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In this review, the current experimental evidence, literature and hypotheses surrounding
hyaluronidase 4 [HYAL4, also known as chondroitin sulphate hydrolase (CHSE)] and
chondroitin sulphate (CS) are explored. Originally named for its sequence similarity to
other members of the hyaluronidase family, HYAL4 is actually a relatively distinct member
of the family, particularly for its unique degradation of CS-D (2-O-, 6-O-sulphated CS)
motifs and specific expression. Human HYAL4 protein expression and structural features
are discussed in relation to different isoforms, activities, potential localisations and
protein-protein interaction partners. CS proteoglycan targets of HYAL4 activity include:
serglycin, aggrecan, CD44 and sulfatase 2, with other potential proteoglycans yet to
be identified. Importantly, changes in HYAL4 expression changes in human disease
have been described for testicular, bladder and kidney cancers, with gene mutations
reported for several others including: leukaemia, endometrial, ovarian, colorectal, head
and neck, stomach, lung and breast cancers. The HYAL4 gene also plays a role in P53
negative human cancer cell proliferation and is linked to stem cell naivety. However,
its role in cancer remains relatively unexplored. Finally, current tools and techniques for
the detection of specific HYAL4 activity in biological samples are critically assessed.
Understanding the role of HYAL4 in human diseases will fortify our understanding
of developmental processes and disease manifestation, ultimately providing novel
diagnostic opportunities and therapeutic targets for drug discovery.

Keywords: chondroitin sulphate, proteoglycan, hydrolase, cancer, stem cell, spinal cord injury, osteoarthritis,
catabolism

INTRODUCTION

Structure of Chondroitin Sulphate/Dermatan Sulphate (CSPGs)
The glycosaminoglycan, chondroitin sulphate (CS), is a long, linear polysaccharide comprised
of repeating glucuronic acid-N-acetylgalactosamine (GlcA-GalNAc) disaccharides that adorn a
subset of glycosylated proteins, termed CS proteoglycans (CSPGs). Members of the family play
diverse roles in tissue architecture, cell signalling, cell migration and growth, as well as in disease
manifestation including: inflammation, cancer, neurological diseases and osteoarthritis (Bautch
et al., 2000; Kim et al., 2011; Chi et al., 2012; Mikami and Kitagawa, 2013; Mizumoto et al., 2015;
Hayes et al., 2016; Stephenson and Yong, 2018; Shida et al., 2019; Lokeshwar et al., 2020). The
CSPG family has recently expanded to include 19 newly identified CS attachment sites in the human

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 October 2021 | Volume 9 | Article 767924

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.767924
http://creativecommons.org/licenses/by/4.0/
mailto:marissa.maciej-hulme@radboudumc.nl
mailto:marissa.maciej-hulme@radboudumc.nl
https://doi.org/10.3389/fcell.2021.767924
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.767924&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/articles/10.3389/fcell.2021.767924/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-767924 October 13, 2021 Time: 16:2 # 2

Maciej-Hulme Human HYAL4/CHSE

proteome (Noborn et al., 2021). CS chains are built on to
a common tetrasaccharide linker (xylose-galactose-galactose-
GlcA) in the endoplasmic reticulum and Golgi apparatus, and
are tethered to the protein core via a serine residue. A myriad
of enzymes construct CS chains [reviewed extensively in Mikami
and Kitagawa (2013)] and multiple sulphate groups may be
positioned along the CS polymer, namely 2-O-sulphation on
the GlcA, and/or 4-O- and 6-O-sulphation on the GalNAc,
respectively. These sulphation modifications give rise to great
structural diversity, forming functional motifs that participate
in CS-ligand interactions. In addition, epimerisation of GlcA
to iduronic acid within the chain creates hybrid CS/dermatan
sulphate (DS) chains, altering the flexibility of the polymer
and consequentially potential ligand interactions (Thelin et al.,
2013; Mizumoto et al., 2015). Classification of unsulphated
chondroitin, CS and DS chains is defined by the chemical
structure of the polymer, with CS split into subtypes: CS-
A (4-O-sulphated), CS-C (6-O-sulphated), CS-D (2-O-, 6-O-
sulphated), and CS-E (4-O-, 6-O-sulphated). The latter two
subtypes represent rarer sulphation modifications present within
CS/DS chains. CS bioactivity is often described for CS/DS hybrid
chains, and CS enriched in rarer sulphation types, such as CS-D
and CS-E (Bao et al., 2004; Kim et al., 2011; Beurdeley et al., 2012;
Mizumoto et al., 2015; Shida et al., 2019).

