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Microphthalmia, anophthalmia, and coloboma (MAC) are congenital ocular

malformations causing 25% of childhood blindness. The X-linked disorder

Focal Dermal Hypoplasia (FDH) is frequently associated with MAC and

results from mutations in Porcn, a membrane bound O-acyl transferase

required for palmitoylation of Wnts to activate multiple Wnt-dependent

pathways. Wnt/β-catenin signaling is suppressed in the anterior neural plate

for initiation of eye formation and is subsequently required during

differentiation of the retinal pigment epithelium (RPE). Non-canonical Wnts

are critical for early eye formation in frog and zebrafish. However, it is unclear

whether this also applies to mammals. We performed ubiquitous conditional

inactivation of Porcn in mouse around the eye field stage. In PorcnCKO, optic

vesicles (OV) arrest in growth and fail to form an optic cup. Ventral proliferation

is significantly decreased in the mutant OV, with a concomitant increase in

apoptotic cell death. While pan-ocular transcription factors such as PAX6, SIX3,

LHX2, and PAX2 are present, indicative of maintenance of OV identity, regional

expression of VSX2, MITF, OTX2, and NR2F2 is downregulated. Failure of RPE

differentiation in PorcnCKO is consistent with downregulation of the Wnt/β-
catenin effector LEF1, starting around 2.5 days after inactivation. This suggests

that Porcn inactivation affects signaling later than a potential requirement for

Wnts to promote eye field formation. Altogether, our data shows a novel

requirement for Porcn in regulating growth and morphogenesis of the OV,

likely by controlling proliferation and survival. In FDH patients with ocular

manifestations, growth deficiency during early ocular morphogenesis may

be the underlying cause for microphthalmia.
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Introduction

Congenital ocular malformations—microphthalmia (small

eye), anophthalmia (absent eye, also called extreme

microphthalmia), coloboma (optic fissure closure defect in the

ventral optic cup) (collectively hereafter MAC)—originate from

defective morphogenesis during early eye development and cause

25% of childhood blindness (Clementi et al., 1992; Morrison

et al., 2002; Graw, 2019). Eye development is initiated during

gastrulation in a single domain in the anterior neural plate, the

eye field, characterized by expression of eye field transcription

factors (EFTFs) that include Pax6, Six3, Six6, Rx, Tbx3, and Lhx2

(Oliver et al., 1995; Zuber et al., 2003; Bailey et al., 2004; Motahari

et al., 2016; Liu and Cvekl, 2017). In combination with secreted

factors inhibiting Nodal, BMP and Wnt/β-catenin signaling,

EFTFs form a gene regulatory network to promote eye field

specification (Zuber et al., 2003). Subsequentially, the eye field

separates into two optic pits that evaginate laterally. Bilateral

optic vesicles (OVs) are formed, comprised of neuroepithelial

progenitor cells giving rise to optic stalk, retina and RPE. The

distal domain of the OV contacts the overlying surface (lens)

ectoderm, and both OV and ectoderm invaginate to form the

optic cup (OC) and the lens vesicle, respectively. While the

coordinated interactions regulating regionalization of OC and

OV are well studied [for reviews, see (Fuhrmann, 2010; Viczian,

2014; Miesfeld and Brown, 2019)], regulation of the

morphogenetic events during OV evagination and OC

invagination are less understood.

Focal Dermal Hypoplasia (FDH; Goltz Syndrome) is an

x-linked dominant disorder resulting from abnormal

mesodermal and ectodermal development and is frequently

associated with MAC (Goltz et al., 1962; Temple et al., 1990;

Wang et al., 2014; Gisseman and Herce, 2016). FDH is caused by

mutations in Porcn, a membrane bound O-acyl transferase

localized to the endoplasmic reticulum (Grzeschik et al., 2007;

Wang et al., 2007). Porcn is mostly dedicated to palmitoylate the

Wnt family of cysteine-rich secreted glycoproteins, and this

modification is necessary for trafficking and signaling (Tanaka

et al., 2000; Galli et al., 2007). Porcn is expressed in the

developing mouse eye (Biechele et al., 2011). We have shown

that conditional Porcn disruption at the OV stage results in

coloboma and RPE defects in most embryos, among other

abnormalities (Bankhead et al., 2015).

Wnt ligands bind to surface receptors, including Frizzled

transmembrane receptors (Fzd), and activate canonical (Wnt/β-
catenin) and non-canonical pathways. Wnt/β-catenin activation

prevents cytoplasmic degradation of β-catenin, thereby allowing
its nuclear translocation to activate Tcf/Lef1 transcription

factors. Wnt/β-catenin exerts many distinct functions during

different phases of eye development [for reviews, see (Fuhrmann,

2008; Fujimura, 2016)]. During early OC morphogenesis, it is

required for RPE differentiation (Fujimura et al., 2009;

Westenskow et al., 2009; Hagglund et al., 2013) and

dorsoventral patterning (Veien et al., 2008; Zhou et al., 2008).

