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Background: Hepatocellular carcinoma (HCC) is one of the most malignant

tumors with a poor prognosis. There is still a lack of effective biomarkers to

predict its prognosis. Exosomes participate in intercellular communication and

play an important role in the development and progression of cancers.

Methods: In this study, two machine learning methods (univariate feature

selection and random forest (RF) algorithm) were used to select

13 exosome-related genes (ERGs) and construct an ERG signature. Based on

the ERG signature score and ERG signature-related pathway score, a novel RF

signature was generated. The expression of BSG and SFN, members of 13 ERGs,

was examined using real-time quantitative polymerase chain reaction and

immunohistochemistry. Finally, the effects of the inhibition of BSG and SFN

on cell proliferation were examined using the cell counting kit-8 (CCK-8)

assays.

Results: The ERG signature had a good predictive performance, and the ERG

score was determined as an independent predictor of HCC overall survival. Our

RF signature showed an excellent prognostic ability with the area under the

curve (AUC) of 0.845 at 1 year, 0.811 at 2 years, and 0.801 at 3 years in TCGA,

which was better than the ERG signature. Notably, the RF signature had a good

performance in the prediction of HCC prognosis in patients with the high

exosome score and high NK score. Enhanced BSG and SFN levels were found in

HCC tissues compared with adjacent normal tissues. The inhibition of BSG and

SFN suppressed cell proliferation in Huh7 cells.

Conclusion: The RF signature can accurately predict prognosis of HCC patients

and has potential clinical value.
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Introduction

Hepatocellular carcinoma (HCC) is themajor histologic subtype

of liver cancer, accounting for 90% of primary liver cancer.

Currently, HCC is the third leading cause of cancer-related death

worldwide, with the increasing incidence (Sung et al., 2021). HCC is

mainly caused by viral infection, carcinogen, and chronic

inflammation (Schulze et al., 2016). Despite improvements in

systemic therapy, surgical technique, and radiation therapy, the

overall 5-year survival rate of HCC patients is currently less than

20% (Fujiwara et al., 2018). Therefore, identifying prognostic

markers for HCC is important to prolong patient survival time.

Exosomes are small extracellular nanovesicles with diameters of

30–150 nm that play an important role in cellular communication

and epigenetic regulation by transporting key proteins and genetic

material (e.g., miRNA, mRNA, and DNA) (Yang et al., 2020).

Cancer cell-secreted exosomes, which are involved in cancer cell

genesis and development, may promote tumor proliferation and

metastasis by participating in cellular communication, regulating cell

signaling, and promoting the formation of a pre-metastatic niche

(Kharaziha et al., 2012; Hoshino et al., 2015; Peinado et al., 2017;

Wortzel et al., 2019; Zhang and Yu, 2019). It has been shown that

exosomes from cancer cells regulate antitumor immune response by

inhibiting T-cell activation and proliferation, inducing regulatory

T cells and bone marrow-derived suppressor cells, and suppressing

natural killer (NK) and CD8+ T-cell functions (Wieckowski et al.,

2009; Pyzer et al., 2016;Whiteside, 2016). Exosomal proteinmarkers

as well as nucleic acid markers can be used for early diagnosis and

assessment of the prognostic risk of recurrence in a variety of cancers

(Mashouri et al., 2019; Li et al., 2021). For example, the levels of

exosomal CD151, CD171, and TSPAN8 have been proven to be

effective indicators for predicting the prognosis of lung cancer (Iqbal

et al., 2019). Nucleic acids such as miR-21 and miR-1246 in

exosomes can be used as markers for breast cancer detection

(Dong et al., 2020). Although the predictive significance of

exosomes in HCC has been investigated, there are no reports on

the systematic detection of exosomal biomarkers in patients

with HCC.

In this study, we used two machine learning methods

(univariate feature selection and random forest (RF) algorithm)

to screen out 13 exosome-related genes (ERGs) and constructed an

ERG signature with significant prognostic prediction performance.

Then, enrichment analysis identified some remarkable factors that

correlated with the prognosis of HCC patients. Patients with both

high-risk exosome scores and high-risk NK scores had the worst

survival. Finally, ERG, mitosis, PI3K-Akt pathway, B cell, NK cell,

and CD8+ T cell were integrated into an RF signature by an RF

algorithm. This RF signature was shown to have a better prognostic

prediction performance than any single factor. Then, real-time

quantitative polymerase chain reaction (PCR) and

immunohistochemistry (IHC) were performed to verify the

differential expressions of prognostic genes in HCC tissues and

adjacent normal tissues.

