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The extracellular matrix (ECM) is an interconnected macromolecular scaffold

occupying the space between cells. Amongst other functions, the ECMprovides

structural support to tissues and serves as a microenvironmental niche that

conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to

the cytoskeleton, are dynamic multi-protein complexes containing surface

receptors and intracellular effectors that control various downstream

pathways. In skeletal muscle, the most abundant tissue of the body, each

individual muscle fiber and its associated muscle stem cells (MuSCs) are

surrounded by a layer of ECM referred to as the basal lamina. The core

scaffold of the basal lamina consists of self-assembling polymeric laminins

and a network of collagens that tether proteoglycans, which provide lateral

crosslinking, establish collateral associations with cell surface receptors, and

serve as a sink and reservoir for growth factors. Skeletal muscle also contains

the fibrillar collagenous interstitial ECM that plays an important role in

determining tissue elasticity, connects the basal laminae to each other, and

contains matrix secreting mesenchymal fibroblast-like cell types and blood

vessels. During skeletal muscle regeneration fibroblast-like cell populations

expand and contribute to the transitional fibronectin-rich regenerative matrix

that instructs angiogenesis and MuSC function. Here, we provide a

comprehensive overview of the role of the skeletal muscle ECM in health

and disease and outline its role in orchestrating tissue regeneration and

MuSC function.
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Introduction

Multicellularity is thought to have emerged independently

over 25 times during the history of life on Earth (Grosberg and

Strathmann, 2007). When compared to single-celled

organisms, multicellularity has the advantage that cells can

specialize and come together to form tissues and organs that

have distinct functions. Animals (metazoans) that have

developed an astonishing variety of body plans are amongst

the most complex organisms in the phylogenetic tree of life.

The development of an extracellular matrix (ECM), the non-

cellular element of all tissues, was essential in enabling the

rapid evolution of the metazoan phyla (Hynes, 2012). ECM

consists of a sophisticated and highly organized network of

macromolecules occupying the space between cells. The wide

range of biological functions of the ECM includes providing

structure to cells and tissues, serving as an adhesion substrate,

facilitating the communication of neighboring cells,

transmitting mechanical signals, regulating cellular growth,

and promoting or restricting cell movement. The critical

importance of ECM for metazoans is illustrated by the fact

that heterotrimeric laminins are already synthesized by 16-cell

embryos, while collagen IV is detectable in the inner cell mass

of the blastocyst (Leivo et al., 1980; Cooper and MacQueen,

1983). In its basic structure, the majority of ECM is composed

of two main classes of biomolecules: glycosaminoglycan

(GAGs) polysaccharide chains, which are typically linked to

protein in the form of proteoglycans, and proteinaceous ECM

components such as collagen, fibronectin, and laminin. Most

ECM proteins are composed of multiple, often

repeated domains, some of which are highly evolutionarily

conserved.

In metazoans, the ECM of the basal lamina is defined by its

specialized, flat laminar structure and anatomic location at the

interface of parenchymal cells with the extracellular space. The

basal lamina, which depending on the tissue is between 40 and

120 nm thick, includes a core network of self-assembling

laminins that can form continuous sheets intertwined with a

network of collagen and interconnected by linker molecules such

as the proteoglycans nidogen and perlecan (Aumailley et al.,

1993; Hynes, 2012). The interstitial matrix occupies the

extracellular space adjacent to the pericellular basal lamina.

The majority of interstitial ECM is made up of proteoglycans,

which due to negatively charged sulfates in their

glycosaminoglycan chains are typically highly hydrated

(Frantz et al., 2010). In contrast to the network collagens

found in the basal lamina, the interstitial matrix contains

fibrillar collagen, which binds to proteoglycans to form a

sturdy gel. Depending on the tissue, the interstitial ECM also

contains fibronectin, a high-molecular weight glycoprotein with

a wide spectrum of functions ranging from structural

organization to cell surface receptor interactions (Singh et al.,

2010).

Next to its role during development, the ECM has key

functions for tissue regeneration in adult organisms. This

includes both regular cellular renewal during tissue

homeostasis and reparative regeneration after injury. Several

metazoan phyla have a remarkable regenerative capacity that

in some cases persists throughout life. For instance, urodele

amphibians can regenerate entire limbs through an

epimorphic regeneration process mediated by a blastema

formed either from dedifferentiation or tissue-resident stem

cells involving a unique pro-regenerative ECM (Sandoval-

Guzman et al., 2014; Seifert and Muneoka, 2018). In adult

mammals, the regenerative capacity of tissues ranges from

absent to very low in the central nervous system to highly

efficient in the liver, the latter of which can regrow to its

original size after losing up to 70% of its original volume

within 1 week in rodents (Zhao et al., 2016). By providing

interaction sites and through its physical properties, the ECM

presents instructive signals to cells during adult tissue

regeneration, while its ability to sequester growth factors and

generate concentration gradients also has indirect effects on this

process (Hynes, 2009).

Many tissues in vertebrates contain adult stem cells that are

involved in physiological regeneration, maintaining homeostasis

as well as in reparative regeneration following injury or loss of

body parts. Arguably, the most prominent example is

hematopoietic stem cells that can self-maintain while

producing a wide spectrum of circulating cells (Clevers and

Watt, 2018). Other examples include stem cells in the skin,

certain brain structures, the intestine, and skeletal muscle.

While all cell types in vertebrates are exposed to some form

of ECM, adult stem cell niches often contain a highly specialized

instructive structural microenvironment (Gattazzo et al., 2014).

ECM niches involve both autoregulatory matrix that is secreted

by stem cells into their own microenvironment and molecules

produced by supportive accessory cell types. Here, we discuss the

ECM in the stem cell niche in the context of skeletal muscle

which, since the first description of a putative myogenic

progenitor cell residing on the surface of muscle fibers by

electron microscopy in 1961, has become one of the most

studied paradigms of adult tissue regeneration (Katz, 1961;

Mauro, 1961; Scharner and Zammit, 2011).

Skeletal muscle stem cells

Without considering “connective tissue”, an umbrella term

used for ECM spaces and their associated fibroblast-like cells,

skeletal muscle represents the most abundant tissue in

vertebrates. Adult skeletal muscle contains a population of

stem cells that are directly associated with muscle fibers

referred to as “satellite cells” or “muscle stem cells” (MuSCs).

Under homeostatic conditions adult MuSCs have exited the cell

cycle and reside in a quiescent state under the ECM of the basal
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lamina that surrounds each individual muscle fiber

(Mashinchian et al., 2018; Ancel et al., 2021). Following

damage to muscle fibers, MuSCs can activate, enter the cell

cycle and divide. While a fraction of MuSCs self-renews and

maintains its stem cell characteristics, the bulk of cells progresses

through the myogenic program and ultimately turns into

myocytes that align and fuse to form new muscle fibers

replacing the lost cells.

In everyday life, skeletal muscle tissue can be injured by blunt

or penetrating traumatic events, for instance following road

traffic, workplace, and sports accidents or because of

lacerations during surgical interventions. Damage to muscle

fibers leads to hypercontraction, necrosis, and subsequent

removal of cellular debris by immune cells. In most types of

skeletal muscle injury, the majority of ECM initially remains in

the wound and MuSCs can migrate along the remaining scaffold

to fuse and form new muscle fibers for tissue repair (Garg et al.,

2015; Webster et al., 2016). Owing to MuSCs, skeletal muscle has

the striking ability to go through multiple rounds of injury and

repair without significant loss of functionality. However, efficient

adult skeletal muscle regeneration in mammals depends on

instructive signals from the existing extracellular matrix

(Singhal and Martin, 2011; Webster et al., 2016). If large

portions of a skeletal muscle including the ECM are lost, the

tissue fails to regenerate efficiently. A well-known example of this

kind of injury is volumetric muscle loss (VML) occurring after

excision of large portions of skeletal muscle, for instance as a

consequence of explosions on the battlefield (Testa et al., 2021).

