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As an evolutionarily conserved cellular process, autophagy plays an essential role in the
cellular metabolism of eukaryotes as well as in viral infection and pathogenesis. Under
physiological conditions, autophagy is able to meet cellular energy needs and maintain
cellular homeostasis through degrading long-lived cellular proteins and recycling
damaged organelles. Upon viral infection, host autophagy could degrade invading
viruses and initial innate immune response and facilitate viral antigen presentation, all
of which contribute to preventing viral infection and pathogenesis. However, viruses
have evolved a variety of strategies during a long evolutionary process, by which
they can hijack and subvert host autophagy for their own benefits. In this review,
we highlight the function of host autophagy in the key regulatory steps during viral
infections and pathogenesis and discuss how the viruses hijack the host autophagy for
their life cycle and pathogenesis. Further understanding the function of host autophagy
in viral infection and pathogenesis contributes to the development of more specific
therapeutic strategies to fight various infectious diseases, such as the coronavirus
disease 2019 epidemic.

Keywords: autophagy, xenophagy, virophagy, viral infection, innate immune response, antigen presentation,
inflammation and immunity

INTRODUCTION

Autophagy, or cellular self-digestion, is an evolutionarily conserved cellular process through
which long-lived proteins, damaged organelles, or invading pathogens could be degraded
by the lysosome (Levine et al., 2011; Deretic et al., 2013; Levine and Kroemer, 2019;
Mizushima and Levine, 2020). According to the way that eukaryotic cells deliver cytoplasmic
materials to lysosomes for degradation, autophagy can be divided into three major types:
microautophagy, chaperone-mediated autophagy (CMA), and macroautophagy (Mizushima et al.,
2008; Figure 1). Microautophagy engulfs cytoplasmic materials or large structures through non-
selectively invaginating lysosomal membrane or selectively delivering soluble cytosolic proteins
to the multivesicular bodies (MVBs) (Mijaljica et al., 2011; Sahu et al., 2011). CMA only
degrades soluble proteins in a selective manner through the lysosomal LAMP2A receptor to
recognize and translocate unfolding proteins with a specific signal sequence—KFERQ (Orenstein
and Cuervo, 2010; Kaushik and Cuervo, 2012). Macroautophagy could both selectively or
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FIGURE 1 | Major types of autophagy. According to the way that eukaryotic cells deliver cytoplasmic cargo to lysosomes for degradation, autophagy can be divided
into three major types: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Microautophagy refers to the lysosome itself engulfing
cytoplasmic material or large structures by invading the lysosome membrane. The CMA only degrades soluble proteins in a selective manner through the LAMP2A
receptor on the lysosome to recognize and translocate unfolding proteins with a specific signal sequence—KFERQ. Macroautophagy could both selectively and
non-selectively engulf bulk cytoplasmic components by sequestering these cargoes to a specialized double-membrane vesicle known as the autophagosome;
autophagosome is then fused with the lysosome, where the cargo is degraded and the resulting macromolecules are released into the cytosol for reuse.

non-selectively engulf bulk cytoplasmic components by
sequestering these cargoes to a specialized double-membrane
vesicle (DMV) known as the autophagosome (Feng et al.,
2014; Melia et al., 2020; Nakatogawa, 2020). Here, we focus
on macroautophagy, and hereafter refer to “macroautophagy”
simply as “autophagy.”

Autophagy begins with the sequestration of cargoes into a
cup-shaped double membrane known as the isolation membrane
or phagophore, which stems from several cellular compartments
(Shibutani and Yoshimori, 2014; Melia et al., 2020). The
sequestration of cargoes could be either non-specific (such as
the engulfment of bulk cytoplasm) or selective (such as specific
engulfment of organelles or invading pathogens). The gradually
expanding phagophore envelops the engulfed cargoes, forming
the autophagosome, which then fuses with the lysosome, causing
the formation of autolysosome (Hamasaki et al., 2013; Lamb et al.,
2013). The lysosome provides hydrolases to the autolysosome,
where the autophagosome inner membrane is lysed and the
cargoes break down, and then the resulting macromolecules

are released back into the cytosol for reuse through membrane
permeases (Mizushima et al., 2008; Lamb et al., 2013).