Materials and methods

Data collection

The patient data from TCGA LIHC (https://portal.gdc.cancer.

gov/projects/TCGA-LIHC) included 424 cases. The samples

included 374 tumor samples and 50 normal samples. Samples

from the International Cancer Genome Consortium (ICGC)

were downloaded at https://dcc.icgc.org/releases/current/Projects/

LIRI-JP. Among them, RNA-seq data were available for

231 cases, of which 9 patients presented multiple duplicates of

tumor samples. ERGs were obtained at http://www.exocarta.org/,

with a total of 2700 genes (Supplementary Table S1). The obtaining

of 30 pairs of HCC and adjacent tumor tissue samples from The

First Affiliated Hospital of Wenzhou Medical University

(FAHWMU) was approved by the FAHWMU Ethics

Committee. Moreover, written informed consent was also

obtained from the participating patients.

Gene selection and construction of the
ERG signature

We first used univariate feature selection to identify the best

genes correlated with the overall survival (OS) time using Python

3.9.7. Univariate feature selection is a simple method for evaluating

the importance of features using univariate statistical tests. Then, we

built a classifier using RF algorithm, and genes with feature

importance >0.06 were selected (Breiman, 2004). RF is a

classifier that contains multiple decision trees. Its output category

is determined by the mode of the category of the output of the

individual tree. Univariate Cox regression analysis was used to

identify whether those selected genes are independent prognostic

factors (p <0.05). Least absolute shrinkage and selection operator

(LASSO) was then used for further selection. The optimum penalty

parameter (λ) for the model was determined by ten-fold cross-

validation following the minimum criteria (i.e., the value of λ
corresponding to the lowest partial likelihood deviance). The

correlation coefficient was calculated using the Spearman

correlation analysis. The finally selected genes in TCGA cohort

included: LDHA, PRDX1, HADHA, SFN, UBB, S100A10, BSG,

LRP4, HSPA8, CALM1, PON1, IDH1, and PRDX6.

ERG scores of the patients were calculated according to the

normalized expression of each gene and its corresponding

coefficient from the feature importance calculated by RF

algorithm. The formula was established as follows:

ERG score � esum(expression level of each gene×corresponding coef f icient).

Functional enrichment
Patients were stratified into high- or low-risk groups based

on the median value of their ERG score. Then, we screened

different expression genes (DEGs) between low- and high-risk
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groups by the “limma” package of R (|log2FC| ≥ 1, FDR <0.05).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses for DEGs were performed using the

OmicShare tools (https://www.omicshare.com/tools). The

protein–protein interaction (PPI) networks of DEGs were

generated by the STRING database (STRING: functional

protein association networks (string-db.org)).

The “prcomp” function of the “stats” R package was used to

perform principal component analysis (PCA). Additionally, using

the “Rtsne”R package, we explored the clustering of different groups

using t-distributed stochastic neighbor embedding (t-SNE). In order

to determine the predictive accuracy of the model, the “pROC” R

package was used to analyze receiver operating characteristic (ROC)

curves. The survival analysis was performed by the Kaplan–Meier

method. Using CIBERSOFT algorithm, the relative content score of

22 tumor immune-infiltrated cells in each HCC patient was

calculated. The heatmap was drawn using the “pheatmap”

package of R.

Gene normalization

The genes used for calculating the mitosis score, NK score,

PI3K-Akt score, B cell score, and CD8+ T score were downloaded

from GSEA (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)

or previous literature works (Bolotin et al., 2017; Hydbring et al.,

2017; Mariathasan et al., 2018; Dyugay et al., 2022) (Supplementary

Table S1). All those geneswere normalized by LASSO and univariate

Cox regression to improve the accuracy of prognosis prediction

(Supplementary Table S2).

Construction of the machine learning
signature

Random forest modeling is one of the most universal machine-

learning algorithms, which can model response prediction via fitting

training data on the basis of different input features. It was performed

using the Random Forest Classifier from the Python scikit-learn

library. The hyperparameters of the model (i.e., the maximal amount

of samples in the leaf and tree depth) were optimized with the use of

RandomizedSearchCV and GridSearchCV from the Python scikit-

learn library with 5-fold cross-validation. The F1 score was used as a

measure of quality to train the model:

F1 � 2 · precision · recall
precision + recall

.

The variance of the RF model can be explained as the

difference between training and test set quality metrics.