In case of VML the missing parts of damaged muscles are

partially replaced by fibrotic scar tissue and revascularization

and reinnervation of the small number of disoriented fibers that

are forming at the injury site is inefficient. Thus, although

extensive remodeling of the ECM takes place during skeletal

muscle regeneration, at least in the early stages an existing ECM

template is required for efficient MuSC function.

Snake venoms such as cardiotoxin or notexin, a frequently

used experimental paradigm for skeletal muscle regeneration,

lead to a type of myotoxic injury that induces hypercontraction

and degeneration of muscle fibers but is thought to leave ECM

and mono-nuclear cell types including MuSCs largely intact

(Hardy et al., 2016). Thus, this type of injury induces highly

coordinated and efficient skeletal muscle regeneration with

MuSCs reaching a peak in proliferation around 3–5 days post

injury (Fukada et al., 2022). During the first few days after snake

venom injury remnants of the original basal laminae are still

present in the tissue, while at later stages newly formed fibers of

small diameter and their associated proliferating MuSCs are

surrounded by proportionately sized basal laminae containing

specialized pro-regenerative ECM molecules (Bentzinger et al.,

2013). The latter observation suggests that de novo ECM

synthesis and remodeling of the basal lamina, as well as

removal of the residual scaffold during the regenerative time-

course are highly coordinated processes critical to efficient

skeletal muscle regeneration (Yoshimoto et al., 2020). While

the cellular sources and mechanisms driving remodeling of

the pro-regenerative ECM after myotoxic injury remain only

partially understood, evidence points towards immune cells and

fibroblast-like cell populations as major contributors to these

dynamic processes. MuSCs integrate paracrine and autocrine

ECM signals through several different transmembrane proteins

that, together with the coordinated activation of cell-cell and

growth factor receptors, instruct all stages of adult myogenesis.

Transmembrane extracellular matrix
components and receptors in muscle
stem cells

The basal lamina of skeletal muscle, which surrounds the

muscle fiber plasma membrane and sublaminar MuSCs, is

composed of a scaffold of heterotrimeric laminins and an

interlaced network of collagen IV (Figure 1). Laminins that

bind to integrins and dystroglycan are the predominant

macromolecular polymeric ECM component expected to

interface directly with MuSCs. Several other ECM components

in the basal lamina can bind to cell surface receptors. This

includes the non-neuronal isoform of agrin, which links the

laminin network to both integrins and dystroglycan (Bezakova

and Ruegg, 2003). The heparan sulfate proteoglycan perlecan, a

large multidomain protein, connects the collagen IV and laminin

networks to dystroglycan (Talts et al., 1999). Biglycan, a small

leucine-rich proteoglycan has a role in tethering dystroglycan

and some of its associated sarcoglycans to collagens (Bowe et al.,

2000; Rafii et al., 2006). The basal lamina is laterally stabilized by

proteins such as the nidogens that have multiple interaction

partners including laminin, collagen IV, and perlecan (Zhou

et al., 2022). Although nidogens can also bind to integrins and

promote cell spreading, evidence for direct cell surface receptor

interactions in skeletal muscle remains limited (Dong et al., 1995;

Wu et al., 1995). Under homeostatic conditions, the basal lamina

spatially separates MuSCs from interstitial ECM components.

However, the example of the interstitial collagens I and VI that

are linked to each other and the C-terminus of collagen IV in the

basal lamina through the fibril growth promoting proteoglycan

decorin, illustrates that all ECM layers in skeletal muscle are

intimately interconnected and spatially distant structures may

have indirect effects on MuSC function (Danielson et al., 1997;

Kuo et al., 1997; Nareyeck et al., 2004).

MuSCs contain high levels of the heterodimeric laminin

receptor integrin α7β1, which has frequently been used as a

marker for flow cytometry isolation (Figures 2A,D) (Blanco-Bose

et al., 2001). While the mRNA coding for integrin β1 is readily

detectable in quiescent MuSCs, the α7 subunit appears to be

expressed at lower levels (Figure 2A). This phenomenon may be

due to negative feedback regulation induced by the high

abundance of laminin ligand in the quiescent niche, a notion
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that is supported by the fact that integrin α7 mRNA is

upregulated in activated or differentiating cells when the ECM

surrounding the cells becomes more heterogenous. The integrin

α subunit consists of a short cytoplasmatic tail, followed by a

transmembrane domain, two β-sandwich “calf” domains, the genu or

“knee” domain, and an Ig-like “thigh” domain supporting the β-
propeller that forms the ligand binding head (Figure 2B) (Gahmberg

et al., 2009). The integrin β subunit is composed of a cytoplasmatic tail,

followed by a transmembrane segment, the β-tail, 4 EGF-like domains,

a β I-like domain, and the plexin-semaphorin-integrin (PSI) domain.

Both theα and β integrin subunits contain binding sites for the divalent
metal ions Mg2+ and Ca2+ that have differential functions in regulating

ligand affinity (Zhang andChen, 2012).However, complete removal of

these cations using EDTA leads to an inhibition of integrin-ligand

interactions, a mechanism that is commonly exploited when mild

enzyme-free dissociation buffers are used to detach primary MuSC

derived myoblasts from culture dishes containing ECM coating.

Integrins have different ligand affinity states that depend on their

structural conformation (Figure 2C) (Takagi and Springer, 2002). In

their inactive state the two integrin subunits remain in a bent over, low-

affinity conformation. Following intracellular signals or binding to

ECM the extracellular portion of the two subunits can extend but

remains in a closed low-ligand-affinity conformation. Upon

multivalent ligand binding and intracellular stabilization by focal

adhesion molecules including kindlin and talin that are anchored

to the actin cytoskeleton, integrins will transition to the open high-

affinity state in which the cytoplasmic “leg” domains become

separated. Pax7-dependent deletion of integrin β1 leads to a

depletion of the MuSC pool, suggesting a role in maintaining

quiescence (Rozo et al., 2016). Interestingly, aged MuSCs contain

less active, high-affinity integrin β1, and treatment with an activating

antibody ameliorates age-associated stem cell dysfunction. Integrin

α7 can be alternatively spliced to generate the variants α7X1, α7X2 that
bind to different forms of laminin (von der Mark et al., 2002). α7X1,