After biosynthesis is complete, further modification of CS
chains can occur via degradation enzymes that cleave the
glycosidic bonds between the saccharide units and release
CS fragments from the parent polymer. Three human extra-
lysosomal CS hydrolases have been identified: PH20 (SPAM1),
hyaluronidase 1 (HYAL1) and hyaluronidase 4 [HYAL4, also
known as chondroitin sulphate hydrolase (CHSE)] (Kaneiwa
et al., 2010; Honda et al., 2012; Yamada, 2015). Unlike the first two
that can degrade hyaluronic acid and CS substrates to a similar
degree (Honda et al., 2012), HYAL4 is predominantly an endo-
β-N-acetylgalactosaminidase with a strong preference for CS-D
(2-O-, 6-O-sulphated CS) (Kaneiwa et al., 2010; Wu and Ertelt,
2021). Although HYAL4 CHSE activity was only discovered in
2010, a few CSPGs have already been identified to be modified
by HYAL4 degradation including serglycin, aggrecan (Farrugia
et al., 2019), CD-44 (Lokeshwar et al., 2020) and likely Sulfatase
2 too (El Masri et al., 2021). HYAL4 cleavage of CSPGs produces
smaller [tetra- to dodecasaccharide (Bautch et al., 2000; Bao et al.,
2004; Kim et al., 2011; Mikami and Kitagawa, 2013; Thelin et al.,
2013; Mizumoto et al., 2015; Hayes et al., 2016; Shida et al.,
2019; Noborn et al., 2021) sized] fragments (Farrugia et al., 2019)
with a common structure [GlcA-GalNAc(6S)-GlcA, also known
as 3B3- motifs] located proximally at the non-reducing end of the
chain (Figure 1).

HUMAN HYALURONIDASE 4 PROTEIN
EXPRESSION AND STRUCTURE

The HYAL4 gene is located on chromosome locus 7q31.3. Several
tissues and cell types have been identified to express HYAL4,
particularly placenta, skeletal muscle tissue and neutrophils
(granulocytes) (Farrugia et al., 2019; Quirós et al., 2019).

Northern blot analysis showed that expression of HYAL4 exists
as 2.4- and 4.0-kb transcripts in placenta as well as a 2.1-
kb transcript in skeletal muscle, suggesting differential splicing
of the gene may occur in different cell types and/or contexts
(Csoka et al., 1999). HYAL4 protein expression has also been
identified for several tissues of which testes and skeletal muscle
are enriched (Bastow et al., 2008; Elbein et al., 2011; Quirós
et al., 2019). Immunohistochemical staining of human tissues
showed HYAL4 in the cytoplasm and membrane of cells and
indicated the presence of HYAL4 in neuronal cell nuclei (Uhlen
et al., 2015). Flow cytometry of non-permeabilised mast cells
showed HYAL4 to be associated with the cell surface (Farrugia
et al., 2019). In vitro experiments have demonstrated that at
least one protein isoform is released into the extracellular milieu
(Lokeshwar et al., 2020). However, the habitual location(s) of
HYAL4 remains to be established.