The pathway is tightly regulated; ectopic activation by disruption

of the antagonists Dkk1 and Axin2 can result in microphthalmia

and coloboma (Lieven and Ruther, 2011; Alldredge and

Fuhrmann, 2016). During forebrain development, multiple

antagonists maintain anterior neural fate. Hyperactive Wnt/β-
catenin frequently leads to posterization and rostral truncation of

the forebrain, with concomitant severe decrease of EFTF

expression. The EFTF Six3 can directly suppress Wnt/β-
catenin signaling (Lagutin et al., 2003), providing another

mechanism for precise coordination of pathway activity.

Non-canonical, β-catenin-independent Wnt signaling occurs

via multiple pathways, including intracellular Ca2+ release,

activation of JNK and Planar Cell Polarity (PCP). It is essential

for eye field formation in non-mammalian vertebrates by different

mechanisms; it represses Wnt/β-catenin activity and promotes

expression of EFTFs in frog and zebrafish (for review, see

(Fuhrmann, 2008)). Close to the caudal border of the eye field,

non-canonical Wnt11f2 (formerly Wnt11) and Wnt4 act through

Fzd5 and Fzd3 to promote expression of the EFTFs Pax6 and Rx

(Rasmussen et al., 2001; Cavodeassi et al., 2005; Maurus et al.,

2005). In addition, Wnt11f2 and crosstalk between JNK/PCP and

ephrinB1 are required for morphogenetic movements of ocular

progenitor cells into the eye field (Heisenberg et al., 2000; Moore

et al., 2004; Cavodeassi et al., 2005; Lee et al., 2006; Cavodeassi

et al., 2013). However, it is unknown whether non-canonical Wnt

signaling functions similarly in mammals; for example, germline

disruption of Wnt4, Wnt11, Fzd3 does not cause obvious ocular

phenotypes, suggesting either redundancy of pathway components

and/or context- and species-dependent mechanisms.

To investigate the role of Porcn before OVmorphogenesis, we

performed temporally controlled inactivation before and during

the eye field stage when Wnts are expressed in the cranial region

(Parr et al., 1993; Kispert et al., 1996; Yamaguchi et al., 1999; Kemp

et al., 2005). Our results show that Porcn inactivation around eye

field formation leads to severely arrested OV 3 days later. Key

regulatory genes for RPE differentiation OTX2, MITF, and

NR2F2 are absent, proliferation and survival of ocular

progenitors in the OV is decreased, and invagination during

OC morphogenesis fails. Our studies reveal a novel role for

Porcn during earliest stages of mouse eye development,

recapitulating severe microphthalmia in FDH.

Materials and methods

Mouse lines were maintained on a mixed genetic C57BL/

6 and CD-1 background. For temporally controlled Porcn

inactivation, a conditional Porcn allele, tamoxifen-inducible,

ubiquitous Gt(ROSA)26Sortm1(cre/ERT)Nat (hereafter

ROSA26CreERT) and the recombination reporter RosaR26 were

utilized, with established genotyping protocols or Transnetyx

(Cordova, TN) using Taqman with custom-designed primers
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(Soriano, 1999; Badea et al., 2003; Barrott et al., 2011; Bankhead

et al., 2015; Sun et al., 2020). Noon of the day with an observed

vaginal plug was counted E0.5. Pregnant dams received

tamoxifen (0.1 mg/g) by oral gavage between E6.5 and E7.5

(Park et al., 2008). To detect proliferating cells, pregnant dams

received one intraperitoneal EdU injection 2 hours before

sacrificing (30 μg/g; Thermofisher/Invitrogen; #E10187). Male

embryos with conditional deletion of Porcn (hereafter PorcnCKO)

and control littermates were processed as previously published

(Sun et al., 2020). For antigen retrieval, cryostat sections were

treated with 1% Triton X-100 or hot citrate buffer (pH 6).

Detailed antibody information is provided in Supplementary

Table S1. Filamentous actin was detected using Phalloidin (1:

50; Thermo Fisher Scientific; #A12379). ApopTag Fluorescein In

Situ Apoptosis Detection Kit (EMD Millipore, #S7110) was used

to detect apoptotic cells. For EdU detection, the Click-iT® EdU

Imaging Kit (Thermo Fisher Scientific; #C10637) was utilized.