Autophagy is involved in a variety of mammalian
physiological processes such as the maintenance of energy
homeostasis, cell differentiation and development, and innate
immunity against invading pathogens (Kuma et al., 2004; Levine
and Kroemer, 2008; Mizushima and Levine, 2010; Levine et al.,
2011; Deretic et al., 2013). Given the powerful function to
degrade intracellular substances, host autophagy is activated
during the viral infection so as to degrade various invading
viruses (Levine et al., 2011; Deretic et al., 2013). However, an
increasing body of evidence suggests that viruses have developed
various strategies to hijack and subvert the host autophagy for
their life cycle and pathogenesis (Heaton and Randall, 2010;
Levine et al., 2011; Deretic et al., 2013). In this review, we focus
on the function of autophagy in the process of viral infection
and pathogenesis and then discuss the mechanisms of how
viruses usurp the host autophagy to facilitate their life cycle
and pathogenesis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 October 2021 | Volume 9 | Article 766142

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-766142 October 11, 2021 Time: 16:26 # 3

Liang et al. Autophagy and Viral Infections

THE FUNCTION OF AUTOPHAGY IN
ANTIVIRAL DEFENSE

As a multi-step and tightly regulated cellular process for
maintaining eukaryotic cellular homeostasis, autophagy is the
only pathway that is able to degrade whole cellular organelles
(such as mitochondria, peroxisomes, endoplasmic reticulum,
nucleus, and liposomes) and various invading pathogens
(including viruses) in either a selective or a non-selective manner
(Khaminets et al., 2015; Mochida et al., 2015; Ammanathan et al.,
2020; Jo et al., 2020; Miceli et al., 2020; Onishi et al., 2021). Upon
viral infection, the induction of autophagy by viruses (known
as virophagy) could be either proviral or antiviral (Dong and
Levine, 2013; Delorme-Axford and Klionsky, 2019; Mijaljica and
Klionsky, 2020). Virophagy plays its antiviral function probably
through (1) selectively targeting viral particles to the lysosome
for degradation (Figure 2), (2) promoting interferon production
by activating host innate immune response, or (3) coordinating
adaptive immunity by promoting antigen presentation.

Host Autophagy Fights Viral Infection by
Targeting Viral Particles to the Lysosome
for Degradation
By delivering the invading pathogens to the lysosomes for
degradation so as to discard them, autophagy is believed to be
an important part of the host defense system. The process of
degrading foreign microbial invaders by autophagy is known
as xenophagy (Levine, 2005). The function of xenophagy to
eliminate invading viruses, bacteria, fungi, or parasites, makes
it an important immune player in pathogen infection. During
viral infection, host autophagy can degrade viral particles, viral
components, and the host factors required by viruses for their
replication; therefore, host autophagy functions as a key innate
antiviral response (Figure 2).

The first evidence of autophagy functions as antiviral
means came from Sindbis viral infection. During its infection,
overexpression of Beclin 1 (the mammalian Atg6 ortholog) in
neurons could inhibit the Sindbis virus spread, reduce cellular
apoptosis, and protect against fatal Sindbis virus encephalitis
(Liang et al., 1998), whereas Atg5 (an essential component for
the formation of autophagosomes in mammalian cells) deficiency
in Sindbis-infected neurons leads to delayed clearance of viral
proteins, accumulation of the p62 (also known as SQSTM1)
adaptor protein, and increased cell death in neurons (Mizushima
et al., 2001). Moreover, an in vitro study found that p62 could
interact with Sindbis capsid protein and targets the viral capsid
to the autophagosome (Orvedahl et al., 2010). Orvedahl et al.
(2011) further found that Smad-Ubiquitin Regulatory Factor 1
(SMURF1), a HECT-domain ubiquitin ligase, is not required
for general autophagy, but is needed by selective autophagy,
such as virophagy and mitophagy. Moreover, they found that
SMURF1 could interact with p62 and target Sindbis capsid to
autophagosomes for virophagy. Fanconi anemia group C protein
(FANCC) was also found to play an essential role in virophagy
and mitophagy; its deficiency could inhibit the autophagic
clearance of viruses (virophagy) and make mice more susceptible

to lethal viruses (Sumpter et al., 2016). FANCC plays its role
by interacting with the Sindbis capsid protein and therefore
contributes to preventing viral infection (Minton, 2016; Sumpter
et al., 2016). Besides Sindbis, SMURF1 and FANCC also inhibit
HSV-1 infection through autophagy, indicating that these two
proteins probably play virophagic factor functions during viral
infection (Orvedahl et al., 2011; Sumpter et al., 2016).