Four proteins have been predicted from the human gene,
two of which have been confirmed experimentally. The full-
length variant (481 amino acids, UniProt Q2M3T9) is currently
predicted to be a transmembrane protein, with cytoplasmic N-
and C-termini and an extracellular catalytic domain followed by
a peptide linker. However, unlike HYAL1, HYAL2, and HYAL3,
no obvious canonical signal sequence has been identified for
targeting to the membrane. Furthermore, a putative GPI-anchor
at the C-terminus (position 455) is predicted (Kaneiwa et al.,
2010, 2012), which would subsequently remove the C-terminal
transmembrane domain. In several ape species, pig and mouse,
HYAL4 orthologs also have predicted GPI-anchors but in rats
and Caenorhabditis elegans the protein is probably secreted.
Interestingly, human HYAL2, and PH20 also have consensus GPI
anchor sites, but HYAL1 and HYAL3 do not. The shorter 349
amino acid human v1 variant of HYAL4 (UniProt, F8WDH9)
is a truncated version, omitting the C-terminal peptide linker,
predicted transmembrane and cytoplasmic peptide domains,
which suggests that this protein form is secreted.

Both identified HYAL4 variants possess catalytic activity. For
the full-length version, CS-D motifs are the preferred substrate
with an optimum pH of 4.5–5 (Kaneiwa et al., 2010). In
contrast, the v1 variant preferred cleaving CS-C over CS-D and
enzyme activity had an optimum pH of 5–5.5 (Lokeshwar et al.,
2020), suggesting that some catalytic specificity of the substrate
preference is encoded within the peptide linker, even though
the mutation was not directly adjacent to the catalytic residue
(E147). A single mutation in the positioning residue Y247 in
human HYAL4 (equivalent to Y219 in TsHyal-1) results in altered
substrate specificity of full length HYAL4 (Jedrzejas and Stern,
2005). The differences in CS catalytic specificities in the splice
variants may act as an additional layer of regulation to CS biology
in tandem with enzyme localisation (membrane bound/anchored
vs. secretion) for diverse control of multiple CSPG targets. Other
methods of catalytic control may lie in the post translational
modifications of the protein. Phosphorylation and acetylation
mechanisms for enzyme activation or deactivation have been
described for many enzymes (Guan and Xiong, 2011; Ardito
et al., 2017). Three potential phosphorylation sites (Y43, T88,
and Y296) and one acetylation site (E193) close to the catalytic
residue (E147) have been predicted, all located within the catalytic
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FIGURE 1 | The structure of chondroitin sulphate (CS) is modified by hyaluronidase 4 (HYAL4)/chondroitin sulphate hydrolase (CHSE) degradation activity. Image
depicts HYAL4 modification of cell surface and extracellular matrix CS proteoglycans (CSPGs). CS side chains are cleaved by HYAL4 to produce free
oligosaccharides and a shorter parent chain. Released CS fragments and ligand cargo are free to travel to different locations and exert changes on other cells. The
modified parent CSPG also modifies cell behaviour. Removal of CS from the extracellular matrix induces changes in tissue structure. Inset, chemical structure of CS
with example sulphate groups highlighted in red. Figure created with BioRender.com.

domain. The protein has four potential N-glycosylation sites (86,
115, 177, and 343 amino acid positions), with the presence of a
complex N-glycan confirmed at 177 (Jia et al., 2009). Curiously,
the peptide linker (and C-terminus) is what sets HYAL4 apart
from other HYALs, and is a conserved feature in other species,
including mice and the single CSHY present in C. elegans
(Kaneiwa et al., 2008). This raises questions about its purpose for
HYAL4 function via non-enzymatic mechanisms that have been
described for other enzymes such as transportation of molecules,
regulation and structural support (Kung and Jura, 2016).

In short, there are many unanswered questions surrounding
HYAL4 protein structure. Whilst the structural features of the
protein(s) remain unsolved, so do their functions. Hence the
deduction of HYAL4 protein structure and the characterisation
of post translational modifications of the protein will be
an important corner stone for future studies in HYAL4
and CS/DS biology.