FIGURE 1
Structure of the extracellular matrix (ECM) in the quiescent muscle stem cell (MuSC) niche. MuSCs interface directly with the laminin 211 and
collagen IV-rich basal lamina. Laminin 211, agrin, biglycan and perlecan interact with cell surface receptors such as dystroglycan and integrin (Itg)
α7β1 and connect to syndecans. Nidogen and perlecan link the collagen IV network in the basal lamina to the plasma membrane and laminin.
Perlecan, biglycan and decorin help anchoring the basal lamina to collagen I, III, and VI in the proteoglycan-rich interstitial matrix. Many ECM
proteins are extensively glycosylated (green sidechains).
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FIGURE 2
Transmembrane ECM components and receptors in MuSCs. (A) Dot plot of single cell RNA-sequencing data (Oprescu et al., 2020) obtained
from the Gene ExpressionOmnibus (GEO) database (Barrett et al., 2013) from uninjured and regenerating skeletal mousemuscle at 5 days post injury
that was generated using Seurat 4.0.5. (Hao et al., 2021). Genes coding for ECM interacting transmembrane proteins were selected based on the GO
terms “adhesion receptor function” in the adhesome data base and “ECM receptors” in the reactome data base (Zaidel-Bar et al., 2007;
Winograd-Katz et al., 2014; Griss et al., 2020). The data for quiescence was obtained from uninjured muscles, while proliferation and differentiation
were defined based on the presence or absence of expression of genes such as Pax7, MyoD, MyoG, and MKI67 at 5 days post injury. Only genes
significantly expressed by at least 10% of MuSCs are shown. (B) Scheme showing the domain structure of the integrin-α and -β subunits. (C) Scheme
illustrating how integrins transition from their low-to high-affinity state upon multivalent ligand binding and intracellular stabilization by focal
adhesion molecules. (D) Immunostaining showing integrin β1 (red), laminin α2 (green), Pax7 (white), and DNA (blue) in a MuSC on a manually teased
mouse muscle fiber bundle preparation. (E) Immunostaining showing dystroglycan (red), M-cadherin (green), and DNA (blue) in a MuSC on an
enzymatically isolated single mouse muscle fiber. (F) Immunostaining showing syndecan-4 (green), MyoD (red) and DNA (blue) in MuSCs on an
enzymatically isolated single mouse muscle fiber after 24 h of culture. (G) Scheme showing the domain structure of syndecan dimers in their
membrane bound and soluble forms. Matrix metalloproteinases (MMPs) cleave membrane syndecans in a process called “shedding” and release the
extracellular domain into the surrounding ECM. Scale bars = 20 μm (D,E), and 10 μm (F).
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which does not contain exon 6 of the ITGA7 gene, appears to be

mainly expressed during skeletal muscle development, while α7X2,
which does not contain exon 5, is expressed in adult skeletal muscle

(Collo et al., 1993; von der Mark et al., 2002). Inclusion of exon

5 leading to α7X1 expression at the expense of α7X2 impairs

asymmetric MuSC division and the generation of committed

myogenic progenitors (Dominici and Richard, 2022). Following

activation, MuSCs have been reported to upregulate integrin α6β1,
which binds to certain cell-autonomously secreted laminin isoforms

driving planar divisions required for expansion of the stem cell pool

(Rayagiri et al., 2018). While single cell sequencing data suggests that

MuSCs in vivo do not express high levels of collagen-binding integrin

heterodimers, it has been shown that primary MuSC-derived

myoblasts cultured on collagen-rich substrates express a variety of

α and β subunits including the collagen receptors integrin α1β1 and

α2β1 (Figure 2A) (Hynes, 2002; Siegel et al., 2009). Interestingly,

integrin α7β1 also has a role inMuSCmotility, and antibodymediated

blockade of either subunit slowed the movement of cells on cultured

single fibers in live-imaging experiments. In contrast, blockade of the

RGD specific integrin α5 and laminin specific integrin α6 subunits

increased MuSC motility suggesting an inhibitory effect of certain

ECM components on cell migration (Siegel et al., 2009).

The second highly expressed ECM receptor in MuSCs is

dystroglycan (Figures 2A,E). Dystroglycan is synthesized from a

single gene (DAG1) and is post-translationally cleaved into α and

β subunits (Figure 1) (Ibraghimov-Beskrovnaya et al., 1992). α-

dystroglycan is peripherally linked to β-dystroglycan, which

spans the plasma membrane and is directly connected to the

inner membrane protein dystrophin (Winder, 2001).

Dystroglycan is a core component of the dystrophin

glycoprotein complex (DGC), which includes the sarcoglycans

and sarcospan as well as several intracellular proteins (Lapidos

et al., 2004). The DGC provides a mechanical link to the

extracellular matrix, and mutations in genes involved in this

multicomponent complex destabilize the muscle fiber plasma

membrane and can lead to several different types of muscular

dystrophy (Gao and McNally, 2015). α-dystroglycan is highly

glycosylated (Ervasti and Campbell, 1991). This includes N- and

O-linked modifications, in which oligosaccharides are attached

to the amide group of asparagine, or to the hydroxyl group of

serine or threonine respectively (Muntoni et al., 2007).

O-mannosyl structures on dystroglycan have been proposed

to be directly required for laminin, perlecan and agrin binding

(Chiba et al., 1997; Sasaki et al., 1998; Michele and Campbell,

2003). Mutations in genes encoding for glycosyltransferases can

cause certain forms of congenital muscular dystrophy

characterized by abnormal glycosylation of α-dystroglycan

(Muntoni et al., 2007). Increasing evidence suggests a direct

role of dystroglycan in regulating MuSC function. It has been

shown that muscle fiber specific deletion of DAG1 leads to a mild

form of muscular dystrophy (Cohn et al., 2002). Supporting the

notion thatDAG1 is highly expressed in MuSCs, progenitors that

fuse to knockout fibers induce its synchronized reexpression

during regeneration cycles. Moreover, MuSC-specific deletion of

DAG1 has been shown to impair skeletal muscle regeneration

(Dumont et al., 2015). Whether these effects are due to a reduced

ability to maintain quiescence, or whether dystroglycan has a

direct role following activation and proliferation, remains to be

determined.

In skeletal muscle, heparan sulfate proteoglycans are

present as integral matrix components such as perlecan,

decorin, and biglycan. They can be attached to the ECM, as

in the case of glypican, or can pass through the cell membrane,

like syndecans (Iozzo et al., 1994; Brandan et al., 1996;

Couchman and Woods, 1996; Wiberg et al., 2002). In

MuSCs, syndecans-3 and -4 have important nonredundant

roles in transducing and integrating signals from the ECM as

well as from transmembrane signaling proteins (Cornelison

et al., 2001). Loss of syndecan-3 leads to diminished

proliferation, differentiation defects, and impaired self-

renewal due to aberrant niche interactions, while loss of

syndecan-4, which is highly expressed by MuSCs (Figures

2A,F), impairs activation, proliferation, migration, and

differentiation via multiple mechanisms (Cornelison et al.,

2004; Munoz et al., 2006; Pisconti et al., 2010; Shin et al., 2012;

Bentzinger et al., 2013; Becsky et al., 2020; Ronning et al.,

2020; Szabo et al., 2022). Through their extracellular domain

and its associated heparan sulfate or chondroitin sulfate

carbohydrate chains, syndecans form ternary structures

with growth factors and their receptors including FGFs,

transforming growth factor-β family members, Wnts, and

small chemokines such as SDF-1/CXCL12 and RANTES/

CCL5 (Allen et al., 2001; Slimani et al., 2003; Chen et al.,

2004; Charnaux et al., 2005; Munoz et al., 2006). Syndecans

also associate with transmembrane and membrane-bound

ECM receptors such as integrins and A disintegrin and

metalloproteases (ADAMs), and bind to extracellular

matrix proteins including laminins, tenascin, collagens, and

fibronectin (Couchman and Woods, 1999; Iba et al., 2000;

Czarnowski, 2021). While some of these interactions are

specific to only one syndecan, as for instance in case of

syndecan-4, which is the sole and obligate coreceptor for

CXCR4-CXCL12, many protein-protein interactions such as

syndecan-integrin binding are common among all four family

members, even though the four extracellular domains are each

unique in their genomic sequence. Similarly, while with

28–34 amino acids their intracellular domains are

comparably small, syndecans mediate interactions with a

large number of second messengers, small G proteins, and

cytoskeletal proteins (Simons and Horowitz, 2001). Syndecan-

4 possesses a unique lysine-rich PIP2 binding domain that is

not found in the other family members, which facilitates

syndecan-4-specific signaling interactions. All members of

the syndecan family form homodimers or multimers, which

does not require their carbohydrate chains (Bernfield et al.,

1992). In a process known as ectodomain shedding, the
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extracellular domains of syndecans can be proteolytically

cleaved (Figure 2G) (Gopal, 2020). Syndecan shedding

yields soluble proteoglycans retaining the binding

characteristics of their transmembrane form that can

become incorporated into the surrounding matrix and are

even found in the systemic circulation (Eustace et al., 2019).