To explore input feature importance and interactions, the RF

model was applied to all patients with Shapley additive explanation

(SHAP) (Lundberg et al., 2020). SHAP is a game theorymethod that

interprets the machine-learning model and understands the

decision-making process by quantifying the contribution that

each feature brings to the prediction made by the model.

Quantitative real-time PCR analysis

We performed different analyses for the 13 ERGs between

HCC samples and normal liver samples (Supplementary Table

S3). BSG, S100A10, and SFN had the smallest FDR value. In

addition, BSG and SFN were shown to have a significant

prognosis for HCC patients (Supplementary Figure S1). In

this case, we chose BGS and SFN for further analysis.

We collected 15 pairs of HCC and adjacent tumor tissue

samples from the FAHWMU. Total RNA was isolated from

tumor tissues as well as adjacent normal tissues using the Tiangen

RNA extraction reagent kit. Each sample was reversely

transcribed into complementary DNA (cDNA) using a

reverse-transcription (RT) reagent kit (Takara Biotechnology

Co., Ltd., Dalian, China). Then, real-time PCR was performed

using SYBR Premix ExTaq (Takara). GAPDH was used as an

endogenous control for mRNAs.

Immunohistochemistry

We collected 15 pairs of HCC and adjacent tumor tissue

samples from the FAHWMU. The tissues were immersed in 10%

formalin for fixation, and then the formalin-fixed tissues were

degreased and rehydrated. Next, the sections, blocked in 10%

BSA, were incubated with anti-SFN and anti-BSG primary

antibodies at 4°C for at least 12 h. Then, the sections were

incubated with a horseradish peroxidase-conjugated secondary

antibody for 30 min. Finally, quantitative analysis for SFN- and

BSG-positive areas was performed under the microscope (Carl

Zeiss, Germany).

Cell culture

The human HCC cell line Huh7 was purchased from ATCC.

Huh7 was cultured in DMEMwith 10% fetal bovine serum (FBS)

and 1% antibiotics. The cells were maintained in a 37°C incubator

with 5% CO2.

Cell transfection

The Huh7 cell line was cultured in a six-well plate at a density

of 8 × 103 cells per well. When the cell density was near to 50%, si-

NC, si-SFN, and si-BSG packaged by lipo2000 were transfected

into cells at 37°C for 6 h. Then, the fresh medium was replaced,

and the cells were collected for subsequent experiments after 48 h

of transfection.
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Cell proliferation assay

Cell counting kit-8 (CCK-8) (Dojindo, Japan) was used for

the assessment of cell proliferation. Cells were seeded into a 24-

well plate at a density of 1 × 105/100 ml per well and incubated for

48 h. Then, 100 μl CCK-8 solution was added to each well and

maintained in a 37°C incubator for 1 h. Finally, the absorbance of

each well was measured at 450 nm.

Statistical analysis

R software (version 4.0.3) and Python software (version

3.9.7) were used to complete all statistical work and plot

drawings. Survival plots were created using the Kaplan–Meier

estimator. The AUC was calculated with the “pROC” R package.

For comparing multiple survival curves, univariate Cox

regression analysis was used. The relative reliability of the RF

FIGURE 1
Selection of 13 ERGs. (A) Feature importance of 13 ERGs (each gene >0.06). (B)Heatmap of relationships among 13 ERGs with the survival time
(futime) and survival state (fustat). Genes with the redder pattern color mean the greater correlation with the survival time and state. (C) Forest plots
show the results of the univariate Cox regression analysis of 13 ERGs (p <0.05). (D) Ten-fold cross-validation for tuning parameter selection in the
LASSO model. The solid vertical lines represent partial likelihood deviance ±standard error (SE) values. (E) LASSO coefficient profiles for the
13 DEGs.
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signature was estimated by the Akaike information criterion

(Akaike, 1974) and concordance index (Lin, 1989). Differences

between two groups were compared using Student’s t-test. p <
0.05 was considered significant.

Results

Construction and verification of the ERG
signature

From 2700 ERGs, we selected 13 genes with feature

importance >0.06 (Figure 1A). The Spearman correlation

coefficients among 13 ERGs are shown in Figure 1B.

Moreover, the relationships between 13 ERGs and OS time as

well as the survival status were also analyzed (Figure 1B). Clearly,

all these ERGs were significantly correlated with the survival

status. The results of the univariate Cox regression analysis

indicated that all 13 ERGs were independent prognostic

factors for HCC (p <0.05). These ERGs passed LASSO

selection (lambda.min = −4.9 and lambda.1se = −3) (Figures

1C,D). The ERG score was calculated using mRNA expression

levels and relevant coefficients of these 13 ERGs.