Cryostat sections were counter-labeled with DAPI and mounted

in Prolong Gold Antifade. No obvious defects in morphology,

proliferation or OVmarker expression were observed in controls:

conditional heterozygous female embryos (hereafter PorcnCHET)

and embryos with or without Cre. Unless otherwise indicated, a

minimum of 3 embryos from at least 2 individual litters were

analyzed per genotype, time point and marker. For analyses of

E9.5 embryos induced at E6.5, 3 embryos were analyzed and

2 showed indication of ocular development.

Images were captured using a U-CMAD3 camera, mounted on

an Olympus SZX12 stereomicroscope, and a XM10 camera,

mounted on an Olympus BX51 epifluorescence system. For

confocal imaging, the Olympus FV100 or ZEISS LSM

880 systems were used. Images were processed using ImageJ

(NIH) and Adobe Photoshop software (versions CS6, 23.5.1).

Quantification of EdU-labeled and Tunel-labeled cells was

performed on cryostat sections midway through the OV, with

separation of dorsal and ventral subdivisions. The percentage of

labeled cells was calculated by determining the number of total

cells using DAPI-labeled nuclei. Statistical analysis was

performed using Prism version 9 (Graphpad) for One-Way

ANOVA.

Results

Conditional Porcn inactivation before eye
field induction (E6.5) causes abnormal OV
morphogenesis

We observed that Porcn needs to be depleted in multiple

ocular and extraocular tissues at the OV stage to recapitulate

consistently the ocular abnormalities found in FDH patients

(Bankhead et al., 2015). In mouse, the eye field becomes

established at E7.5, and Wnts are expressed in tissues adjacent

to the eye field. To target both cell autonomous and non-cell

autonomous Wnt production, we disrupted Porcn using the

ubiquitous ROSA26CreERT, allowing temporally controlled

recombination. To account for delay of pathway inactivation

in responding cells due to cell non-autonomous Wnt ligand

production, extracellular release and downstream receptor

activation, we started inactivating Porcn at E6.5. RosaR26

recombination confirmed ubiquitous Cre activity, as expected

(Supplementary Figure S1) (Soriano, 1999). At E8.5–8.75,

PorcnCKO show severe posterior truncation (Barrott et al.,

2011; Biechele et al., 2013). However, anterior regions do

continue to develop, with reduced size of OVs (Figures 1B–H;

8–13 somites). In PorcnCKO, expression of the Wnt/β-catenin
readout LEF1 can be slightly decreased in the dorsal OV,

consistent with decreased Wnt signaling (Figure 1D). Lhx2 is

required for the transition from eye field to OV and is robustly

expressed in PorcnCKO (Figure 1F). Otx2 is critical for rostral

brain regionalization and early ocular development. In PorcnCKO,

OTX2 expression is present in the dorsal OV (Figure 1H). To

determine whether the observed alterations could be due to a

developmental delay, we examined PorcnCKO embryos 1–2 days

later. We observed major developmental abnormalities on

E10.5 PorcnCKO embryos, not suitable for further analysis

(Supplementary Figure S2). Thus, we continued to examine

embryos at E9.5 (20–23 somites); PorcnCKO exhibit more

defects compared to E8.5–8.75, including abnormalities in the

head region (Figures 1J,K). Morphogenesis of the OVs does not

proceed properly; they are arrested and fail to contact the surface

ectoderm (Figure 1M,O,Q,S). Expression of LEF1 is absent in the

dorsal OV, indicating loss of Wnt/β-catenin signaling

(Figure 1M). Phalloidin labeling reveals that apicobasal

polarity is generally preserved (Figure 1O). Thus, it is possible

that non-canonical Wnt pathways such as planar cell polarity are

largely maintained. Robust LHX2 expression is maintained in

PorcnCKO (Figure 1Q). In contrast, OTX2 is downregulated in the

dorsal OV, while weak expression is detectable in the adjacent

forebrain (Figure 1S). Overall, our results demonstrate that Porcn

inactivation starts to affect eye development after approx.

2.5 days, with slightly decreased Wnt/β-catenin signaling in

the dorsal OV. Evagination can occur, suggesting that OV

identity is maintained, and morphogenesis initiated. However,

with ongoing loss of Porcn at E9.5, dorsal regionalization and

expansion of the OV is severely affected.

Porcn deletion during eye field induction
(E7.5) variably affects brain and eye
formation

To bypass major developmental defects before OV

morphogenesis (Figure 1), we administered tamoxifen 1 day

later (E7.4–7.5). At E10.5, PorcnCKO embryos were recovered

with a range of ocular abnormalities, possibly due to

developmental variability between litters and embryos at the
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time of tamoxifen administration (Figure 2; 9 litters with

26 PorcnCKO embryos). In 5 PorcnCKO, no detectable eye

phenotype was observed (19%; not shown). In mildly affected

PorcnCKO, telencephalic vesicles are slightly smaller (Figure 2F).