Syndecan core protein cleavage by sheddases has been shown

to be activated in response to cytokines such as IL-8 (Marshall

et al., 2003). Multiple roles for syndecan shedding have been

proposed, including a reduction of direct signal transduction

in the originating cells, sequestration of growth factors away

from cell surfaces, or broader paracrine effects on surrounding

cells (Gopal, 2020). The plethora of ECM, cell-surface, and

intracellular interactions that syndecans participate in

highlights their roles as integrators of multiple signaling

inputs and ‘tuners’ of the downstream cellular response,

although they are not generally considered to be either

ECM components or classical transmembrane receptors.

Recent single cell expression data further supports a role

for syndecans, particularly syndecan-4, as key regulators of

multiple signaling pathways in MuSCs (De Micheli et al.,

2020). Expression of syndecan-4 is high in quiescent

satellite cells, especially those that retain the most stem cell

character and is maintained on proliferating and

differentiating satellite cell progeny but lost on

differentiated myofibers in vivo (Tanaka et al., 2009; Cho

and Doles, 2017).

Extracellular matrix in the quiescent
muscle stem cell niche

Collagen I and III fibrils are highly abundant in the

interstitial space of homeostatic skeletal muscle (Figures 3A,B)

(Light and Champion, 1984). Two genes, COL1A1 and COL1A2,

are involved in collagen I formation. Collagen I contains homo-

or heterotrimers generated from the transcription of these genes,

with each subunit comprising over 1000 amino acids that can

reach a length of up to 300 nm (Naomi et al., 2021). Collagen III

is a homotrimer encoded by the COL3A1 gene that has the same

molecular structure and approximate number of amino acids as

collagen I (Kuivaniemi and Tromp, 2019). Collagen fibril

formation is mainly an entropy-driven self-assembly process

(Kadler et al., 1996). Fibril-forming collagens are synthesized

in the form of soluble trimeric procollagen (Figure 3C). Through

cleavage of N- and C-terminal peptide residues by

metalloproteases, procollagen is processed into tropocollagen.

Tropocollagen molecules spontaneously self-assemble into

FIGURE 3
Fibrillar collagen and the interstitial space. (A) Scanning electron microscopy image of a manually teased mouse muscle fiber bundle
preparation. The fiber is covered by the basal lamina and residues of interstitial ECM proteins. Flanking the fiber several ECM-covered blood vessels
embedded in the interstitial space can be discerned. The uppermost part of the image shows the extensive collagen I and III-rich ECM network in the
interstitial space of skeletal muscle. (B) Atomic force microscopy image (contact mode) of a single collagen fibril (white arrowhead) on the
surface of an enzymatically isolated single mouse muscle fiber. The characteristic banding pattern of overlap and gap regions of the collagen fibril
can be discerned in the insert. (C) Scheme illustrating the fiber assembly process of collagen I. Scale bars = 2 µm (A), and 1 µm (B).
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FIGURE 4
Laminin 211 and collagen IV in the basal lamina. (A) Scanning electron microscopy image of a single mouse muscle fiber that was isolated using
collagenase type I, which cleaves collagen I, II, and III. The insert shows a higher magnification of the muscle fiber basal lamina as well as residues of
interstitial ECM components. (B,C) Schemes showing the structure of laminin 211 and the assembly of the collagen IV network in the basal lamina.
Interaction sites of ECM proteins and receptors are shown in red. (D) Immunostaining showing a single Pax7 positive MuSC (red) covered by
laminin α2 (white) in the basal lamina, co-stained with the inner membrane marker dystrophin (green) and DNA (blue) on a manually teased mouse
muscle fiber bundle. Dystrophin is expressed by both the muscle fiber and MuSCs, albeit levels are lower in quiescent MuSCs (white arrowheads). (E)
Immunostaining of mouse skeletal muscle cross sections showing laminin α2 (white), (E), collagen IV (yellow), (F), Pax7 (red) and DNA (blue). Scale
bars = 20 µm (Lower image A,D-F), and 2 µm (High magnification insert in A).
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striated collagen fibrils that are stabilized by covalent bonds

introduced by lysyl oxidase cross-linking.

In the endomysial space around muscle fibers collagen

appears to be mainly organized in wavy fibrillar networks,

while in the connective tissue of the perimysium surrounding

bundles of muscle fibers, collagen can form large “cables” (Gillies

and Lieber, 2011). These large collagen cables are oriented from

tendon to tendon and run along the surface of muscle fibers.

Interestingly, in a mouse model displaying extensive fibrosis, it

has been shown that the number and not the size of collagen

cables in the perimysium determines muscle stiffness (Gillies

et al., 2017). Fibrillar collagens are major determinants of tissue

elasticity, which has been demonstrated to be critical for the self-

renewal capacity of MuSCs (Gilbert et al., 2010; Moyle et al.,

2020; Piersma et al., 2020). MuSCs cultured on hydrogels with an

elastic modulus around 12 kPa, corresponding to skeletal muscle

tissue, show improved survival, reduced differentiation, and an

increased engraftment capacity after transplantation (Gilbert

et al., 2010). Notably, MuSC dysfunction in aged skeletal

muscle correlates with a 4-fold increase in tissue stiffness, an

accumulation of collagen, and a higher hydroxyproline and

advanced glycation end-product content (Lacraz et al., 2015).

Moreover, it has been shown that aged skeletal muscle is

characterized by decreased collagen fibril tortuosity and

alignment. (Stearns-Reider et al., 2017). The resulting increase

in tissue stiffness leads to altered YAP/TAZ mechanosensing in

fibroblasts. Consequently, these fibroblasts release an anti-

myogenic ECM that increases the expression of fibrogenic

markers in MuSCs.

The popular single fiber isolation and culture method, which

allows one to monitor MuSC dynamics ex vivo, exploits the high

fibrillar collagen content in the interstitial space of skeletal

muscle. In this technique, muscles are exposed to collagenase

type I (ColG) typically isolated from the bacterium Clostridium

histolyticum, which cleaves collagen I, II, and III (Rosenblatt

et al., 1995; Cornelison and Wold, 1997; Pasut et al., 2013; Zhang

et al., 2015). After digestion with this enzyme, single muscle fibers

with their associated MuSCs and partially intact basal laminae

that still contain most of their laminin and collagen IV core-

networks can be isolated and maintained in growth media

(Figure 4A). Due to its abundance of over 90% of the dry

mass in bone and 60% in cartilage, collagen I from animal

sources, either purified or in the form of gelatine, is frequently

used as a coating substrate for the culture of MuSC derived

primary myoblasts (Von Der Mark, 2006; Kim et al., 2020).