Patients in TCGA and ICGC cohorts were then divided into

the high- or low-risk groups according to the median cut-off

value, respectively. The results of the Kaplan–Meier curve

indicated that patients in the low-risk group exhibited a

significantly better OS than those in the high-risk group in

TCGA (Figure 2A, p = 1.342 × 10−13) and ICGC cohorts

(Figure 2E, p = 0.0206). The predictive performance of the

ERG score for OS was evaluated by time-dependent ROC

curves. In TCGA cohort, the area under the curve (AUC)

reached 0.820 at 1 year, 0.791 at 2 years, and 0.786 at 3 years

(Figure 2B). In the ICGC cohort, the AUC was 0.662 at 1 year,

0.639 at 2 years, and 0.666 at 3 years (Figure 2D). The PCA and

t-SNE plots showed that the ERG score can distinguish the low-

risk group from the high-risk group in TCGA cohort (Figures

2C,F). The result of the univariate Cox regression analysis

indicated that the ERG score and stage of patients were

independent prognostic factors (Figure 2G, p <0.001).

Identification of the mitosis score

DEGs were subsequently identified in the high- and low-risk

groups. As presented in Figure 3A, GO analysis showed that the

differential genes were mainly enriched in mitotic-related

processes (mitotic sister chromatid segregation, mitotic

nuclear division, sister chromatid segregation, and cell

proliferation, etc.). The associations between these DEGs were

analyzed and clustered through the STRING website. The largest

cluster was mainly enriched in mitotic-related genes (Figure 3B).

Full cluster genes are listed in Supplementary Table S4.

A study has proposed a mitosis-related gene signature for

tumors (Hydbring et al., 2017). Genes for the mitosis-related

gene signature are shown in Supplementary Table S1. Then, we

applied this signature to HCC patients in TCGA cohort. The

Kaplan-Meier curve showed that a lower score of the signature

was associated with better HCC OS (Figure 3D, p < 0.05). The

AUC was 0.734 at 1 year, 0.676 at 2 years, and 0.658 at 3 years

(Figure 3C). Then, we used univariate Cox regression and LASSO

analyses to normalize mitosis-related genes (BRSK1, CDKN2B,

GML, KIF2C, RAN, and TTK). Themitosis signature had a better

performance in predicting HCC prognosis after normalizing

(Figure 3F, p < 0.05). Also, the AUC reached 0.750 at 1 year,

0.710 at 2 years, and 0.676 at 3 years (Figure 3E), which was

better than the non-normalized signature.

Immune-related processes were selected

The differential genes between low- and high-risk groups

were engaged in both intercellular and extracellular processes

(Figure 4B), indicating that our ERG signature may play multi-

roles in the cell-to-cell interaction process. The results of the

KEGG analysis for differential genes suggested that the immune

system had the most enrichment of pathway annotation

(Figure 4A). Detailed pathway annotation results are shown in

Supplementary Table S5. Then, 22 tumor immune-infiltrated

cells were calculated for each HCC patient in TCGA cohort

(Figure 4C). In addition, our analysis further confirmed that the

processes related to PI3K-Akt, B cell, NK cell, and CD8+ T cell

were identified as the best prognostic relevance in all immune

system pathways, which was used for further analysis.

Construction and verification of the RF
signature

To more accurately predict HCC prognosis, we constructed

an RFmodel via a nested cross-validation approach.We expected

features selected for the final iteration of the RF signature to have

higher feature importance for response compared with randomly

generated numbers. Before selecting the final set of input

features, we normalized each immune-related gene set by

univariate Cox regression and LASSO analyses. Only the

genes that were significantly associated with the patients’

prognosis could be included (Supplementary Table S2).

Finally, we integrated the ERG score (also named as exosome

score), the mitosis score, the PI3K-Akt score, the B-cell score, the

NK-cell score, and the CD8+ T-cell score to establish a new RF

signature.

Next, we compared the contribution of our input feature with

randomly generated numbers. Notably, each RF feature had

higher feature importance than randomly generated numbers,

and the exosome score had the most significant association with
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response (Figures 5A,B). We also identified the interactions

between the variables. We found that the high expression of

the exosome score combined with the high expression of NK

score had a better predictive performance (Figures 5C,D). These

data suggest that our RF signature has the best prognostic

accuracy for those HCC patients who have both high exosome

scores and high NK scores among all the groups (Figure 6A).