Eye size can be reduced, associated with incomplete OC

morphogenesis, failure of lens vesicle formation and

accumulation of POM between distal OV and surface

ectoderm (Figures 2G–J; 27%, n = 7). In mildly affected

PorcnCKO, OVs can be more closely associated with lens

ectoderm, occasionally with further advanced invagination

(not shown). We also observed PorcnCKO embryos with a

more severe developmental and ocular phenotype (Figures

FIGURE 1
Conditional Porcn inactivation before eye field formation (E6.5) interferes with early OV morphogenesis. (A–H) Embryos at E8.75-E9.0. (A)
Control embryo (8 somites) withOVs (arrowhead). (B) PorcnCKOwith caudal truncation (arrow; somites not detectable). Head development proceeds
at this stage andOV-like structures are present (arrowhead). (C andD) LEF1 expression in 13 somite embryos. Coronal cryostat sections show slightly
decreased LEF1 expression in the dorsal OV of PorcnCKO (D; arrowhead), expression in the dorsal and ventral forebrain is largely maintained (D;
arrow). (E–H): 7-8 somite embryos. (F) LHX2 is robustly expressed in the mutant OV (arrowhead). (H) In PorcnCKO, OTX2 expression is present in the
dorsal OV (arrowhead). (I–S) Embryos at E9.5 (20–23 somites); 2 of 3 embryos showed distinctOVs, shown here in (J–S). (J–K) Examples of PorcnCKO

showing severe abnormalities throughout the body, including the heads (arrows). (M) LEF1 expression is absent in PorcnCKO OV (arrowhead), low
expression is detectable in the adjacent diencephalon (bracket). (O) Phalloidin labeling shows that apicobasal polarity is largely maintained in
PorcnCKO (arrowhead). (Q) In the mutant OV, LHX2 is robustly expressed, similar to controls (arrowhead). (S) OTX2 is absent in the OV of PorcnCKO

(arrowhead). Weak expression is detectable in the forebrain neuroepithelium (bracket). Controls: PorcnCHET. OV: optic vesicle. D < - > V: Dorsoventral
orientation. Scale bars A, B, I–K: 0.5 mm; C, L: 0.1 mm.

Frontiers in Cell and Developmental Biology frontiersin.org04

Fuhrmann et al. 10.3389/fcell.2022.1016182

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.1016182


2K–S; 54%, n = 14). These PorcnCKO embryos exhibit defects in

mid- and forebrain development; the mid-hindbrain border is

missing and telencephalic vesicles are underdeveloped

(Figure 2K). Ocular morphogenesis is consistently arrested

with small OVs that fail to expand, with abnormal

accumulation of anterior POM preventing close contact

between distal OV and lens ectoderm (Figure 2L–O).

Consequently, neither the OV nor the surface ectoderm show

any signs of invagination (Figure 2M–O). Some thickening of the

surface ectoderm is occasionally detectable, suggesting that early

aspects of lens morphogenesis can be initiated (Figure 2M). In

PorcnCKO embryos with a severe phenotype, overall

LEF1 expression is decreased, specifically in the dorsal

forebrain, dorsal OV and facial primordia, indicating

widespread downregulation of the Wnt/β-catenin pathway

(Figures 2Q,S).

FIGURE 2
Conditional Porcn inactivation during eye field formation (E7.4-7.5) causes a range of brain and ocular abnormalities at E10.5. (A–E) Control
PorcnCHET embryos showing telencephalic vesicle (A; arrowhead), early OCwith lens vesicle (B; dotted outline), presumptive RPE and neural retina (C;
arrowhead and arrow, respectively) and invaginating lens vesicle (D; arrowhead) in sequential Dapi-labeled coronal sections (C–E). (F–J) PorcnCKO

with mild abnormalities; reduced telencephalic vesicle size (F; arrowhead), reduced eye size (G), incomplete invagination of OV and lens
ectoderm (H, J; arrowheads) and accumulation of POM between distal OV and lens ectoderm (I; arrowhead). (K–O) PorcnCKO with major defects
showing loss of the mid-hindbrain border and further reduction of telencephalic vesicles (K; arrow and arrowhead, respectively), microphthalmia (L;
dotted outline, compare B, G, L), arrested OV (M–O) and accumulation of POM (O; arrowhead). Some thickening of the surface can occur (M;
arrowhead). (P–S) LEF1 immunolabeling of coronal control PorcnCHET sections shows expression in the dorsal forebrain (P, left arrowhead), facial
primordia mesenchyme (P; right arrowhead, R; arrowhead) and dorsal OC (P, R; arrows). In PorcnCKO embryos, LEF1 is severely reduced in the dorsal
forebrain (Q; left arrowhead), facial primordia (Q; right arrowhead, S; arrowhead) and dorsal OC (Q, S; arrows). Scale bars A, F, K: 0.5 mm; B, G, L, P:
0.2 mm; C, H, M, R: 0.1 mm.
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Eye field transcription factors are robustly
expressed in the arrested OV of severely
affected E10.5 PorcnCKO

Since OC morphogenesis is consistently and impaired the

most, we proceeded with analyzing severely affected

E10.5 PorcnCKO (Figures 2F–J). The pan-ocular transcription

factor PAX6 is expressed in the arrested PorcnCKO OV and

also present in the surface ectoderm (Figure 3B). The eye field

transcription factor Six3 is required for neuroretinal specification

the mammalian eye (Liu et al., 2010; Liu and Cvekl, 2017).