Picornaviruses are archetypical non-enveloped viruses, which
are a major cause of human and veterinary infections that lead to
various diseases, such as polio and the common cold (Zhang et al.,
2020). Host galectin 8 could detect picornaviruses and inhibit
their infection through autophagy to degrade the viral genomic
RNA (Staring et al., 2017). Specifically, the picornaviruses that
enter the host will puncture the endosomal membrane and
release their genome into the host cytoplasm, which causes
the exposure of β-galactosides. Galectin-8 could specifically
recognize β-galactosides and therefore marks the permeated
endosomes for autophagic degradation.

As a small, enveloped RNA virus that mainly targets human
hepatocytes, hepatitis C virus (HCV) is a major cause of liver
cirrhosis and hepatocellular carcinoma worldwide (Zeisel et al.,
2013; Kaplan, 2020). The prevention measures for HCV are
absent and the current antiviral treatment for it is limited
because of resistance, toxicity, and high costs (Zeisel et al., 2011;
Hickman et al., 2015). Because of the discovery of HCV, the
2020 Nobel Prize in Physiology or Medicine has been awarded
to Harvey J. Alter, Michael Houghton, and Charles M. Rice
(Burki, 2020; Hoofnagle and Feinstone, 2020). Kim et al. (2016)
found that the overexpression of endoplasmic reticulum (ER)
protein SCOTIN inhibits HCV replication and infectious virion
production in cells transfected with HCV. A further study
found that SCOTIN could interact with HCV non-structural
5A (NS5A) protein, a critical factor for HCV replication, and
target NS5A to autophagosomes for degradation. Moreover,
inhibition of autophagy by silencing ATG7 or administering
lysosomal inhibitors could relieve the suppressive effect of
SCOTIN on HCV replication. They also showed that SCOTIN
is merely a substrate for degradation of autophagy, but not
affecting the whole process of autophagy; of note, the binding of
transmembrane/proline-rich domain (TMPRD) of SCOTIN with
Domain-II of NS5A is critically required for the trafficking of
autophagosomal and NS5A degradation (Kim et al., 2016). These
results suggest that autophagy restricts HCV replication through
SCOTIN to target HCV NS5A protein to autophagosomes
for degradation.

As a sensor of cytosolic DNA that activates the type I
interferon pathway, cyclic GMP-AMP synthase (cGAS) could
bind to microbial or self-DNA in the cytoplasm and therefore
supervises infections or tissue damage (Sun et al., 2013).
Specifically, cGAS is activated through binding with cytosolic
DNA, which could further catalyze GTP and ATP to be cyclic
GMP-AMP (cGAMP) (Wu et al., 2013). As a second messenger
of cell, cGAMP could bind to and activate the stimulator of
interferon genes (STING) (Ishikawa and Barber, 2008; Saitoh
et al., 2009; Burdette et al., 2011; Wu et al., 2013; Zhang
et al., 2013), which then recruits and activates the tank-binding
kinase 1 (TBK1) causing the phosphorylation of the transcription
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FIGURE 2 | Host autophagy fights viral infection by selectively targeting viral particles to lysosome for degradation. During the viral infection, host autophagy can be
inducted (known as virophagy), which can degrade viral particles, viral components, as well as host factors that are required by viruses for their replication. Some
viruses are degraded by selective autophagy by being recognized by specific proteins of the host. Smad-Ubiquitin Regulatory Factor 1 (SMURF1), a HECT-domain
ubiquitin ligase, and Fanconi anemia group C protein (FANCC) can target Sindbis capsid protein as well as the herpes simplex virus type 1 (HSV-1) to
autophagosomes for virophagy, contributing to prevent viral infection. The invasion of the picornaviruses will puncture the endosomal membrane to release their
genome into the host cytoplasm, causing the exposure of β-galactosides. Galectin-8 could specifically recognize β-galactosides and therefore mark the permeated
endosomes for autophagic degradation. The endoplasmic reticulum (ER) protein SCOTIN can inhibit HCV replication by interacting with the HCV non-structural 5A
(NS5A) protein, a critical factor for HCV replication, which can help to form autophagosomes for degradation and suppress infectious virion production in cells.
Moreover, the endosomal protein sorting nexin 5 (SNX5) can target some viruses for virophagy, but not for basal level autophagy or stress-induced autophagy.