Furthermore, the patients with both high-risk exosome scores

and high-risk NK scores had the worst survival prognosis.

Moreover, we found an association between the high

expression of exosome score and high expression of PI3K-Akt

score (Figure 5E), indicating that the RF signature has the best

predictive performance for those patients who have both high-

risk PI3K-Akt scores and high-risk exosome scores.

Furthermore, the patients with both high-risk PI3K-Akt scores

and high-risk exosome scores also had the worst survival

prognosis among all the groups (Figure 6B). Additionally, the

value of the PI3K-Akt score is shown in Figure 5F.

FIGURE 2
Verification of the ERG signature. (A) Kaplan–Meier curves for theOS of patients between the high-risk group and low-risk group (divided by the
ERG signature) in TCGA cohort. (B) AUC of time-dependent ROC curves verified the prognostic performance of the risk score in TCGA cohort. (D)
Kaplan–Meier curves in the ICGC cohort. (E) AUC of time-dependent ROC curves in the ICGC cohort. (C,F) t-SNE and PCA dimension reduction
analysis of the high- and low-risk groups based on the risk score in TCGA cohort. (G) Forest plots of univariate Cox regression analyses
containing the clinical feature and risk score of the ERG signature in TCGA cohort.
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FIGURE 3
Identification of the mitosis score. (A) Top 25 enriched genes identified using GO enrichment analysis of DEGs between high- and low-risk
groups (p < 0.05, q < 0.05). (B) PPI network constructed using the STRING database illustrated interactions among the DEGs. The Markov clustering
algorithm identified the biggest cluster. (C,D) AUC of time-dependent ROC curves (C) and Kaplan–Meier curves (D) of the non-normalized mitosis-
related gene signature in TCGA. (E,F) AUC of time-dependent ROC curves (E) and Kaplan–Meier curves (F) of the normalized mitosis-related
gene signature in TCGA.
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The RF signature showed a better predictive performance

than the ERG signature (Figure 6D, p = 6.55 × 10−15), with an

AUC of 0.845 for 1 year, 0.811 for 2 years, and 0.801 for 3 years

(Figure 6C) in TCGA cohort. In the ICGC cohort, the RF

signature also had a better performance (Figure 6F, p =

4.707 × 10−4), with an AUC of 0.733 for 1 year, 0.713 for

2 years, and 0.749 for 3 years (Figure 6E).

Validation of the expression of prognostic
genes by quantitative real-time PCR
and IHC

Whether these prognostic genes are dysregulated in HCC

was further examined. BSG and SFN, members of 13 ERGs, were

examined in HCC tissues in an independent sample cohort via

quantitative real-time PCR and IHC. We found that BSG and

SFN were highly expressed in HCC samples compared with

adjacent normal tissues (Figures 7A,B). In line with it, similar

results were shown in IHC, which were consistent with the

mRNA results of BSG and SFN in TCGA and ICGC.

Effects of inhibition of BSG and SFN on cell
proliferation

The effects of inhibition of BSG and SFN on cell proliferation

were next examined using CCK-8. Our results showed that the

knockdown of BSG as well as SFN inhibition led to a significant

reduction in cell proliferation (Figure 7C).

FIGURE 4
Selection of immune-related processes. (A) KEGG enrichment analysis of DEGs between high- and low-risk groups (p < 0.05, q < 0.05). (B)
Cellular component pathway of GO analysis. (C)Heatmap of 22 tumor immune-infiltrated cells for each HCC patient in TCGA cohort. Low: low-risk
group of the ERG signature. High: high-risk group of the ERG signature.
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Discussion