SIX3 expression is not altered in the OV and surface

ectoderm of PorcnCKO (Figure 3D). LHX2 is not altered

(Figure 3F), confirming that general ocular specification

including OV identity are maintained at later stages.

Porcn mutant embryos display defective
regionalization of the arrested OV at E10.5

The paired homeobox transcription factor PAX2 is initially

expressed throughout the OV and is later confined to the ventral

OC and optic stalk (Nornes et al., 1990; Burns et al., 2008). In

PorcnCKO, PAX2 expression is maintained throughout the OV

(Figure 3H), consistent with failure of OC formation and

dorsoventral regionalization. During normal eye development,

proximodistal regionalization into RPE and retina occurs in the

advanced OV (Fuhrmann, 2010; Fuhrmann et al., 2014; Miesfeld

and Brown, 2019). In PorcnCKO with loss of close contact due to

POM accumulation between the distal OV and surface ectoderm

(Figure 2), the strictly retina-specific CVC homeodomain

transcription factor VSX2 is not expressed (Figure 3J)

FIGURE 3
Porcnmutant embryos display defective regionalization at E10.5. Coronal view of control embryos (A,C,E,G,I,L,N,P) and PorcnCKO embryos that
were treatedwith tamoxifen at E7.4 (B,D,F,H,J,K,M,O,Q). (A)During normal eye development, PAX6 is expressed in ocular tissues and in the overlying
surface ectoderm (arrowhead). (B) In the mutant OV, PAX6 expression is expressed (arrow) and is present in the surface ectoderm (arrowhead). (C
and D) SIX3 expression is not altered in the OV and surface ectoderm of PorcnCKO (D; arrow). (E and F) In control (E) and in PorcnCKO (F; arrow)
LHX2 is expressed throughout theOC andOV, respectively. (G) In control OC, PAX2 is restricted to the ventral OC. (H) In PorcnCKO, PAX2 expression is
maintained throughout the OV (arrow). (I) In controls, the distal OC is tightly attached to the overlying lens ectoderm and expresses VSX2
(arrowhead). (J) In PorcnCKO with loss of close contact, VSX2 is not detectable (arrow). (K)When distal OV and lens ectoderm are closely associated,
some cells in the distal OV in PorcnCKO can express VSX2 (arrowhead). (L) NR2F2 expression shown in control embryos. (M) In the OV of PorcnCKO,
NR2F2 expression ismissing (arrow). NRF2 expressing POM cells are abnormally present between distal OV and surface ectoderm (arrowhead). (N,O)
OTX2 is normally robustly expressed in the presumptive RPE of the OC but is absent in the mutant OV (O; arrow). (P)MITF is an early differentiation
marker restricted to the presumptive RPE. (Q) In the OV of PorcnCKO, MITF expression is not detectable (arrow). Scale bars A, C, G, L, P: 0.1 mm.
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(Burmeister et al., 1996; Green et al., 2003). However, if close

contact occurs in PorcnCKO, some cells in the presumptive retina

can express VSX2 (Figure 3K), consistent with the requirement of

lens-derived FGF for retina specification (Cai et al., 2013).

