. These
results highlight the potential of p53 mutations as targets for T
cell immunization and gene therapy. Furthermore, the increased
levels of p53 protein associated with its mutation are associated
with the production of anti-p53 autoantibodies, reinforcing the
potential role of p53 in regulating tumor antigenicity (Couch
et al., 2007; Garziera et al., 2015). Although mutant p53 has
shown promise in the field of immunotherapy, induction of
a specific anti-tumor response can trigger immune evasion in
some cases. Recent studies have demonstrated the use of a
broad-acting vaccine produced by a dendritic cell/tumor cell
fusion that can potentially prevent adaptive immune evasion
(Humar et al., 2014).

p53 and Immune Checkpoint Inhibitor
Therapy
Although significant advances have been made in antitumour
immune checkpoint inhibitor (ICI) therapy, only a minority of
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cancer patients respond well to immune checkpoint inhibitors
(Fares et al., 2019). An effective adaptive immune response
requires efficient entry of fully activated cytotoxic T cells
into the tumor environment and sufficient tumor-associated
antigens that are presented on major histocompatibility complex
(MHC) by antigen-presenting cell (APC) (Brown et al., 2018).
However, many neoantigen-rich tumors fail to produce a positive
immune response in many cancer patients (Stronen et al., 2016).
Therefore, amplification of neoantigen libraries remains a
promising direction for improving ICI treatment. In recent years,
the concept of immunogenic cell death (ICD) has emerged,
whereby dying cells stimulate an immune response to antigens
released especially from dead cancer cells (Kroemer et al., 2013).
Immunochemotherapy has been shown to sensitize tumors
to anti-PD1 antibody therapy using clinically relevant mouse
models of checkpoint inhibitor resistance (Pfirschke et al.,
2016). In addition, Ad-p53 (p53 adenovirus) tumor suppressor
immunogene therapy significantly reverse anti-PD-1 resistance
in mouse models (Sobol et al., 2017). All these results suggest that
chemotherapy-induced p53-dependent apoptosis facilitates the
induction of immunogenesis. Indeed, nutlin-3-induced local p53
activation could alter the immune landscape of TME and enhance
antitumour immunity by inducing ICD (Guo et al., 2017).

CONCLUSION

As a tumor suppressor, the cell-autonomous function of p53 in
suppressing malignant tumors has been extensively studied. More
recently, growing evidence suggest a potential link between p53
and immune function, and dysfunction of p53 is also associated
with inflammatory diseases. Dysfunction of p53 in tumors is
shown to regulate not only immune recognition but also affect
the stromal compartment, which plays an important role in
controlling tumor progression. Thus, as a “guardian of genomic
integrity,” p53 also functions in response to homeostatic stress,

including innate and adaptive immunity as described above.
There are still many uncharacterized issues that presumably
have a broad impact on immunity and inflammation, which
may ultimately lead to tumor development. For instance, how
exactly p53 dysregulation affects the immune response to various
external or internal stimuli, and what is the role of p53 in
immune cell development. Moreover, depletion or mutation of
p53 is likely to reprogram the microenvironment, especially
the extracellular components in tumors, but the molecular
regulatory mechanisms involved remain still largely unknown.
p53 mutations can promote tumor cell metastasis. How the
immune regulation and response are changed during this
process, and in particular which immune cells’ functions are
altered. In addition, the role of p53 in the remote regulation
and communication between different tissues or organs will
also be a highly anticipated research direction. There is no
doubt that, understanding these issues will significantly improve
our knowledge of both biologic and pathologic functions of
p53, allowing for the development of targeted therapeutic
approaches in the future.
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