It has been reported that tumor cells have a higher mitotic

frequency than normal cells (Tao, 2005). Mitosis is confirmed

as an anti-tumor target. In fact, drugs that stop cells in mitosis,

also called anti-mitoses, are common treatments for a variety

of human cancers, including breast, non-small-cell lung, and

ovarian cancers (Weaver and Cleveland, 2005). Several studies

have reported that exosomes can affect the mitosis of tumor

cells. For example, Oliver et al. found that exosomes derived

from human primed mesenchymal stem cells induce tumor

cell mitosis (Yuan et al., 2019), and similar results could be

found in colon cancer cells (Ren et al., 2019). In addition,

exosomes produced by tumor cells have been demonstrated to

play an important role in immune regulation. Exosomes have

been demonstrated to promote inflammation, infectious

diseases, and autoimmunity via regulating immune

stimulation or suppression (Robbins and Morelli, 2014). All

FIGURE 5
RF feature importance and interactions. (A,B) RF feature importance compared with randomly generated numbers estimated with SHAP. (C,D)
Impact of the interaction between the exosome score and NK score estimated with SHAP. (E) Impact of the interaction between the PI3K-Akt score
and exosome score estimated with SHAP. (F) PI3K-Akt score for each patient in TCGA estimated with SHAP.
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FIGURE 6
Interaction and verification of the RF signature. (A) Interaction of the exosome score andNK score. Kaplan–Meier curves for theOS of patients in
exosome score high + NK score high, exosome score high + NK score low, exosome score low +NK score high, and exosome score low +NK score
low in TCGA cohort (p <0.001). (B) Interaction of the PI3K-Akt score and exosome score. Kaplan–Meier curves for the OS of patients in PI3K-Akt
score high + exosome score high, PI3K-Akt score high + exosome score low, PI3K-Akt score low + exosome score high, and PI3K-Akt score
low + exosome score low in TCGA cohort (p <0.001). (C,D) AUC of time-dependent ROC curves (C) and Kaplan–Meier curves (D) of the RF signature
in TCGA. (E,F) AUC of time-dependent ROC curves (E) and Kaplan–Meier curves (F) of the RF signature in ICGC.
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aforementioned evidence suggests that a combination of

exosome, mitosis, and immunity may have potential

predictive values for HCC.

In this study, we used twomachine learning methods (univariate

feature selection and RF algorithm) to screen out 13 ERGs, which

were used to construct an ERG signature. Finally, this ERG signature

FIGURE 7
Quantitative real-time PCR, immunohistochemistry, andCCK-8. (A)mRNA expression of BSG and SFN. (B) Levels of BSG and SFNwere analyzed
by IHC. The scale bar represents 20 μm. (C) Cell proliferation *p<0.05.
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was demonstrated to have a significant prognostic prediction

performance. Then, enrichment analysis identified some

remarkable factors that correlated with the prognosis of HCC

patients. We found that patients with high-risk exosome scores

and high-risk NK scores had the worst survival. Subsequently,

ERG, mitosis, PI3K-Akt pathway, B cell, NK cell, and CD8+

T cell were integrated into an RF signature via RF algorithm. This

RF signature was demonstrated to have a better prognostic prediction

performance than any single factor. In HCC tissues, we also assessed

the dysregulation of BSG and SFN, members of key prognostic genes

of HCC. Clearly, it was found that BSG and SFN were enhanced in

HCC tissues. Inhibition of BSG or SFN led to a reduction in HCC

proliferation.

In fact, many prognostic and predictive signatures for

tumor patients based on exosome-related processes have

been developed (Wu et al., 2021; Li et al., 2022; Lin et al.,

2022; Wu et al., 2022). But, taking only exosome-related

processes into consideration may not be enough. Recently,

it has been reported that immune-related responses are also

included in tumor prognostic signatures. Combined with

these, an effective predictive model should take different

components of the immune system into consideration, and

its predictive response may change according to different

cancer types (Bruni et al., 2020). Increasing evidence has

shown the involvement of B cells (Sautes-Fridman et al.,

2019; Cabrita et al., 2020; Helmink et al., 2020; Petitprez

et al., 2020; Sharonov et al., 2020), NK cells (Andre et al.,

2018), and CD8+ T cells (Mariathasan et al., 2018) in cancer

immunotherapy responses and immunosurveillance. In our

study, we combined B cell, NK cell, and CD8+ T cell

parameters with the tumor microenvironment, exosome,

mitosis, and PI3K-Akt pathway. In addition, to the best of

our knowledge, this is the first report to use a novel machine

learning method (RF algorithm) to construct this signature.

However, this study still has some disadvantages. For

example, our RF signature was only validated in TCGA and

ICGC datasets, and more external validation sets should be

included. In addition, exosome-, mitosis-, and immune-related

processes, which are used to construct the RF model, should have

more experimental validation to elaborate the relationships

among them.

In conclusion, we constructed an RF signature that contained

exosome, mitosis, PI3K-Akt, B cell, NK cell, and CD8+ T cell

signaling. The RF signature can accurately predict the prognosis

of HCC patients and has potential clinical value.
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