Concerning proximal regionalization, we observed a complete

loss of the key regulatory transcription factors NR2F2, OTX2,

and MITF (Figure 3M,O,Q) that are required for RPE

differentiation (Hodgkinson et al., 1993; Bumsted and

Barnstable, 2000; Nguyen and Arnheiter, 2000; Martinez-

Morales et al., 2001; Tang et al., 2010). NR2F2 expression

confirms abnormal abundance of POM between distal OV

and lens ectoderm (Figure 3M). Together, our results

FIGURE 4
Decrease of proliferation, survival and local NR2F2 and OTX2 expression in the PorcnCKO OV at E9.5. Coronal view of control embryos
(A,C,E,G,I,K; PorcnCHET) and PorcnCKO embryos, induced at E7.4–7.5 (B,D,F,H,J,L). (A) Telencephalic vesicle in E9.5 control embryo (arrowhead). (B)
PorcnCKO show slightly smaller telencephalic vesicles (arrowhead) and mid-hindbrain regions (arrow). (C) In controls, LEF1 is expressed in the dorsal
OV (arrowhead). (D) In PorcnCKO embryos, LEF1 is unaltered (arrowhead). (E and F)MITF expression appears unaffected in the presumptive RPE
of PorcnCKO (F; arrowhead). (G and H) In the mutant RPE, NR2F2 can be slightly downregulated in the dorsal OV (H; arrowhead). (I and J)OTX2 can
start to be reduced dorsally in the distal OV domain in PorcnCKO (J; arrowhead). (K,L) Edu incorporation (green) in control (K) and in PorcnCKO OV (L),
showing reduced number of EdU-labeled cells in the ventral OV (L; arrowheads). Magenta: Dapi. (M–O) Quantification of EdU labeled cells in the
entire OV (M), dorsal OV (N) and ventral OV (O). In PorcnCKO, the number of EdU-labeled cells is significantly reduced in the ventral OV (O). (P–R)
Coronal view of representative images of Tunel-labeled E9.5 sections induced with tamoxifen at E7.4. Arrowheads mark the Tunel-labeled region in
the ventral OV. Compared to Cre-negative controls (P), overall Tunel signal is increased throughout the tissues in PorcnCHET and PorcnCKO embryos
(Q). In the ventral OV of PorcnCKO embryos, more Tunel-labeled cells are detectable (R), compared to PorcnCHET (Q). (S,T) Quantification of Tunel-
labeled cells in the ventral OV shows a significant increase in PorcnCKO (T). Quantitative data are means ± s.d. One-way ANOVAwith Tukey’s posthoc
analysis was applied for statistical analysis, and p-values are indicated on the horizontal lines in each graph (significance <0.05). Scale bars A: 0.5 mm;
C, E, P: 0.1 mm.
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demonstrate that dorsoventral and proximodistal regionalization

is impaired in the arrested OV of PorcnCKO at the time when OC

morphogenesis normally commences.

Decrease of proliferation, survival and
local NR2F2 and OTX2 expression in the
PorcnCKO OV at E9.5

To elucidate a potential mechanism underlying abnormal

ocular growth obvious in E10.5 PorcnCKO, we analyzed embryos

1 day earlier, following tamoxifen induction at E7.4-E7.5. At

E9.5, PorcnCKO show slightly decreased telencephalic vesicles

and mid-hindbrain regions (Figure 4B). LEF1 expression in the

dorsal OV and adjacent dorsal forebrain neuroepithelium in

PorcnCKO embryos is unaltered, suggesting that Wnt/β−catenin
signaling is intact at this age (Figure 4D). MITF expression is

not affected in the presumptive RPE of PorcnCKO (Figure 4F).

However, other RPE markers NR2F2 and OTX2 start to be

reduced dorsally in the distal OV domain (Figures 4H,J)

suggesting that some aspects of regionalization can be

affected at this age.

To determine effects on proliferation, we quantified the

number of E9.5 OV cells incorporating EdU (Figures 4K–O).

In PorcnCKO, the number of EdU-labeled cells show a trend in

decrease in the entire OV (Figures 4L,M). This effect is

specifically due to a significant reduction in the ventral OV by

24% and 29%, compared to PorcnCHET and PorcnFl/+/y, respectively

(Figure 4O). We also examined apoptotic cell death in ocular

progenitors. Compared to PorcnCHET, the percentage of Tunel-

labeled cells is significantly upregulated by 78% in the ventral OV

of PorcnCKO (Figures 4R,T). Unexpectedly, we observed a

considerable effect of Porcn gene reduction on survival of

ocular progenitors; PorcnCHET OVs show an overall significant

increase in Tunel-labeled cells, compared to PorcnFl/+/y (Figures

4Q,S,T). These results suggest that already 2 days after tamoxifen

administration loss of Porcn negatively impacts both survival and

proliferation of ocular progenitors in the ventral OV. These

changes occur before major defects in expression of the Wnt/

β−catenin readout LEF1, regionalization markers and abnormal

morphogenesis become obvious.

Discussion

Our results show that Porcn inactivation either before or

during eye field formation leads to severely arrested OVs, likely

due to an increase in cell death and downregulation of

proliferation. In PorcnCKO, the RPE key regulatory

transcription factors OTX2, MITF and NR2F2 are

downregulated. POM accumulates between distal OV and

adjacent surface ectoderm, preventing tight association, and

the retina-specific gene VSX2 is not properly expressed.

Arrested eye vesicles in PorcnCKO do not invaginate, resulting

in failed invagination of the OV into an OC. Our studies reveal a

novel role for Porcn in the OV as the earliest obvious

morphological stage of eye development and a continued

requirement during OC morphogenesis, recapitulating severe

microphthalmia in FHD.