factor IRF3 to induce the production of type I interferons and
other cytokines (Cai et al., 2014; Liu et al., 2015; Zhang et al.,
2019). Besides the important function in activating the immune
response, STING could also activate autophagy during viral
infections (Gui et al., 2019; Liu et al., 2019). Gui et al. (2019)
showed that the binding of cGAMP with STING leads to the
interaction of STING with SEC24C, causing the budding of
STING from the endoplasmic reticulum into the COP-II vesicles
and forming the endoplasmic reticulum–Golgi intermediate
compartment (ERGIC), which functions as the membrane source
for WIPI2 recruitment and LC3 lipidation, and finally causing the
formation of autophagosomes targeting cytosolic DNA or DNA
viruses to the lysosome for degradation (Gui et al., 2019). STING
induces autophagy that is dependent on WIPI2 and ATG5,
whereas other regulators of autophagy such as Beclin 1, Atg9a,
ULK1, and p62 are not required (Gui et al., 2019; Liu et al., 2019).
Interestingly, Gui et al. (2019) also showed that STING from the
sea anemone is also able to induce autophagy but not interferons
in response to the stimulation of cGAMP, which suggests that the

cGAS-STING pathway-induced autophagy is probably an ancient
and highly conserved mechanism that predates the emergence
of the type I interferon pathway in vertebrates to eliminate the
invading viruses.

How is autophagy induced in mammalian cells during viral
infection? By using genome-wide short interfering RNA screens,
the endosomal protein sorting nexin 5 (SNX5) is found to be
required merely for virus-induced autophagy, but not for basal
level autophagy or stress-induced autophagy (Dong et al., 2021).
Deletion of SNX5 makes cultured cells more susceptible to viral
infection, and mice deficient in SNX5 have a high lethality
after infection with several human viruses (Dong et al., 2021).
Moreover, they found that SNX5 could interact with PI3KC3-
C1 and promote its activation at endosomes and therefore
contributes to the initiation of autophagy during viral infection.

Collectively, host cells detect the invading viruses and activate
the autophagy, which targets viruses to the lysosomes for
degradation through the interaction of host protein with the
viral protein. Future studies should focus on exploring additional
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viruses that can be selectively degraded by autophagy and
clarifying the specific mechanisms involved in this process.

Host Autophagy Defense Against Viral
Infection by Promoting Interferon
Production Through Activating the
Innate Immune Response
As the first line of defense against virus infection, the host
innate immune system plays essential roles in recognizing
invading viruses and inducing anti-viral responses to prevent
viral invasion and pathogenesis before the generation of more
specific protection by the adaptive immune system (Takeuchi
and Akira, 2007; Koyama et al., 2008; Figure 3). The host innate
immune system recognizes invading viruses by several classes of
germline-encoded pattern-recognition receptors (PRRs), which
could specifically recognize the pathogen-associated molecular

patterns (PAMPs), such as viral DNA, viral double-stranded RNA
(dsRNA), viral single-stranded RNA (ssRNA), or viral surface
glycoproteins (Akira et al., 2006; Chan and Gack, 2016). The
recognition of viral components by PRRs will induce the infected
cells and other immune cells to produce type I interferons (IFNs)
to aid in eliminating the invading viruses (Medzhitov, 2007).

There are several classes of PRRs with specific functions; virus-
derived nucleic acids with distinct features are recognized by
these specific host transmembrane or cytosol PRRs (Medzhitov,
2007; Gürtler and Bowie, 2013; Wu and Chen, 2014). As an
important group of cytoplasmic RNA sensors, the RIG-I-like
receptors (RLRs) are composed of three proteins (RIG-I, MDA5,
and LGP2) that are similar in their structure and function, and
all of them are able to recognize viral nucleic acid signatures
during the viral infections (Rehwinkel and e Sousa, 2010; Bruns
and Horvath, 2014). Recently, Hou et al. (2021) have found a
novel selective autophagy receptor, CCDC50, which could deliver