Notch signaling, which is for instance activated by proximity

to blood vessels, controls enhancers proximal to the COL5A1,

COL5A3, COL6A1, and COL6A2 genes in quiescent MuSCs

(Baghdadi et al., 2018a; Verma et al., 2018). MuSC-specific

conditional deletion of COL5A1 leads to premature cell cycle

entry and a loss of quiescent cells from skeletal muscle. The

quiescence promoting effects of collagen V appear to be mediated

by the calcitonin receptor, a G-protein-coupled receptor that has

been shown to have important functions in preventing MuSC

activation via the cAMP-PKA pathway (Yamaguchi et al., 2015).

Through microRNA-708, Notch signalling also has a role in

supressing the expression of the focal adhesion protein tensin 3,

which promotes MuSC quiescence and antagonizes cell

migration (Baghdadi et al., 2018b). Tensins integrate ECM

signals by binding to the intracellular tail of integrin β1, as
well as to the actin cytoskeleton (Mouneimne and Brugge,

2007). Interestingly, Pax3-dependent deletion of the Notch

effector Rbpj has been shown to lead to decreased autocrine

deposition of laminin and collagen XVIII around emerging

MuSCs during development (Brohl et al., 2012). Thus, several

lines of evidence point towards Notch signaling as a key upstream

regulator of cell-autonomous ECM deposition in the MuSC

niche.

Over 30 years ago laminin was identified and isolated from

Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Chung et al.,

1979; Timpl et al., 1979). Laminins are heterotrimeric high

molecular weight proteins (~400–900 kDa) that contain α, β,

and γ chains, which depending on the subunit isoforms assemble

into cross- or T-like structures (Holmberg and Durbeej, 2013).

The five α, four β, and three γ chains in mammals are believed to

have evolved from a single archetypical set of genes

(Domogatskaya et al., 2012). Even though the laminin genes

allow for over 60 possible permutations, only 16 heterotrimer

combinations have been identified (Yap et al., 2019). Laminins

are named based on the chains they contain. For instance,

laminin 111, the isoform most abundantly secreted by EHS

sarcoma cells, contains α1β1γ1 chains (Aumailley et al., 2005).

αβγ laminin chains assemble through their coiled coil domains

that are linked to each other by disulphide bonds (Hohenester,

2019).

During development the skeletal muscle basal lamina contains

high amounts of laminin 211, while the 411 and 511 isoforms are

detectable at much lower levels (Sanes et al., 1990; Patton et al.,

1999). Except for the neuromuscular junction and blood vessels, the

basal lamina in homeostatic adult skeletal muscle contains almost

exclusively laminin 211. Following regeneration laminin 511 is

transiently upregulated, while the 211 and 411 isoforms remain

largely unchanged (Patton et al., 1999). The autopolymerisation of

laminin 211 depends on the N-terminal globular LN domains of the

three short arms (Figure 4B). Isoforms of laminin containing the α4,
α3A, and γ2 chains lack the N-terminal globular domains and do

not polymerize efficiently (Karamanos et al., 2021). Lamininsmostly

bind cell-surface receptors through five G domains (LG1–5) on the

α chain C-terminus. While LG1–3 are responsible for binding to

integrin α7β1, binding to dystroglycan appears to involve all 5 LG

domains (Talts et al., 1999; Timpl et al., 2000; Smirnov et al., 2002).

Due to its abundance in the niche, laminin 211 likely has a role in

maintaining MuSC quiescence (Figures 4D,E). Supporting this

notion, it has been shown that primary MuSC derived myoblasts

proliferate and differentiate less efficiently on laminin 211 than on

laminins containing the α5 chain (Penton et al., 2016).
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Several peptide motifs in the LG4 domain of the laminin

α2 chain contain heparin-binding sites and interact with

syndecans, which could be another mechanism involved in the

maintenance of MuSC quiescence (Hoffman et al., 1998; Suzuki

et al., 2003). TheN-terminal domain (NtA) of agrin binds to laminin

near the center of its coiled coil domain and, through some of its

C-terminal laminin-like G domains, links the basal lamina to cell

surface receptors such as dystroglycan (Gesemann et al., 1996;

Denzer et al., 1998). Nidogen-1 and -2 (also known as entactins)

are 30–40 nm long sulfated monomeric glycoproteins of about

150 kDa that have a structurally homologous domain

organisation (Kohfeldt et al., 1998). Nidogen has two N-terminal

and one C-terminal globular domains that are connected by rod-like

segments (Fox et al., 1991). By providing a link between the laminin

and collagen IV networks, nidogen represents an important central

hub in the basal lamina ECM (Mayer et al., 1993; Reinhardt et al.,

1993; Kohfeldt et al., 1998). Binding of nidogen to the triple helical

rod domain of collagen IV occurs via its G2 domain (Aumailley

et al., 1989; Aumailley et al., 1993). Next to the collagen IV network,

nidogen also connects the large proteoglycan perlecan to laminin

(Hopf et al., 1999). The perlecan core protein has amolecular weight

of approximately 500 kDa, which is increased by the addition of

multiple heparan sulfate chains (Farach-Carson and Carson, 2007).

Perlecan knockout mice show changes in the number of fast

contracting fibers and display muscle hypertrophy accompanied

by decreased myostatin expression, but direct effects on MuSCs

remain to be assessed (Xu et al., 2010). Notably, perlecan binds and

enhances the activity of several growth factors including vascular

endothelial growth factor (VEGF) and fibroblast growth factors

(FGFs) (Jiang and Couchman, 2003). Since VEGF is involved in

maintaining quiescence and FGFs inhibit differentiation, it is

plausible that perlecan mediated tethering of these molecules in

the basal lamina plays a role in regulating MuSC function

(Pawlikowski et al., 2017; Verma et al., 2018).

Collagen IV, which next to laminin forms the second core

network of the basal lamina, originates from up to six different α-

chains named α1(IV) to α6(IV) that can assemble into α1α1α2,
α3α4α5, and α5α5α6 heterotrimers (Khoshnoodi et al., 2008). The

α1(IV) and α2(IV) chains are present inmost adult tissues, while the

other four chains appear to largely play a role during development.

Collagen IV chains contain an N-terminal 7S domain (named based

on its sedimentation coefficient) that is followed by a long

collagenous domain, and a non-collagenous C-terminal domain

(NC1) (Figures 4C,F) (Hudson et al., 2003). By binding of two

NC1 domains or by uniting four triple helical 7S domains, collagen

IV can form irregular polygonal networks (Yurchenco and Ruben,

1987). Mutations in COL4A1 have been shown to correlate with

myopathic changes in skeletal muscles of a human patient and mice

with a mutation in this gene develop a progressive neuromuscular

phenotype (Labelle-Dumais et al., 2019). However, a direct role of

collagen IV in regulating MuSC function remains to be uncovered.

In vitro experiments using blocking antibodies suggest that MuSC

binding to collagen IV is largely indirect and mediated by perlecan

(Villar et al., 1999). Cross-linking of NC1 domains in collagen IV is

established through sulfilimine bonds (between methionine sulfur

and lysine nitrogen), whose loss has been shown to influence tissue

elasticity in the kidney (Bhave et al., 2017). Thus, it is conceivable

that alongside interstitial fibrillar collagens, the collagen IV network

influences MuSC function by finetuning the biomechanical

properties of the basal lamina and the tissue in general (Gilbert

et al., 2010).