Effect of Porcn disruption onwnt signaling

We first determined when potential effectors of Wnt

signaling are affected by Porcn inactivation at E6.5. Wnt/

β−catenin signaling is normally not active until OV

invagination starts; the pathway readouts Axin2 and BATgal

reporter are absent in the OV around E8.75 (8 somites) (Liu et al.,

2010). Here, we observed that another readout, LEF1, starts to

become weakly expressed around E9.0 in the dorsal OV of

controls (13 somites; Figure 1C). In PorcnCKO embryos,

LEF1 is slightly downregulated in the dorsal OV (Figure 1D)

suggesting commencement of a pathway response. Indeed, in the

E9.5 OV, LEF1 is absent, demonstrating complete shutdown of

the pathway, and OV morphogenesis is abnormal (Figure 1M).

Thus, it takes at least 2.5 days after tamoxifen treatment to detect

initial effects of Porcn inactivation on Wnt/β−catenin signaling

and approximately 3 days to observe defects in gene expression

and eye morphogenesis.

Since Wnt/β-catenin signaling needs to be suppressed in

the anterior neural plate, we reasoned that any requirement for

Porcn would be likely due to a need for the non-canonical Wnt

pathway. Inactivation of Porcn also prevents potentially

confounding, concomitant upregulation of Wnt/β-catenin
signaling. Consistent with this, arrested growth of the OV

has not been observed by early Wnt/β−catenin pathway

inactivation in other studies (Hagglund et al., 2013). We

observed that the putative non-canonical Wnt pathway

readout pJUN is normally not robustly expressed in the

E9.5 OV (not shown), and F-actin shows normal apicobasal

localization in PorcnCKO (Figure 1). However, we cannot

exclude effects on other potential non-canonical Wnt

targets in PorcnCKO. In addition, Porcn can exert Wnt-

independent roles in regulating cancer growth and AMPA

receptor assembly and function in rate hippocampal neurons

(Covey et al., 2012; Erlenhardt et al., 2016). While we cannot

exclude Wnt-independent roles of Porcn during early eye

development, it needs to be shown whether these functions

are critical for early forebrain development.

Porcn is not required for maintenance of
EFTF expression in the OV and OC

Eye field formation with expression of EFTFs in mouse

starts around E7.5. To determine Porcn’s role during the
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earliest stages of eye morphogenesis, we induced inactivation at

E6.5. Analysis of E8.75–9.5 PorcnCKO embryos revealed that

expression of the EFTFs LHX2 and OTX2 is unaffected at E9.0,

and that LHX2 is still present 3 days after tamoxifen induction

(Figures 1F,H,Q). This also applies to PorcnCKO induced at

E7.5 and analyzed at E10.5; the EFTFs PAX6, LHX2 and

SIX3 are expressed (Figures 3B,D,F). Therefore, our data

demonstrates that Porcn is not required to maintain EFTF

expression in the OV.

Overall, our strategy of Porcn inactivation may be not

quick enough to affect EFTF expression in the eye field

between E7.5 and E8.5. However, it could be challenging to

perform Porcn inactivation before E6.5 without causing most

severe developmental defects and allowing to determine

whether Porcn promotes EFTF expression and eye field

formation.

Porcn is required for initiation of RPE
differentiation in the OV

Our results are consistent with previous studies showing

that Porcn inactivation prevents maintenance of RPE

differentiation in the OC, most likely due to loss of Wnt/

β−catenin signaling. RPE-specific inactivation of the pathway

effector β−catenin in the early OC interferes with further RPE

differentiation (Fujimura et al., 2009; Westenskow et al., 2009;

Hagglund et al., 2013). Loss of RPE fate is likely caused by a

failure to transactivate RPE gene expression, therefore, the

mutant RPE transdifferentiates into retina (Fujimura et al.,

2009; Westenskow et al., 2009). Here we show that RPE

differentiation fails to initiate in PorcnCKO embryos induced

at E6.5, since the early RPE marker OTX2 is absent in the

dorsal E9.5 OV (Figure 1S). The POM is essential for RPE

differentiation and a source for Wnt ligands, in addition to

ocular tissues (Gage et al., 1999; Fuhrmann et al., 2000; Bassett

et al., 2010; Bankhead et al., 2015; Carpenter et al., 2015).