Hyaluronidase 4 Protein-Protein
Interactions
Interestingly, three distinct proteins have been identified as
interaction partners of HYAL4: Glyceraldehyde-3-phosphate

dehydrogenase, spermatogenic (GAPDHS; Huttlin et al.,
2017), Isoleucine tRNA Synthetase 2 (IARS2; Wan et al.,
2015) and NIMA Related Kinase 4 (NEK4; Basei et al., 2015).
GAPDHS (also known as GAPDH-2) is an enzyme belonging
to the Glyceraldehyde-3-phosphate dehydrogenase family
that generates 1,3-diphosphoglycerate from glyceraldehyde-3-
phosphate, and is thought to act as a switch between pathways
for energy production. It is highly expressed in elongated (late)
spermatids but has also been detected in malignant melanoma
(Hoek et al., 2008), suggesting that its role is not confined to
spermiogenesis as implied by its name. IARS2 is a ubiquitously
expressed mitochondrial tRNA synthase that catalyses the
aminoacylation of tRNA with isoleucine. Knockdown of IARS2
has been shown to promote apoptosis and inhibit proliferation
in melanoma cells (Ma et al., 2020). NEK4 is a serine/threonine
kinase involved in replicative senescence and for normal cell cycle
arrest in response to double-stranded DNA damage (Nguyen
et al., 2012). There are two splice variants of NEK4 (NEK4.1
and NEK4.2) (Basei et al., 2015) both with a nuclear localisation
sequence in the regulatory domain (Hayashi et al., 1999) but cell
cytoplasmic expression has also been observed. Expression of
NEK4 is particularly abundant in Leydig cells of the testes as well
as exocrine glandular cells of the pancreas, adrenal glandular cells
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of the stomach and adrenal gland. GAPDHS, IARS2, and NEK4
have no known links between each other and none have been
previously associated with CS. Thus, until further experimental
evidence is reported, their roles in HYAL4 (and CS) biology
remain intriguing but speculative.

ASSAYS AND TOOLS FOR THE
DETECTION OF HYALURONIDASE 4
ACTIVITY AND FUNCTION

Degradation Activity Assays
Since the discovery of HYAL4 activity on CS, several new
antibodies and quantitation kits became commercially available
for the protein, which will greatly support future HYAL4 research.
However, detection and quantification of HYAL4 enzyme activity
remains challenging, as it is not always straightforward to
delineate specific enzyme CHSE activity from biological samples.
Although PH20 expression appears to be largely restricted to
testes, HYAL1 is more widely expressed and possesses CHSE
activity for CS-A. Unfortunately, natural sources of CS are
typically a mixture of sulphation types classified on their
predominant species i.e., CS-A is predominantly 4-sulphated
but also contains a small amount of other rarer CS unit types,
such as CS-D. Furthermore, CS-D preparations are usually a
type of CS-A enriched with CS-D units (e.g., 16% CS-D units
from shark cartilage produced by Iduron, United Kingdom).
So for determining HYAL1 CHSE activity, one could simply
use CS-A as an optimal substrate with relative ease. But
for HYAL4, the CS-D preparations have cleavable sites for
both HYAL4 and HYAL1, meaning that both HYALs could
degrade significant portions of CS-D and produce a positive
result in the assay. To untangle this, (1) a parallel assay must
be performed with CS-A to deduce whether HYAL1 CHSE
activity is present in the sample, (2) careful consideration of
the detection strategy (biotinylation, antibodies) is important
to maximise detection of removed CS and therefore detection
of desired activity, (3) in the case that HYAL1 CHSE activity
is detected, other evidence (e.g., qPCR for gene expression,
western blot, protein quantification ELISA) is necessary to
verify the enzymes responsible. For situations where both
HYAL1 and HYAL4 activity is detected, quantification of HYAL4
activity will not be possible until assays with specific substrates
exclusive for HYAL4 activity can be developed. Therefore,
new chemically synthesised substrates designed specifically for
HYAL4 activity and tailored antibodies for CS-D units are much-
needed tools to facilitate the measurement of HYAL4 activity in
biological samples.