FIGURE 3 | Host autophagy defense against viral infection by promoting interferon production through activating innate immune response. Cyclic GMP-AMP
synthase (cGAS) can be activated when it is bound to the cytosolic DNA (microbial or self-DNA), then the activated cGAS can catalyze GTP and ATP to be cyclic
GMP-AMP (cGAMP), which can bind to and activate the stimulator of interferon genes (STING). The binding of cGAMP with STING, on the one hand, can lead to the
interaction of STING with SEC24C, causing the budding of STING from the ER into the COP-II vesicles and forming the endoplasmic reticulum–Golgi intermediate
compartment (ERGIC), which functions as the membrane source for WIPI2 recruitment and LC3 lipidation, and finally causing the formation of autophagosomes
targeting cytosolic DNA or DNA viruses to the lysosome for degradation. On the other hand, it can also recruit and activate the tank-binding kinase 1 (TBK1) causing
the phosphorylation of the transcription factor IRF3 to induce the production of type I interferons (IFNs). In addition, viral DNA, viral double-stranded RNA (dsRNA),
viral single-stranded RNA (ssRNA), or viral surface glycoproteins, express the pathogen-associated molecular patterns (PAMPs), which can be specifically recognized
by several classes of germline-encoded pattern-recognition receptors (PRRs) of the host cells. Moreover, PRR could activate IRF3/IRF7 and NF-κB transcription
factors by recruiting mitochondrial antiviral signaling protein (MAVS), leading to the activation of type I IFN responses and establishment of an antiviral state.
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K63 polyubiquitination-activated RIG-I/MDA5 for degradation
by lysosomes during viral infection and therefore negatively
regulate the IFNs signaling pathway initiated by RLRs. As
the best characterized class of PRR, toll-like receptors (TLRs)
are transmembrane receptors that recognize viral nucleic acids
within endosomal compartments (Medzhitov, 2007). Both of
these two classes of PRR could activate IRF3/IRF7 and NF-
κB transcription factors by recruiting mitochondrial antiviral
signaling protein (MAVS), leading to the activation of type I
interferon (IFN) responses and establishment of antiviral state
(Seth et al., 2005; Akira et al., 2006; Medzhitov, 2007).

Lee et al. (2007) first elucidated the key function of autophagy
in promoting interferon secretion in plasmacytoid dendritic
cells (pDCs). They found that autophagy was required for the
transportation of cytosolic viral into the lysosomes and the
recognition of ssRNA viruses such as vesicular stomatitis virus
(VSV) or Sendai virus (SeV) by TLR7. Moreover, they also
found that autophagy was critically needed by pDCs during the
production of interferon-α.

As an essential DNA virus sensor, cGAS could prompt IFNs
production by generating cGAMP, which binds to and activates
an endoplasmic reticulum-associated adaptor protein STING
(Sun et al., 2013; Wu et al., 2013). Chen et al. (2016) have found
that TRIM14 could block cGAS degradation through selective
autophagy and therefore promote innate immune responses
during viral infections. Specifically, upon the viral infections,
TRIM14 could recruit USP14 to cut the lysine 48 (K48)-linked
ubiquitin chains of cGAS at K414, causing inhibition of p62-
mediated autophagic degradation of cGAS, therefore promoting
the activation of type I interferon signaling to aid the elimination
of the invading viruses (Chen et al., 2016).

These studies suggest that host autophagy plays an essential
role in activating the innate immune response to eliminate
the invading viruses by promoting the infected cells and other
immune cells to produce IFNs. However, there are also some
studies reporting that autophagy or its components contributed
to the negative regulation of host innate immune response
(Jounai et al., 2007; Lei et al., 2012; Liang et al., 2014; Jin et al.,
2017; Du et al., 2018; Prabakaran et al., 2018). Therefore, during
viral infection, the interaction between PRRs and autophagy
resulted in the activation and/or inhibition of various host innate
immune responses, causing first-rank antiviral effects.

Host Autophagy Fights Viral Infection
and Pathogenesis Through Coordinating
Adaptive Immunity by Promoting Antigen
Presentation
The efficient adaptive immune response is essential for the
elimination of invading viruses. The first step of the adaptive
immune response is the presentation of peptides of foreign
or self-proteins on major histocompatibility complex (MHC)
molecules at the cell surface of antigen-presenting cells (APCs)
such as dendritic cells and macrophages, which then can be
recognized by CD8+ or CD4+ T lymphocytes (Rammensee
et al., 1993; Villadangos, 2001). In general, MHC class I (MHC-
I) molecules specifically present antigenic peptides derived