Extracellular matrix regulation of
activated muscle stem cells

Following damage to muscle fibers, MuSCs exit quiescence

and enter the cell cycle to subsequently initiate the regenerative

response that involves a multitude of highly complex

spatiotemporally controlled niche interactions with a wide

range of different supportive cell types (Mashinchian et al.,

2018). In earliest stages of MuSC activation cellular

protrusions stabilized by Rac GTPases are retracted through

an upregulation of Rho/ROCK signaling, which is correlates

with an increase in the expression of immediate early gene

products such as c-jun and c-fos (Machado et al., 2017; van

Velthoven et al., 2017; Almada et al., 2021; Kann et al., 2022). In

order to overcome inhibitory signals by pro-inflammatory

immune cells following skeletal muscle injury, the histone

H3 lysine 27 demethylase JMJD3 epigenetically modifies the

Has2 locus in MuSCs, which initiates hyaluronic acid

synthesis and creates a permissive autoregulatory niche

allowing the cells to exit quiescence (Nakka et al., 2022).

Intravital imaging of mouse skeletal muscle has revealed that

MuSC division and migration following injury are mostly

oriented bi-directionally along the longitudinal axis of

remnant basal lamina sheets that were termed “ghost fibers”

(Webster et al., 2016). Reorientation of these ghost fibers lead to

disorganization of newly formed muscle fibers, which

emphasizes the importance of an instructive ECM template

during the early stages of the regenerative response.

Within 8–9 h after activation, MuSCs begin to secrete

copious amounts of the ECM glycoprotein fibronectin into

their microenvironment (Figures 5A,B) (Bentzinger et al.,

2013). Fibronectin has a molecular weight of about

230–270 kDa and is typically found as a dimer connected by

C-terminal disulfide bonds (Singh et al., 2010). The fibronectin

molecule consists of 12 FNI, 2 FNII, and 15–17 FNIII domains

and, depending on alternative splicing, three main variable

domains, the EDA and EDB FNIII extra domains, and the

IIICS region can be included or excluded. Fibronectin is either

found as soluble plasma fibronectin (pFN) devoid of EDA and

EDB domains, or as cellular fibronectin (cFN) that may contain

one or both of the EDA and EDB extra domains. Next to its

ability to bind to laminin and collagen, fibronectin can engage a

variety of integrins as well as syndecan-4 (Mao and
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Schwarzbauer, 2005). The RGD sequence (Arg–Gly–Asp) of

fibronectin, which binds to α5β1 and αVβ3 integrins, is found

in the 10th FNIII domain. Fibronectin is required for normal

skeletal muscle regeneration and genetic ablation in mice leads to

reduced MuSC numbers (Bentzinger et al., 2013; Lukjanenko

et al., 2016). Whether specific splice variants of fibronectin have

differential roles during skeletal muscle regeneration has not yet

been explored. The expression of connective tissue growth factor

(CTGF/CCN2), which is implicated in modulating TGF-β
activity, has been shown to be an autoregulatory upstream

regulator of fibronectin expression in activated myogenic cells

(Vial et al., 2008). CTGF signalling is deregulated in pathologic

conditions that are accompanied by excessive fibrotic deposition

of ECM. Next to cell-autonomous secretion by activated MuSCs,

fibronectin is secreted by fibro–adipogenic progenitors (FAPs)

and cells of the hematopoietic lineage in regenerating skeletal

muscle (Lukjanenko et al., 2016). Fibronectin binds to the

syndecan-4/frizzled7 co-receptor complex and, together with

Wnt7a, expands the stem cell pool during muscle regeneration

(Bentzinger et al., 2013). As a consequence of aging, fibronectin

levels are significantly reduced in regenerating skeletal muscle

and exogenous supply of this protein improves MuSC function

(Lukjanenko et al., 2016). Reduced levels of fibronectin in aged

muscles goes along with a decreased activation of integrin β1 in

MuSCs, which has been discussed in more detail above (Rozo

et al., 2016).

Laminin α1 and α5 have been shown to be enriched in the

microenvironment of activated MuSCs (Rayagiri et al., 2018). Sox2-

dependent ablation of laminin α1 in mice leads to a reduction in

sublaminal MuSCs and a shift towards smaller muscle fibers in a

multiple injury paradigm. MuSCs also express collagen VI and have

been shown to reside in a microenvironment enriched in this ECM

component (Urciuolo et al., 2013). Collagen VI is implicated in the

pathogenesis of some forms of muscular dystrophy and is required

for MuSC self-renewal, maintenance and survival. During

development fetal myogenic progenitors have been shown to

express elevated levels of tenascin-C, fibronectin, and collagen VI.

In transplantation experiments it was observed that all three of these

ECM components are critical for the function of adult MuSCs, while

only knockdown of tenascin-c and collagen VI reduced the ability of

fetal myogenic progenitors to participate in skeletal muscle repair

(Tierney et al., 2016). Next to autoregulatory ECM deposition,

activated MuSCs also remodel their structural microenvironment

enzymatically. This includes expression of matrix metalloproteinase

(MMP) 2 and 9 (Rayagiri et al., 2018). Pharmacologic inhibition of

MMPs impairs MuSC proliferation in single fiber culture and

genetic ablation of MMP9, which is pathologically increased in a

mouse model of Duchenne muscular dystrophy, improves muscle

regeneration (Li et al., 2009). Human myogenic progenitors express

MMP14, which has been shown to be required for invasion of

collagen I matrices (Lund et al., 2014). In summary, these results

support the idea that autocrine deposition and modulation of

FIGURE 5
Autologous expression of fibronectin by MuSCs. (A) Scheme showing the domain structure of fibronectin and the binding sites for collagen,
integrin and syndecan. The insert shows the seventh through the RGD-containing 10th type III repeats of fibronectin (Leahy et al., 1996) obtained
from the RCSB Protein Data Bank (Berman et al., 2000). The RGD motif is highlighted in blue. (B) Immunostaining showing the endogenous
expression of fibronectin (green), Pax7 or MyoD (red) and DNA (blue) in muscle stem cells on enzymatically isolated mouse single muscle fibers
after 0, 9, and 42 h (hrs) in culture. Scale bar = 20 µm.
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different ECM components has stage-specific regulatory roles in the

developmental and adult MuSC niche.

Amongst all mononuclear cell types contributing to skeletal

muscle regeneration, FAPs appear to secrete the most significant

amounts of ECM into the tissue (Figures 6A,B) (De Micheli et al.,

2020; Oprescu et al., 2020). Large-scale integration of single-cell

transcriptomic data sets has revealed that FAPs have a predicted

interaction strength with myogenic cells that is magnitudes higher

than with any other mononuclear cell type in regenerating muscle

(McKellar et al., 2021). Moreover, 58% of the interactions between

FAPs and MuSCs fall into the “Secreted Signaling” category, while

36% involve “ECM-Receptor” interactions. In agreement with their

classification asmesenchymal stromal cells and coincidingwith their

anatomic localization, FAPs in homeostatic adult skeletal muscle

express high levels of the interstitial ECM components collagen III

and decorin (De Micheli et al., 2020). Close to the peak of MuSC

FIGURE 6
TheMuSC niche in regenerating skeletal muscle. (A) The images show the joint gene expression density (Alquicira-Hernandez and Powell, 2021)
of an index of ~100 ECM genes obtained from the Matrisome database (Shao et al., 2020) in the UMAP projection (McInnes et al., 2018) of single cell
RNA-sequencing data (Oprescu et al., 2020) deposited in the Gene Expression Omnibus (GEO) database (Barrett et al., 2013) from uninjured and
regeneratingmouse skeletal muscle at 5 days post injury. FAPs is short for fibro–adipogenic progenitors. (B) Immunostaining of mouse skeletal
muscle cross sections under uninjured conditions (0 dpi) or 5 days post injury (5 dpi) visualizing FAPs based on Pdgfrα (green) co-stainedwith laminin
α2 (white) and DNA (blue). (C,D) Immunostaining of mouse skeletal muscle cross sections at 0 or 5 dpi showing collagen IV (red), fibronectin
(turquoise), laminin α2 (white) and DNA (blue). Scale bar = 20 µm.
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proliferation around day 5 post injury, FAPs show strong expression