Antibodies
The monoclonal antibody (mab) 3B3 was originally created
to recognise the neoepitope of CS chains following bacterial
lyase (cABCase) digestion (designated 3B3+, i.e., +cABCase
digestion) (Couchman et al., 1984). However, native 3B3
(i.e., without cABCase digestion) motifs were also detected
in subpopulations of proteoglycans in chick embryos

(Sorrell et al., 1988), subsequently termed 3B3-. Indeed, other
CSPG 3B3- motifs have been studied including: serglycin,
aggrecan (Farrugia et al., 2019, 2020), and CSPGs in the synovial
fluid of elderly osteoarthritic patients (Bautch et al., 2000), where
a significant decline in 3B3 and CS is associated with aging and
articular cartilage progenitor CSPG(s) (Hayes et al., 2008). In
addition to 3B3, MO-225 specifically recognises 2-O-sulphation
in CS-D (Ito et al., 2005) and thus may be a useful antibody for
the identification of HYAL4 modulated CSPGs.

HYALURONIDASE 4 IN HUMAN
DEVELOPMENT AND DISEASE

Stem Cells and Differentiation
As mentioned earlier, the expression of human HYAL4 is
somewhat limited in adult tissues. Beguilingly though, HYAL4
expression has been associated with stem cell naivety in human
embryonic stem cells, suggesting a fundamental role in the
delicate balance of cell cycle regulation, pluripotency and priming
for differentiation (Messmer et al., 2019). 3B3- motifs decorate
stem cell/progenitor cell proteoglycans (Hayes et al., 2018) and
are located in discrete zones of foetal human knee joint during
bone and cartilage development (Hayes et al., 2016). Specifically,
HYAL4 expression increases during bone mineralisation, along
with an increase in CS/DS chains and sulphation content
of the chains (Adams et al., 2006). Expression of HYAL4
is also located distinctively at the epidermal-dermal junction
in the skin (Sorrell et al., 1990), as well as being expressed
following rat spinal cord injury and in a sheep intervertebral
disc regeneration model, indicating its involvement in CSPG
remodelling for tissue development and regeneration (Tachi et al.,
2015; Farrugia et al., 2020). When taken in tandem with its
limited constitutive adult tissue expression, the association of
HYAL4 expression with naïve human embryonic stem cells and
its temporal and/or localised expression in tissues, implies that
HYAL4 activity may play transient, but important roles during
organismal development.

Cancer
In the Cancer Genome Atlas project database, HYAL4 gene
mutations were associated with 12 out of the 15 cancer types
analysed. In particular, roughly 4% of endometrial tumours
had some kind of mutation in the HYAL4 gene that resulted
in a disruption of protein structure. Other cancers with
HYAL4 gene mutations included: colorectal, stomach, lung
(adenocarcinoma, squamous), bladder, glioblastoma, leukaemia,
head/neck, ovarian, breast and kidney (clear cell) cancers
(∼0.25–1.8% prevalence) (Chi et al., 2012; Li et al., 2013;
Lokeshwar et al., 2020; Hasanali et al., 2021). In addition,
upregulation of HYAL4 protein was observed in testicular
cancer (Lokeshwar et al., 2020) and the HYAL4 gene was
preferentially required for the proliferation of P53 negative
human cancer cells (Xie et al., 2012). On a protein level,
interaction of HYAL4 with NEK4 may play an important part
in the epithelial-to-mesenchymal transition of cells during the
development of cancer. NEK4 is present in most primary
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carcinomas where it acts as a positive regulator for EMT,
resulting in an increased potential for cancer cell migration
and invasion (Ding et al., 2018). So far, only two of the
HYAL4 mutated cancer types identified have been investigated in
more detail. In kidney cancer tissue, HYAL4 mRNA expression
was significantly increased in clear cell renal cell carcinomas,
papillary tumours and chromophobe renal cell carcinomas when
compared with oncocytomas and HYAL4 upregulation was
increased in patients with metastasis (Chi et al., 2012). In bladder
cancer, HYAL4 activity increased the release of CD44, MMP-
9 and Akt signalling and corresponded with metastasis and/or
death of the patient after follow up. The v1 protein variant
also showed chemotherapeutic resistance to Gemcitabine in
preclinical models, suggesting HYAL4 drives chemoresistance in
bladder cancer (Lokeshwar et al., 2020; Hasanali et al., 2021).
Transfection of the v1 isoform in normal bladder cells resulted in
an increase in aldehyde dehydrogenase-1, cell motility in wound
healing assays and upregulation of EMT invasive phenotype
markers that are hallmarks of cancer stem cells, invasiveness
and EMT, respectively (Lokeshwar et al., 2020). Notably, the
commonality of HYAL4 shared between cancer proliferation and
stem cell naivety points toward a function for HYAL4 in the
development and/or maintenance of cancer stem cells, which
often cause therapeutic resistance and tumour relapse. Thus,
swift investigation of HYAL4 in more cancers could provide
beneficial insight and a novel, specific treatment target for a
variety of cancer patients. Together, these data suggest that a
defective HYAL4 mechanism may underlie the formation of
various cancers.