from intracellular proteins that have been digested by the
proteasomal degradation system, whereas MHC class II (MHC-
II) molecules specifically present antigenic peptides stemming
from exogenous and membrane proteins that have been degraded
by the endosomal/lysosomal system (Neefjes, 1999; Princiotta
et al., 2003; Dengjel et al., 2005; Choi et al., 2018). However, there
are certain situations where MHC-I molecules could present
peptides stemming from exogenous antigens, which is a process
called cross-presentation, mainly executed by a specific subset of
dendritic cells (DCs) through endocytic and phagocytic pathways
(Morón et al., 2004; Joffre et al., 2012; Blander, 2018; Muntjewerff
et al., 2020). In addition, the peptides derived from intracellular
proteins could also be loaded on MHC-II molecules through the
process of autophagy (Nimmerjahn et al., 2003; Dörfel et al., 2005;
Paludan et al., 2005; Münz, 2006).

Autophagy Contributes to the Intracellular Antigen
Processing for MHC Class I Presentation
Macrophages infected with the Herpes simplex type 1 virus could
activate the process of autophagy, which plays an essential role in
the targeting of viral proteins to lysosomes and then loaded on
MHC class I molecules for presentation (English et al., 2009b).
During this process, a novel type of autophagosomes is involved,
which is formed by coiling of the viral proteins enriched with
nuclear membrane (English et al., 2009a). With the help of this
process, the peptide derived from HSV-1 glycoprotein B (gB)
could be presented to CD8+ T cells aided by proteasome function
and the secretory pathway.

An endogenous human cytomegalovirus (HCMV) latency-
associated protein, pUL138, could be presented by MHC-I
through both the conventional TAP-dependent and the non-
conventional TAP-independent pathways (Tey and Khanna,
2012). The TAP-dependent process uses the proteasomal
machinery and ER-resident proteases of the conventional MHC
class I pathway, whereas the TAP-independent process uses the
vacuolar pathway mediated by autophagy. Importantly, this
autophagy-mediated pathway is not dependent on proteasomal
processing and Golgi transport, but dependent on the alternate
cross-presentation pathway that only occurs within the
endovacuolar compartment. Although this autophagy-mediated
pathway uses minimal components of the conventional MHC-I
machinery, it could generate and present the same peptide
epitope as the conventional pathway.

Autophagy Promotes Intracellular Antigen Processing
for MHC Class II Presentation
The MHC class II-positive cells such as dendritic, B, and
epithelial cells constitutively form autophagosome, which
then continuously fuse with multivesicular MHC class II-
loading compartments to deliver cytoplasmic proteins for the
presentation of MHC class II and antiviral immunity (Schmid
et al., 2007). Endogenous Epstein–Barr virus nuclear antigen 1
(EBNA1) could be presented by MHC-II molecules and then
recognized by CD4+ T cells (Paludan et al., 2005). Inhibition of
lysosomal acidification led to the slow accumulation of EBNA1
in cytosolic autophagosomes. Moreover, blocking of autophagy
using a PI3K inhibitor or by knockdown of ATG12 could
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decrease the presentation of EBNA1 to CD4+ T cells by MHC-II
(Paludan et al., 2005).

Autophagy Contributes to the Extracellular Antigen
Processing for MHC Class II Presentation
Herpes simplex virus (HSV) infection resulted in the impairment
of CD4+ T-cell priming in Atg5-deficient mice in DCs,
which succumbed to HSV infection (Lee et al., 2010).
Moreover, autophagy is essential for the presentation of various
phagocytosed antigens with TLR agonists, whereas autophagy is
not required for innate immune recognition, antigen maturation,
or cytokine production, as most of these processes remained
intact in DCs deficient in Atg5 (Lee et al., 2010). These results
suggest that autophagy plays an essential part in the processing
and presentation of extracellular viral antigens by MHC-
II in DCs.

Autophagy Also Contributes to Cross-Presentation of
Extracellular, Endocytosed Antigens for MHC Class I
Presentation
By presentation of extracellular, endocytosed antigens on MHC-
I molecules, cross-presentation plays an essential role in
the priming of CD8+ T-cell responses (Joffre et al., 2012).
In vivo, subset-specific DCs are the major cells responsible for
cross-presentation by adapting their endocytic and phagocytic
pathways, which is essential for the immune defense against
viruses and other intracellular pathogens (Blander, 2018; Theisen
et al., 2018; Muntjewerff et al., 2020). On the one hand, autophagy
could enhance cross-presentation by modulation of endosomes
and assist the packaging of antigens released by donor cells, such
as virus-infected cells, tumor cells, or dying cells, to neighbor
DCs (Mintern et al., 2015; Dasari et al., 2016; Cruz et al., 2017);
on the other hand, autophagy also contributed to the cross-
presentation of viral antigens to CD8+ T cells during vaccination,
which was facilitated through a stress-dependent initiation of
autophagy in DCs (Ravindran et al., 2014). In addition, exocytosis
mediated by autophagy could transfer extracellular antigens
in LC3-coated autophagosome from the donor cells to DCs
(Smed-Sörensen et al., 2012).