of collagen I alongside periostin, biglycan and SPARC. Moreover, it

has been demonstrated that a population of connective tissue

resident mesenchymal cells are the main cell type secreting

collagen VI in skeletal muscle (Figure 6C) (Braghetta et al.,

2008). During development myogenic cells are required to

activate a COL6A1 gene enhancer region in connective tissue

resident mesenchymal cells. Notably, it has been shown that

diphtheria-toxin mediated ablation of MuSCs in adult skeletal

muscles leads to an expansion of mesenchymal fibroblast-like cell

types and substantial fibrosis (Murphy et al., 2011). These

observations suggest that MuSCs and ECM secreting

mesenchymal cell populations have an intimate reciprocal

relationship during skeletal muscle regeneration. FAPs have also

been shown to be affected by the aging process and produce lower

levels of the ECM-associated matricellular signaling protein WISP1,

which influences MuSC self-renewal and differentiation.

Transplantation of young FAPs or treatment with

WISP1 restores the myogenic capacity of MuSCs in aged mice

and improves skeletal muscle regeneration (Lukjanenko et al., 2019).

Aged FAPs also secrete higher levels of SPARC Related modular

calcium binding 2 (Smoc2), another matricellular protein, which

induces aberrant integrin andMAP kinase signaling in agedMuSCs

(Schüler et al., 2021).

During the expansion phase of the MuSC pool following injury,

skeletal muscle becomes permeated with a transitional pro-

regenerative ECM environment that is fundamentally different

from its homeostatic composition (Goetsch et al., 2003;

Bentzinger et al., 2013; Ceafalan et al., 2020). By day 5 after

snake venom injury around 50% of transcripts that are at least

two-fold increased in regenerating skeletal muscle fall into the gene

ontology category of “ECM signaling” (Goetsch et al., 2003). This

pro-regenerative ECM involves high levels of biglycan, fibronectin,

collagen I and III-VIII, tenascin C, agrin, laminin α2, α5, β1, and β2,
nidogen, perlecan, periostin, and others. Interestingly, during the

remarkably efficient limb regeneration process in urodele

amphibians a transitional regenerative ECM containing

hyaluronic acid, fibronectin, and tenascin C has been suggested

to instruct cell cycle entry and proliferation of myogenic progenitors

(Calve et al., 2010). Under homeostatic conditions, these ECM

molecules are thought to localize mainly in the interstitial space

(Frantz et al., 2010). However, during the appendage regeneration

process some of them can be detected in the basal lamina of muscle

fibers, which suggests that they have a direct role in regulating the

function of sublaminal myogenic progenitors. In regenerating

mouse skeletal muscles, a similar phenomenon can be observed.

While certain typically interstitial ECM components such as

collagen VI do appear to overlap to a significant degree with the

basal lamina during skeletal muscle regeneration, others such as

fibronectin permeate it extensively (Figures 6C,D). Together with

the observation that activated sublaminal MuSCs express several

typically interstitial molecules with autoregulatory function, these

observations suggest that the traditional compartmentalization of

ECM components applies only partially during skeletal muscle

regeneration.

Several ECM components have been implicated in the regulation

of MuSC differentiation. For instance, the small proteoglycan

fibromodulin antagonizes the inhibitory effects of myostatin and

promotes myoblast differentiation (Lee et al., 2016). Insulin-like

growth factor 1 stimulates myoblast fusion in synergy with

collagen IV (Ito et al., 2015). The large glycoprotein fibrillin-1 is

yet another example of an ECM component that influences

myogenesis by modulating growth factor activity. Mutations in

fibrillin-1 cause the connective tissue disease Marfan syndrome

and influence the bioavailability of TGFβ1 (Chaudhry et al., 2007).

Mice with a mutation in fibrilin-1 analogous to that found in humans

with Marfan syndrome, display chronically increased

TGFβ1 signaling, which impairs muscle regeneration by inhibiting

MuSC proliferation and differentiation (Cohn et al., 2007). The

heparan sulfate proteoglycan glypican-1 is expressed by MuSC-

derived myoblasts and sequesters FGF-2 into lipid rafts, allowing

the cells to efficiently differentiate. Loss of glypican-1 leads to reduced

myotube formation and supresses the expression of myogenin

(Gutierrez and Brandan, 2010). An analogous pro-differentiative

mechanism seems to involve perlecan, which is also expressed by

myoblasts and binds FGF-2 (Larrain et al., 1997). Activated MuSCs

also express reversion-inducing cysteine-rich protein with Kazal

motifs (RECK), an extracellular GPI-anchored glycoprotein with

inhibitory functions for matrix metalloproteinases (Gutierrez et al.,

2021). Reduced levels of RECK increase differentiation both in vitro

and in knockout mice. These observations suggest a role of this

protein in fine-tuning of the differentiation process by ECM

remodeling. Altogether, multiple ECM proteins are involved in

controlling MuSC differentiation and, in particular, the regulation

of growth factors and matrix remodelling enzymes appears to be of

central importance during this process.

Extracellular matrix-related muscular
dystrophies and muscle stem cells

Muscular dystrophies are genetic disorders characterized by

skeletal muscle weakening and degeneration that can lead to

severe disability and premature death. Increasing evidence

suggests that MuSC dysfunction plays a role in driving the

progressive regenerative failure that characterizes many of

these diseases (Le Moal et al., 2022). Recently, the term

“satellite cell-opathies” has been proposed to describe

conditions in which MuSC defects are the principal driver of

disease progression (Ganassi et al., 2022). For instance, mutations

in the MuSC master regulator Pax7 have been shown to lead to a

progressive congenitalmyopathy in humans (Feichtinger et al., 2019;

Marg et al., 2019). In case of muscular dystrophies caused by

mutations that lead to an instability of muscle fibers, regenerative

failure and MuSC dysfunction can be concomitant or arise

subsequent to disease-initiating events. Consequently, such
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conditions may be considered secondary satellite cell-opathies. An

example is Duchennemuscular dystrophy, a condition characterized

by mutations in the DGC protein dystrophin, an inner membrane

protein that is expressed by both muscle fibers and MuSCs. In

preclinical models of Duchenne muscular dystrophy, it has been

shown that in addition to the typical chronic multifocal muscle fiber

degeneration, asymmetric satellite cell division is impaired and leads

to a decreased pool of committed progenitors (Dumont et al., 2015).

Several other mutations causing forms of muscular dystrophy

affect gene products involved in linking the interstitial space and the

basal lamina to the muscle fiber plasma membrane (Henry and

Campbell, 1999; Guiraud et al., 2015; Gawlik, 2018). In particular,

mutations in the LAMA2 gene coding for the laminin α2 chain cause
LAMA2-related muscular dystrophy, while mutations in the

COL6A1, COL6A2, and COL6A3 genes lead to collagen VI-

related myopathies, including Bethlem myopathy and Ullrich

congenital muscular dystrophy (Pegoraro et al., 2000; Allamand

andGuicheney, 2002; Lampe and Bushby, 2005; Bonnemann, 2011).