DISCUSSION

It is clear that many secrets of HYAL4 biology await discovery.
A few clues buried within large data sets are beginning to
emerge, demonstrating the usefulness of open access data
repositories and predictive software programmes of modern
science alongside traditional data publication. However, many
annotations of human HYAL4 still report that the protein(s)
only have hyaluronidase activity, which like the name HYAL4,
is misleading and may have contributed to the slow connection
of HYAL4 to CS-mediated diseases. Others have proposed
new names to combat this, namely chondroitin sulphate
hydrolase (CSHY; Kaneiwa et al., 2010), but unfortunately
the abbreviation looks too similar to CHSY that is already
used for CS synthesis enzymes. Another abbreviated name,
Chase (from chondroitinase), has also been used (Lokeshwar
et al., 2020) but as no sulphate reference is mentioned, it
implies that HYAL4 has unsulphated chondroitin degradation
activity, which is not accurate. Using “CSase” is also not
advised since this abbreviation has been used historically for
bacterial CS lyases. Therefore going forward, an abbreviation
similar to HPSE, which is a well known GAG hydrolase, might
be optimal: CHSE.

Multiple mechanisms may orchestrate the localisation and
activity of human HYAL4 via expression of alternative splice
variants by different cell types, although which cell types express

which variants(s) remains to be investigated. The missing
C-terminus of the v1 variant infers that the truncated version may
be solely secreted and that the full length protein is associated
with the cell surface. However, release of the putative GPI-
anchor in the full length protein might also be possible via
lytic cleavage or by other GPI-mitigated mechanisms (Muller,
2018). Aside from this, it is logical to assume that the full length
version is primarily located on the cell surface to modulate cell
surface CSPGs and the secreted version(s) are free to cleave
CS in the extracellular milieu, matrices and on other cells.
Close investigation of the protein structure and comparison of
different variants would quickly detail which hypotheses are
true, and provide leads for uncovering the mechanism(s) behind
HYAL4 functions.

A limited number of useful methods and tools exist for
HYAL4. The link between HYAL4 activity and expression
of the mab 3B3- motif provides an effective screening tool
for HYAL4 modification of CSPGs in new contexts and
an anchor point to begin more specific analyses on a cell
type or disease situation of interest. For example, 3B3-
associated diseases such as osteoarthritis, development and
aging warrant HYAL4 investigation. In addition, CSPGs (e.g.,
lubricin/proteoglycan 4), which display 3B3+ after cABCase
digestion may also contain HYAL4 cleavage sites within the
CS chains (Lord et al., 2012), meaning a wealth of knowledge
may await in the literature for CSPGs modulated by HYAL4.
Unfortunately, the same is not true for HYAL4 activity assays,
where the lack of specific tools continues to complicate
analyses due to overlapping activities for HYAL1 within CS
substrates. However, as the interest in HYAL4 research grows,
the production of new knockout models, antibodies, specific
detection tools and assays for HYAL4 activity will enhance
our knowledge of this CS degradation enzyme and will hasten
its identification in organismal processes and reveal its role
in cancers (and other human diseases). Understanding the
role of HYAL4 in human diseases will undoubtedly provide
novel diagnostic opportunities and therapeutic targets for
drug discovery.
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