Thus, autophagy is involved in both the classical and the
non-classical antigen presentation process, which is essential
for the optimal processing and presentation of viral antigens.
Moreover, the autophagy-mediated antigen presentation process
is an important supplement to the conventional antigen
presentation process; it may circumvent the various viral
immune evasion strategies targeting the MHC-I or MHC-
II machinery, therefore contributing to the elimination of
invading viruses.

VIRUSES HIJACK AND SUBVERT HOST
AUTOPHAGY TO AID THEIR OWN
INFECTIONS AND PATHOGENESIS

In general, host autophagy could inhibit viral replication,
degrade viral particles, and activate host immune response, all
of which contribute to the prevention of viral infection and
pathogenesis. However, some viruses have developed various

strategies to hijack and subvert host autophagy to aid their
own infections and pathogenesis (Orvedahl and Levine, 2009a,b;
Figure 4). These strategies include (1) directly inhibiting
autophagy activation through blocking the function of host
ATG proteins; (2) inhibiting autophagy downstream degradation
pathway; and (3) subverting host autophagy to benefit for
viral replication.

Viruses Directly Inhibiting Autophagy
Activation Through Blocking the
Function of Host ATG Proteins
Neurovirulence protein ICP34.5, which is expressed by the herpes
simplex virus type 1 (HSV-1), could inhibit host autophagy
activation through binding with the host autophagy protein
Beclin 1 (Orvedahl et al., 2007). HSV-1 virus deficient in the
Beclin 1-binding domain of ICP34.5 is unable to block autophagy
in neurons and shows a decrease in the ability to cause lethal
encephalitis in mice. Deletion of PKR, an autophagy-inducing
signaling molecule, could restore the neurovirulence of this
Beclin 1-binding mutant virus (Orvedahl et al., 2007). These
results suggest that the binding of Beclin 1 with ICP34.5 could
inhibit host autophagy and contribute to viral neurovirulence,
and the PKR is a Beclin 1 upstream effector during host defense
against HSV-1. Moreover, the Us11 protein of HSV-1 could
also inhibit host autophagy function by directly interacting with
the PKR protein kinase, therefore contributing to the HSV-1
infection and pathogenesis (Lussignol et al., 2013).

Viruses Counter Host Autophagy by
Inhibiting the Autophagy Downstream
Degradation Pathway
Matrix protein 2 of influenza A virus could inhibit autophagy
function through blocking the autophagosome–lysosome fusion,
causing the enhanced virus-induced cell death of infected cells
and elevated viral antigen release (Gannagé et al., 2009; Rossman
and Lamb, 2009). Human parainfluenza virus type 3 (HPIV3)
could also lead to the incomplete autophagy of host cells through
blocking autophagosome fusion with the lysosome, causing an
increase in virus production (Ding et al., 2014). Specifically, the
viral phosphoprotein (P) binds to SNAP29, blocking its binding
to syntaxin 17 (STX17), therefore inhibiting autophagosome–
lysosome fusion mediated by these two host SNARE proteins.
Autophagosome accumulation due to incomplete autophagy
could increase extracellular viral production but does not
affect viral protein synthesis, therefore contributing to the viral
infection and pathogenesis.