The critical role of both laminin α2 and collagen VI in regulating

MuSCs, supports the notion that stem cell dysfunction contributes

to disease pathogenesis in both types of muscular dystrophy (Le

Moal et al., 2022).

LAMA2-related muscular dystrophy shows a spectrum of

clinical manifestations ranging from comparably mild late onset

forms in adulthood to conditions that manifest in neonates,

leading to severe muscle wasting accompanied by a broad

spectrum of secondary effects such as spinal deformities

(Sarkozy et al., 2020). Representative of the spectrum of

disease severity in humans, several mouse models of LAMA2-

related muscular dystrophy have been generated that express

varying levels of mutated LAMA2 gene products or are full

knockouts (Gawlik and Durbeej, 2020). These animal models

reproduce the human skeletal muscle pathology well and present

with features such as a wide variation in fiber size, extensive

regeneration evidenced by centralized myonuclei, and fibrosis

(Figures 7A,B). Interestingly, in the dyWmodel, which expresses

reduced levels of a truncated LAMA2 gene product, or in dy3K

mice which are complete knockouts, levels of the laminin

receptor α-dystroglycan are significantly reduced (Moll et al.,

2001; Bentzinger et al., 2005). In agreement with an important

role of the laminin-dystroglycan interaction inMuSCs, dyW, and

dy3Kmice show incomplete skeletal muscle regeneration (Kuang

et al., 1999; Bentzinger et al., 2005; Le Moal et al., 2022). Loss of

the laminin α2 chain in LAMA2-related muscular dystrophy

patients and mutant mice leads to a compensatory upregulation

of laminin α4, which binds only weakly to dystroglycan and

integrin α7β1, and does not effectively autopolymerize (Patton

et al., 1997; Ringelmann et al., 1999; Colognato and Yurchenco,

2000; Talts et al., 2000; von der Mark et al., 2002; Reinhard et al.,

2017). During fetal development in dyW mice laminins 411 and

511 are both present in close proximity to myogenic progenitors

(Nunes et al., 2017). However, these laminins do not seem to be

able to compensate for laminin α2, and the mice display reduced

fetal muscle growth accompanied by a lower number of Pax7 and

myogenin positive cells. Notably, restoration of basal lamina

polymerization and cell surface receptor binding by transgenic

expression chimeric linker-molecules composed of domains of

agrin, nidogen, and laminin α1 leads to a dramatic rescue of the

dystrophic pathology in dyW mice (Moll et al., 2001; Reinhard

et al., 2017). One of these transgenes, a miniaturized form of

agrin containing binding sites for laminins and α-dystroglycan,

significantly improves skeletal muscle regeneration in dy3K mice

(Bentzinger et al., 2005). Interestingly, it has been shown that

laminin 111 is able to reduce pathology in mouse models of

Duchenne and LAMA2-related muscular dystrophy (Rooney

et al., 2009; Rooney et al., 2012). Presumably laminin

111 stabilizes dystrophin deficient muscle fibers via integrin

α7, while it compensates for multiple processes in laminin

α2 deficient muscles. In light of its important function for

MuSCs, Laminin 111 likely also improves the regenerative

capacity of LAMA2 deficient muscles (Rayagiri et al., 2018).

Similar to LAMA2-related diseases, collagen VI-related

myopathies show a continuum of phenotypes ranging from

comparably mild Bethlem myopathy to severe Ullrich

congenital muscular dystrophy (Allamand et al., 2011;

Bonnemann, 2011). A spectrum of different mutations in the

COL6A1, COL6A2 and COL6A3 genes have been shown to cause

effects ranging from dominant negative mechanisms to complete

loss of function (Allamand et al., 2011; Bonnemann, 2011). The

most common clinical presentation of collagen VI-related

myopathies is muscle weakness, contractures, and hyperlaxity

(Allamand et al., 2011). In Ullrich congenital muscular dystrophy

these symptoms can be very severe and lead to an arrest of motor

milestones. Skeletal muscle in Ullrich muscular dystrophy

patients displays dystrophic features including fiber size

variation, fibrosis, and centralized myonuclei (Nonaka et al.,

1981). Mouse models of collagen VI-related myopathies show

comparably mild phenotypes, which have paradoxically made

them highly useful in exploring the underlying disease

mechanisms (Figure 7A) (Bonaldo et al., 1998; Pan et al.,

2014). In both COL6A1 and COL6A3 mutant mice, mild

myopathic changes are associated with ultrastructural changes

in mitochondria and the sarcoplasmic reticulum (Irwin et al.,

2003; Pan et al., 2014). In addition, defects in autophagic flux in

COL6A1-deficient mice have been linked to apoptotic processes

in skeletal muscle (Grumati et al., 2010). COL6A1-deficient mice

show smaller fibers and lower numbers of MuSCs after snake

venom injury, and have a reduced ability to maintain quiescent

MyoD negative cells (Urciuolo et al., 2013). In COL6A1 deficient

mice, wild-type MuSCs have been shown to engraft better than

COL6A1-deficient cells, suggesting that this ECM component

acts through a cell-autonomous mechanism. Interestingly, the

authors also demonstrated that COL6A1-deficient muscles

display an increase in tissue elasticity whose partial rescue by

transplantation of wild-type fibroblasts ameliorates the MuSC

defect. Similarly, MuSC pathology in COL6A1 deficient mice is
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reduced upon transplantation of collagen VI secreting human

adipose-derived stem cells and mesenchymal stromal cells

(Alexeev et al., 2014; Takenaka-Ninagawa et al., 2021). Thus,

collagen VI-related myopathies are another example highlighting

the importance of tissue elasticity in the pathogenesis of MuSC

defects.

Concluding remarks

Recent advances in single cell RNA sequencing have

considerably improved our understanding of the contribution

of different cell types to ECM synthesis in skeletal muscle and the

MuSC niche. One interesting problem associated with single cell

sequencing is the fact that muscle fibers are multinucleated, and

therefore difficult to analyze using this technique. Thus, except

for insights obtained from single nucleus RNA sequencing

experiments, which only cover a fraction of all transcripts, the

proportional contribution of muscle fibers to ECM synthesis in

the niche remains somewhat enigmatic. In particular, newly

formed multinucleated muscle fibers are highly

transcriptionally active and may well contribute significantly

to the pro-regenerative transitional ECM that instructs MuSC

function following skeletal muscle injury. Emerging technologies

such as spatial RNA-sequencing, multiplexed proteomics, and

single-cell protein analysis, will ideally further advance our

understanding of the complex niche regulation of MuSCs

(Pham et al., 2021; McKellar et al., 2022; Wang et al., 2022).

Importantly, compared to other relatively static stem cell niches,

the microenvironment of MuSCs is highly dynamic and depends

FIGURE 7
ECM and muscular dystrophy. (A) Hematoxylin and eosin (H&E) staining of skeletal muscle sections from wild type mice, COL6A3 mutant
D16 mice, and LAMA2 mutant dyW mice (Kuang et al., 1998; Pan et al., 2014). (B) Immunostaining of skeletal muscle cross sections from wild type,
D16 and dyW mice showing laminin α2 (green), collagen VI (red) and DNA (blue).
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on the respective stage of muscle regeneration. Many aspects of

the intricate ECM biology involved in these processes, for

instance the return of MuSCs to quiescence, remain

underexplored and future research regarding these topics will

undoubtedly open interesting new avenues for stem cell

dysfunction in aging and disease.
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