Thus, ubiquitous depletion of Porcn may interfere with RPE

differentiation cell and non-cell autonomously. To examine a

cell autonomous requirement, we attempted to disrupt Porcn

using a more restricted Cre line, HesCreERT2 (Yun et al., 2009;

Kopinke et al., 2011). We administered up to 0.12 mg/g

tamoxifen around E6.8 and observed no obvious phenotype

in Porcn mutant embryos (n = 4; not shown). We detected

mosaic RosaR26 reporter expression in only one

E10.5 embryo (n = 3; not shown) suggesting that HesCreERT2

may not be sufficiently activated at this time point. However,

we showed in an earlier study that Porcn disruption causes

consistent RPE differentiation defects only when performed

simultaneously in ocular and extraocular tissues in the OV

(Bankhead et al., 2015). We propose that Wnts are also

redundantly produced and available within the eye field

and adjacent tissues.

Porcn is required for ocular growth by
promoting proliferation and survival of
ocular progenitors

Our study demonstrates that Porcn inactivation results in

severe morphogenesis defects 3 days later, either at the OV

(E9.5) or OC stage (E10.5). The PorcnCKO OV or OC is small

and OV expansion or OC invagination fails, respectively.

Analysis of cell death (TUNEL) and proliferation (EdU

incorporation) showed robustly downregulated proliferation

and survival of ocular progenitors in the ventral OV 1 day

earlier when morphology and expression of the Wnt/

β−catenin readout appear normal (Figure 4K–T). Wnt

signaling can directly regulate proliferation and survival of

ocular progenitors (Burns et al., 2008; Hagglund et al., 2013).

Interestingly, during embryonic morphogenesis, Wnt

signaling may support metabolic demands by preventing a

cellular stress response, which could affect proliferation and

survival (Poncet et al., 2020). A reduction of Porcn gene

dosage in the embryo may impact the overall stress

response and affect general survival as observed in the

dorsal PorcnCHET OV and surrounding tissues (Figure 4Q).

Significantly reduced proliferation during OC

morphogenesis has been observed in embryos with germ

line mutation of early ocular regulatory genes, for example

Pax6sey/sey, Lhx2, BMP7, Hes1 and Mab21L2 (Grindley et al.,

1995; Porter et al., 1997; Yamada et al., 2004; Lee et al., 2005;

Morcillo et al., 2006; Yun et al., 2009). However, PAX6 and

LHX2 are expressed in the OV of PorcnCKO, and Pax6, Bmp7,

Hes1 and Mab21L2 mutants do not show a robust

morphogenesis defect until E10.5. Therefore, to our

knowledge, the ocular phenotype in PorcnCKO is unique

because it shows an earlier requirement for proliferation

and survival of ocular progenitors.

Porcn inactivation around the eye field
stage recapitulates microphthalmia and
anophthalmia in FDH patients

PorcnCKO display severe microphthalmia 3 days after

tamoxifen treatment before or during the eye field stage.

PorcnCKO embryos induced at E6.5 and harvested at

E10.5 showed severe developmental abnormalities not feasible

for further analysis at later time points (Supplementary Figure

S2). Lhx2 mutants exhibit a similar OV morphogenesis defect

leading to anophthalmia subsequently (Porter et al., 1997).

Thus, we hypothesize that Porcn inactivation before the

OV stage ultimately results in anophthalmia, consistent

for an early role of Porcn in FDH. A case report for 18 FDH

patients revealed a high incidence of ophthalmologic

abnormalities (77%), including microphthalmia (44%) and

anophthalmia (11%) (Gisseman and Herce, 2016). We
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propose that Porcn inactivation around the eye field stage

represents a novel mouse model recapitulating severe

microphthalmia and anophthalmia in humans. PorcnCHET

female embryos do not display an apparent ocular

phenotype compared to few embryos with germline

inactivation of one Porcn allele (Bankhead et al., 2015). The

late dosage reduction of Porcn, combined with variable

mosaic X inactivation, may cause a failure to induce ocular

defects in PorcnCHET at this critical developmental stage.

Conclusion

Using temporally controlled, conditional inactivation

in mouse, our studies reveal a novel role for Porcn in

regulating growth and morphogenesis of the optic

vesicle and optic cup, via a requirement in proliferation,

survival, and regionalization of ocular gene expression,

recapitulating severe microphthalmia in FDH.
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SUPPLEMENTARY FIGURE 1
RosaR26 reporter activation. Coronal view of E9.0 embryonic
heads, induced with tamoxifen at E6.5 (A, B) and E9.5 embryos
(C, D), induced at E7.4. (A, B, D) PorcnCHET and PorcnCKO embryos
show widespread expression of β-galactosidase protein, in contrast to
controls without Cre (C). Arrows point to OVs in each image. Scale bar:
0.1 mm.

SUPPLEMENTARY FIGURE 2
Developmental defects of PorcnCKO embryos 4 days after tamoxifen
administration. (A-C) Embryos at E10.5, treated with tamoxifen at E6.5.
(A) Control embryo (PorcnCHET; 37 somites). (B, C) PorcnCKO
littermates with severe developmental defects (somites not detectable).
Scale bar: 0.5 mm.
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