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2), an enveloped, single-stranded and positive-sense RNA
β-coronavirus, is the cause of the COVID-19 pandemic (Wang
et al., 2020; Wu et al., 2020; Zhou et al., 2020). ORF3a,
an accessory protein of SARS-CoV-2, could strongly inhibit
autophagy activity by blocking the fusion of autophagosomes
with lysosomes (Hayn et al., 2021; Miao et al., 2021; Qu et al.,
2021; Zhang et al., 2021). Specifically, ORF3a is localized in
the late endosome and directly interacts with and sequestrates
VPS39, an essential component of the homotypic fusion
and protein sorting (HOPS) complex, thereby preventing the
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FIGURE 4 | Viruses hijack and subvert host autophagy to aid their own infections and pathogenesis. Some viruses have developed various strategies to hijack and
subvert host autophagy to aid their own infections and pathogenesis. These strategies include (1) directly inhibiting autophagy activation through blocking the
function of host ATG proteins; (2) inhibiting autophagy downstream degradation pathway; and (3) subverting host autophagy to benefit viral replication. Class III PI3K
complex I (PI3KC3-C1), which can produce PI3P, is necessary for the nucleation of autophagosomes and is composed of VPS34, VPS15, Beclin 1, and ATG14L.
ICP34.5 expressed by the HSV-1 could inhibit host autophagy activation through binding with the host autophagy protein Beclin 1. The matrix protein 2 of influenza
A virus could inhibit autophagy function by blocking the autophagosome–lysosome fusion, causing the enhanced virus-induced cell death of infected cells and
elevated viral antigen release. The human parainfluenza virus type 3 (HPIV3) phosphoprotein (P) binds to SNAP29, blocking its binding to syntaxin 17, therefore
inhibiting the fusion of autophagosome-lysosome mediated by these two host SNARE proteins. All of these will contribute to the viral infection and pathogenesis.

HOPS complex from interacting with the STX17 or RAB7,
which prevented the fusion machinery packaging, leading
to an abnormal autophagosome–lysosome fusion. Moreover,
SARS-CoV-2-expressed ORF3a and ORF7a can directly induce
lysosomes injury and impair their function, such as inhibiting
their acidification (Hayn et al., 2021; Koepke et al., 2021; Miao
et al., 2021; Shroff and Nazarko, 2021). By doing this, SARS-
CoV-2 could escape host lysosome degradation. Besides, the
SARS-CoV-2 spike could hijack host autophagy to promote host
cell inflammation and apoptosis probably through the ROS-
suppressed PI3K/AKT/mTOR signaling (Li et al., 2021).

Viruses Subvert Host Autophagy to
Benefit Their Replication
As a DMV formed during autophagy, autophagosome provides a
perfect place for the RNA viral replication through concentration
of essential intermediates for viral package and protection of viral

RNAs away from the detection by innate immune supervision
and degradation. The host autophagy has been required by
several viruses such as Coxsackieviruses (CVB) 3, CVB 4,
foot and mouth disease virus, HCV, and poliovirus for their
own replication, as genetic or pharmacological inhibition of
autophagy could decrease viral yields (Taylor and Kirkegaard,
2008; Wong et al., 2008; Yoon et al., 2008; Dreux et al., 2009;
O’Donnell et al., 2011). Moreover, some viruses such as dengue
virus (DENV), usurp autophagy to enhance their replication
by regulating cellular lipid metabolism (Heaton and Randall,
2010). Specifically, DENV infection induces the activation of
lipophagy to release free fatty acids, causing an increase of cellular
β-oxidation and more ATP generation, which contributes to the
replication of DENV.

In summary, host autophagy is a double-edged sword during
viral infection and pathogenesis. On the one hand, hosts could
utilize their own autophagy to prevent viral infection and
pathogenesis; on the other hand, viruses have evolved various
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strategies by which they hijack and subvert host autophagy to aid
their infection and pathogenesis.

CONCLUSION

As an evolutionarily conserved cellular process, autophagy is
essential for both hosts and invading viruses. On the one
hand, it could prevent viral infections and pathogenesis mainly
by degrading viruses, initiating innate immune response, and
facilitating antigen presentation. On the other hand, a mass of
viruses have evolved strategies to hijack host autophagy for their
own benefits. Although the function of host autophagy in viral
infection and pathogenesis has been widely studied in the past
two decades, current knowledge of autophagy in viral infections
is still in its infancy and many important questions remain. For
example, why some viruses have evolved strategies to evade host
autophagy, whereas others have not? What is the driving force
for this evolution? What roles do a variety of selective autophagy
(such as mitophagy and lysophagy) play in viral infection and
pathogenesis? What roles do microautophagy and chaperone-
mediated autophagy play in viral infection and pathogenesis?

Moreover, the specific function of autophagic proteins and the
mechanisms controlling autophagy during viral infection and
pathogenesis are still unclear. Further research is needed to
elucidate the specific functions of different types of autophagy
and the specific function in viral infections and pathogenesis, to
develop more specific targeted drugs to combat epidemic viral
infections, such as COVID-19.
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